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The statistical strained-tetrahedron model was developed to overcome two common assump-
tions of previous models: 1) rigid undistorted ion sublattice of regular tetrahedra throughout all
five configurations and 2) random ion distribution. These simplifying assumptions restrict the
range of applicability of the models to a narrow subset of ternary alloys for which the constituent
binaries have their lattice constants and standard molar enthalpies of formation (�fH0) equal or
quasi-equal. Beyond these limits predictions of such models become unreliable, in particular, when
the ternary exhibits site occupation preferences. The strained-tetrahedron model, free from rigid-
ity and stochastic limitations, was developed to better describe and understand the local structure
of ternary zinc blende crystals, and interpret experimental EXAFS and far-IR spectra. It considers
five tetrahedron configurations with the shape and size distortions characteristic of ternary zinc
blende alloys, allows nonrandom distributions and, hence, site occupation preferences, conserves
coordination numbers, respects stoichiometry, and assumes that next-neighbor values determine
preferences beyond next-neighbor. The configuration probabilities have three degrees of freedom.
The nineteen inter-ion crystal distances are constrained by tetrahedron structures; to avoid de-
structive stresses, we assume that the average tetrahedron volumes of both sublattices relax to
equal values. The number of distance free-parameters � 7. Model estimates, compared to published
EXAFS results, validate the model. Knowing the configuration probabilities, one writes the di-
electric function for far-infrared absorption or reflection spectra. Constraining assumptions re-
strict the number of degrees of freedom. Deconvolution of the experimental spectra yields site-oc-
cupation-preference coefficient values and/or specific oscillator strengths. Validation again
confirms the model.

PACS: 78.30.Er

1. Introduction

The abundance of articles in the literature devoted
to sphalerite (zinc blende) ternary semiconductors is
ample evidence of the interest paid to them. In the
hope of better understanding their local structure, we
considered the interpretation of extended x-ray ab-
sorption fine structure (EXAFS) (see theoretical con-
siderations [1,2] since 1981) and vibrational spectra
observed in the far-infrared region (FIR spectra).
EXAFS was applied soon after [3,4] with, alas, no re-
view paper covering the abundant literature devoted
to it. For literature on the FIR spectra, see, for in-
stance, the review articles [5–7] and book [8]. With

that aim we developed the statistical strained-tetrahe-
dron model, validating it on published EXAFS zinc
blende data [9,10] and, after an adaptation, on inter-
metallide materials [11]. The model was then ex-
tended to describe and interpret FIR spectra [12].

We propose to briefly recall here the model de-
veloped and its validation and then to dwel more
on FIR-spectrum interpretation, applicability, and
limits.

2. The statistical strained-tetrahedron model

To create any model, one has to 1) describe as
closely as possible the object under study, using
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proper parameters for that; 2) reduce the set of these
parameters through motivated constraints to deter-
mine the minimum number of degrees of freedom/pa-
rameters; 3) check the model-predicted values against
experimental ones; 4) consequently, discard the model
or retain it as valid depending on the reproducibility
thus obtained. With this in mind we recall our mo-
deling.

2.1. The object under study

Zinc blende fcc structures are tetrahedrally coordi-
nated, characterized by a central ion surrounded by
four nearest-neighbor (NN) ions (first shell) defining
the four vertices of a tetrahedron, and 12 next near-
est-neighbor (NNN) ions (second shell). Binary com-
pounds AZ (we use A, B, … for cations, and Z, Y, …
for anions), have their successive shells alternate-
ly fully filled by A then Z ions. All tetrahedra are
symmetric, regular, and identical; thus, by simple
trigonometry, equal interbond angles �(A:Z:A) =
= �(B:Z:A) = 109.47�, and the inter-ion distances (ijd)
are defined in terms of the lattice constant a (known
from x-ray diffraction analysis): AZd = 31/2a/4,
AAd = ZZd = a/21/2.

For ternary A1–xBxZ (or AYyZ1–y), in the binary
compound AZ, cations A are partially substituted by
B ions. This, leads to five different elemental tetrahe-
dra {Tk}k=0,4 where the subscript k indicates the num-
ber of B ions at the vertices of the tetrahedron, with
(4–k) A-ions [T0(Z:4A), T1(Z:3A+1B), T2(Z:2A+2B),
T3(Z:1A+3B), T4(Z:4B)]. Prior to ours, simulations
had considered the five {Tk}k=0,4 tetrahedra as exter-
nally rigid with the central ion free to be displaced.
The ion distribution fillings (k B-ions into a shell with
N sites, from relative contents x and 1–x) were as-
sumed stochastic and defined by the random Bernoulli
binomial polynomials

p
k
[N](x)=N!/[k!(N–k)!]xk(1–x)N–k with k = 0, ..., N.

Thus around a central Z ion the first shell four
A/B ions are described by pk

[4](x), while the second
shell contains twelve Z ions! On the other hand,
around an A or B ions, the first shell contains four Z
ions, while the second shell distribution of the twelve
ions A/B is described by pk

[12](x). This allows ap-
proximate evaluations, avoiding analytical difficul-
ties.

However, to assume a stochastic filling with ions A
and B around Z means that the Z-ion preference for ei-
ther is the same. Thermodynamically this implies that
the enthalpies of formation of AZ and BZ pairs are
identical. But we are aware that in nature equality is
the exception that confirms the rule of inequality. In-
deed, the standard molar enthalpies of formation of bi-

naries, �fH0, kJ/mol, are generally different. That is
why the stochastic approach is unable to describe the
site occupation preferences (SOPs) reported experi-
mentally!

2.2. Statistical strained-tetrahedron model
assumptions

We build our model discarding both restrictions:
1) deviating from stochastic filling of ions, and
2) freeing the tetrahedra of the unnatural constraint
of rigidity.

The price for such a more general model is the num-
ber of parameters needed to describe the crystal struc-
ture. But as we shall demonstrate, realistic assump-
tions (checked at the end) reduce the degrees of
freedom to an acceptable value.

To quantify results departing from stochastic dis-
tribution, we attribute to each Bernoulli binomial a
SOP weight coefficient. This leads to five NN terms
Wk pk

[4](x), thirteen NNN terms Awk pk
[12](x) (for

central A ions), and thirteen Bwk pk
[12](x) terms (for

central B ions), a total of 31 parameters! Fortunately
it is the Z ion that determines the choices, and we
claim that ALL higher shell fillings are determined by
linear expressions of the five NN SOP coefficients
{Wk}k=0,4 . But binary tetrahedron configurations T0,
T4 have NO preferences. Thus W0 =W4 �1 (!) and we
are left with only {W1,W2,W3}.

The probabilities of finding B and A ions in a
Tk configuration are proportional to {kWk}k=0,4 and
to {4–kWk}k=0,4, respectively (conservation of coordi-
nation numbers). As probabilities cannot be negative,
we have 0 � Wk � 4/k. There are thus only three
bounded free parameters {W1,W2,W3}.

Expressions {Awk}k=0,12 , {Bwk}k=0,12 for the NNN
shell, are determined by combinatorial probabilities in
terms of those around the Z ions of the NN shell. This
hypothesis leads for the zinc blende structure, to the
linear expressions of the NNN SOP coefficients Awk
and Bwk as functions of the three Wk’s given in
Table 1,a [9]. To illustrate that the assumption is gen-
eral and applies to other crystal structures also, the
expressions for intermetalides M3(X1–x �X x)1 are given
in Table 1,b [11].

A random integer ion distribution (k and 4–k) fully
respects stoichiometry. With SOP coefficients Wk � 1
the situation departures from stochastic equilibrium,
with a consequent attenuation of the ternary configu-
ration populations caused by the observed scarcity
of one of the two ion populations

{P
k
[4](x) = C

k
p
k
[4](x) }

k=1,3 for ternary T
k

with {Ck(Wk)}k=1,3 , corrective weight factors im-
posed by stoichiometry
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0 � {C
k
=min [W

k
,1,(4 – kW

k
)/(4–k)]}

k=1,3 � 1

Wk < 1 enhances the binary AZ populations and
Wk > 1 that of binary BZ, i.e.

P0
[4](x) = p0

[4](x) + {max ( , – ) ( )}[ ]

,

0 1 4

13

W p xk k
k�
	

for binary AZ configuration T0,

P4
[4](x) = p4

[4](x) +


 � �
�
	 {max( , ( ) ( )) ( )}

,

0 1 4
13

k W / k p xk k
k

for binary BZ configuration T4. (1)

In the random case, when {Wk � 1}k=1,3, {Pk(x) �
� pk(x)}k=0,4.

Note however, that even if the SOPs enhance the
two binary populations with respect to corresponding
populations of the random case, it by no means leads
to clustering, since the spatial distribution remains
perfectly stochastic.

Ion-pair and configuration populations are NOW
determined with due account of the SOPs. This allows
us to interpret local crystal structures.

We have five tetrahedra freed from any constraint,
with two of which (T0 and T4) are binary, regular,
different sized, and well defined (as remarked above),
and three (T1, T2, and T3) are ternary and distorted
(strained tetrahedra), with nineteen unequal inter-
ionic ijd distance parameters and, consequently, al-
tered interbond angles (see Fig. 1 [9]). The geometri-
cal symmetry of each Tk configuration yields three
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Table 1,a

NNN SOP-coefficients in terms of NN SOPs: All possible NNN distributions and resulting SOP-coefficients for ternary.
0 � {Wk}k=1,3 � 4/k, while W0=W4 = 1. Zinc blende A1–xBxZ with a B or A as central ion [9].

k
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Table 1,b

Intermetallides M3(X �X)1 around X or �X [11].
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constraints each, which reduces the number of inde-
pendent distance parameters from nineteen to ten.

Material strength considerations lead us, to avoid
destructive intercrystal stresses, to impose the condi-
tion that the average tetrahedron volume of the four
vertex tetrahedra be equal to the central one (one con-
straint per configuration), leaving us with only

(10–3) = 7 distance parameters, while for SOP ex-
treme values, configurations disappear, and their
distances become virtual, i.e., � 7.

Indeed �, as for extreme SOP values configurations
disappear, and their distances become virtual!

On the basis of the above probabilities, expressions
for the average pair coordination <i:jCN(x)> and dis-
tances <i:jd(x)> as functions of x, for any two-ion
pair i:j={AZ, BZ, BB, BA, AA, ZAZ, ZBZ} of zinc
blende ternary alloys A1–xBxZ are given in Table 2 [9].

On the basis of these, deconvolving a given set of
EXAFS data such as GaAsyP1–y [13], one obtains the
dimensions of all the elemental tetrahedra involved:
the inter-ion distances and angles (see Table 3).

Having defined a 31+19 parameter model and iden-
tified the relative constraint relations, we have re-
duced the problem to 3+7 independent parameters.
The model is ready for confrontation of its estimations
with experimental data.
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Table 2

Expressions of average pair coordinations <i:jCN(x)> and distances <i:jd(x)>, as a function of x, for any two-ion pair i:j =
= {AZ, BZ, BB, BA, AA, ZAZ, ZBZ} of zinc blende A1–xBxZ ternary [9].

Average
Coordination numbers

for NN ion pairs AZ, BZ

<BZCN(x)> = 

k=0,4

� kW
k

p[4]
k
(x)�

<AZCN(x)> = 

k=0,4

�(4 – kW
k
)p[4]

k
(x)� = 4– <BZCN(x)>

For NNN ion pairs BB, BA, AA

<BBCN(x)> = 

k=0,12

{k Bw
k

p[12]
k
(x)}

<ABCN(x)> = 

k=0,12

{k Aw
k

p[12]
k
(x)}

<AACN(x)> = ���� <ABCN(x)> =

k=0,12

{(12 – k Aw
k
) p[12]

k
(x)}

<BACN(x)> = ���� <BBCN(x)> = 

k=0,12

{(12 – k Bw
k
) p[12]

k
(x)}

<ZBZCN(x)> = 

k=0,4

{3 k W
k

p[4]
k
(x)}   = 3 <BZCN(x)>

<ZAZCN(x)> = 

k=0,4

{3 (4 – kW
k
) p[4]

k
(x)} = 3 <AZCN(x)>

Average
Distances

for NN ion pairs AZ, BZ

<BZd(x)> =
��


k=1,4
{ k C

k
BZd

k
+ 4 Max [0, k(W

k
– 1)/(4 – k)] BZd

4
} p[4]

k
(x)}

/��

k=1,4

{ k C
k

+ 4 Max [0, k(W
k

– 1)/(4 – k)] } p[4]
k
(x)}

<AZd(x)> =
��


k=0,3
{(4 – k C

k
) AZd

k
+ 4 Max [0,(1 – W

k
)] AZd

0
} p[4]

k
(x)}

/��

k=0,3

{(4 – k C
k
) + 4 Max [0,(1 – W

k
)]                      } p[4]

k
(x)}

For NNN ion pairs Z:A:Z or Z:B:Z

<ZBZd(x)> =
��


k=1,4
{ k C

k
ZBZd

k
+ 4 Max [0, k(W

k
– 1)/(4 – k)] ZBZd

4
} p[4]

k
(x)}

/��

k=1,4

{ k C
k

+ 4 Max [0, k(W
k

– 1)/(4 – k)]         } p[4]
k
(x)}

<ZAZd(x)> =
��


k=0,3
{ (4–k C

k
) ZAZd

k
+ 4 Max [0,(1–W

k
)] ZAZd

0
} p[4]

k
(x)}

/��

k=0,3

{ (4–k C
k
)          + 4 Max [0,(1–W

k
)] } p[4]

k
(x)}

T0 T1 T2 T3 T4

BinaryBinary

regularregular

Ternary

distored

Fig. 1. Aspect of the five elemental tetrahedron configura-
tions {Tk}k=0,4 of A1–xBxZ (or AYyZ1–y) ternary alloys [9].
Small open circles indicate the would-be ion-positions as
per rigid tetrahedron hypothesis.



2.3. Model verification

To confirm the validity of the model and its as-
sumptions, we checked the quality of the model with
its restricted free parameters.

1. Comparing the experimental distance-EXAFS
points and error bars reported in the literature with
model fit curves (see Fig. 2 (36 points with 10 free pa-
rameters) and the curves reported in [9–11]).

2. Comparing the «coordination number» curve
predictions on the basis of SOP values obtained from
distance-EXAFS measurement analysis, against inde-
pendently measured coordination number values (see
Fig. 3 and also [9–11]).

3. Checking for a correlation between the thermo-
dynamic standard molar enthalpies of formation,
�fH

0, kJ/mol, of materials (Table 4 [10]) and the
corresponding values obtained for the SOP coeffi-
cient.

The validity of the model with its restrictive as-
sumptions is thus confirmed.

3. FIR dielectric function �(�,x) for ternary
zinc blende alloys

The dielectric function

� � � � � � �( ) { [( ) ]
,

� 
 � 
�
�
	 S / ij j j j
j n

2 2 2

1

�

of phonon spectra of solids can be extracted from ex-
perimental reflectivity or transmission coefficients of
a crystal, fitting the measured spectra via the Kra-
mers–Kronig (KK) analysis. The KK output Im [�(�)]
directly yields the maxima for each oscillator line, as-
sumed Lorentzian, with its three parameters {�j, �j,
and Sj}, respectively, the frequency, the line half-
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Table 3

GaAsxP1–x complete set: determined SOP coefficients,
distances, angles and volumes for all five elemental
configuration tetrahedra. Eleven fit parameters (bold)
(3-SOP + 8-distance (PGaP NNN data not reported) to
check VRC. 37 available experimental points from a set of
16 measurements [9].

GaAsxP1–x

Configurations T
0

T
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T
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k 0 1 2 3 4

W
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BZd [Å] — 2.42 2.43 2.44 2.450

AZd 2.359 2.37 2.37 2.38 —

BZBd — — 3.90 3.90 4.001

AZAd 3.852 3.88 3.98 — —

BZAd — 3.91 3.90 3.99 —

ZBZd — 3.95 3.97 3.98 4.001

ZAZd 3.852 3.87 3.87 3.89 —

�(B:Z:B)  [deg] — — 106.7 106.9 109.47

�(A:Z:A) 109.47 109.7 114.3 — —
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3] — 7.28 7.37 7.41 7.55

<Vol
A.centred

> 6.74 6.84 6.86 6.91 —
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Fig. 2. Average inter-ion distances, Å, as a function of relative content x for GaAsxP1–x [13]: comparison of model best
fit curves versus reported experimental data. Points are (circles) for As-related (top curves), (triangles) for P-related
(bottom curves), and (diamond) for mixed AsP ion distances. Linear combination of weighted average distances
(LCWAD) curves (thin dashed lines) and corresponding reference Vegard law lines (thin dotted) are all reported [9].
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Fig. 3. Average coordination numbers as a function of relative content x: comparison of model best fit curves using SOP
values deduced from distance measurements [{0.98,1.07,1.03} GaAsxP1–x [9] (a); {0.62,1.67,0} ZnMnxSe1–x [10] (b);
{1.01,0.86,1.33} Ni3(Al1–xFex)1 [11] (c)] versus independently measured coordination number data.



width, and the oscillator strength (OS). Note that
while {iZ�k and iZ�k} are prime values, {iZSk} are sums
over all the specific OSs {iZsk} multiplied by the rela-
tive ion-pair populations, taking into account ion-pair
multiplicities (Eq. (4)), and by three SOP parame-
ters {W1,W2,W3}, which express the thermodynamics
of the considered alloy. The introduction of SOPs
links them to the OS of each ternary line. The sum
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describes the total activity of all the oscillators over
the frequency range considered. In zinc blende ter-
nary A1–xBxZ (or AYyZ1–y) compounds, each vibrat-
ing ion dipole pair AZ and BZ from each of the five
elemental tetrahedron configurations {Tk}k=0,4 con-
tributes a phonon line to the spectrum (this idea was
first presented by Verleur and Backer [14], who pro-
posed a pioneering single-parameter model; the limits
of the model were later discussed by us [15]). Thus
Im[���,x)] of the A1–xBxZ spectra can be written as
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with the Pk(x)’s defined in Eqs. (1).
Thus, the OS iZSk of each mode can be expressed by

BZS
k
(x) = BZs

k
k P

k
(x)

and AZS
k
(x) = AZs

k
(4–k) P

k
(x),

(4)

with the specific OS AZs0 = AZs and BZs4 = BZs proper
to the two binary constituents, and to {AZsk}k=0,3
{BZsk}k=1,4 of the three ternary configurations.

If all four specific OSs for a given iZ pair are equal
and independent of x, i.e.,

{BZs
k
}

k=1,4 = BZs and {AZs
k
}

k=0,3 = AZs

for a random distribution of A and B ions, the total
OS of the respective modes AZ and BZ of A1–xBxZ al-
loys is reduced identically to two linear functions of x,
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Table 4

Standard molar enthalpies of formation, �fH
0, kJ/mol, of materials and corresponding SOP coefficients. Column (§) gives

origin and comments for reported SOP coefficient values derived from: c — coordination number data, d — distance data,
0* — assumed W3 = 0 value [10]

Material components �
f
H0, kJ/mol SOP (§)

ABZ/

AYZ

AZ+BZ/

AZ+AY
AZ

BZ/

AY
W

0
W

1
W

2
W

3
W

4

ZnMnSe ZnSe +MnSe –163.0 a  –106.7 b 1 0.67 1.67 0.04 1 c

1 0.62 1.70 0 1 d

GaInAs GaAs +InAs –71.0 a  –58.6 a,c 1 0.58 0.25 1.05 1 d

GaAsP GaP +GaAs –88 a  –71.0 a,c 1 0.93 1.15 1.07 1 d

ZnMnS ZnS +MnS –206.0 a, –205.98 c ! –214.2 a,c, –207.0 b 1 1.78 0 0.01 1 d

ZnMnTe ZnTe +MnTe –92.7 a,c , –120.5 b  –94.7 b 1 0.25 2.0 0.01 1 d

CdMnTe CdTe +MnTe –102.5 b  –94.7 b 1 0.68 1.33 0* 1 d+0*
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0 4

4 1 ,
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often referred to as the linear dependence on x.
To treat FIR spectra we make two FIR assumptions.
1. Specific OSs relative to a given ion pair is the

same for all configurations,

{BZs
k
}
k=1,4 = BZs , {AZs

k
}
k=0,3 = AZs . (6)

2. Analogously, we assume that for each of the two
constituent ion pair populations, the line widths � of
any given composition spectrum are invariant:

{AZ�
k
}
k=0,3=

AZ� and {BZ�
k
}
k=1,4=

BZ�. (7)

Thus to deconvolve a ternary spectrum with its 8
lines/spectrum, we have THREE SOP coefficients
and TWO OS coefficients!

As was shown, the true tetrahedron populations in
crystal lattices are determined by the alloy composi-
tion «x» (or «y» for AYyZ1–y compounds) and the
three SOP coefficients {W1, W2, W3}.

To assess the credibility of the model FIR assump-
tions, a best-fit test is carried out to «derive» the two
binary OS {AZs, BZs} values from the GaAsyP1–y spec-
tra (Fig. 4) [14] that have a rich documentation in
EXAFS [13], yielding SOP values.
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Fig. 4. GaAsyP1–y: reflectivity [%] spectra [14] (a); corre-
sponding normalized Im [���,y)] Kramers–Kronig derived
spectra (b). Curves: y = 0.01 (solid), 0.15 (dashed), 0.44
(dash-dotted), 0.72 (dash-dot-dotted), 0.94  (dotted).

Table 5

Individual deconvolution of GaAsyP1–y spectra for each spectrum parameter {iGa�k,
iGa�}i=As,P;k=0,4 and {GaAss, GaPs} taken

as free. {W1=0.975, W2=1.0715, W3=1.034, as per Wu et al. data}: table of best fit parameter values for dipoles GaAs
k = 1,4 and for GaP k = 0,3. Amplitudes are given to two decimals.

Phonon dipole GaAs GaP

configuration = 4As0P

k = 4

3As1P

3

2As2P

2

1As3P

1

0As4P

0

1As3P

1

2As2P

2

3As1P

3
y

As

� [cm–1] 1% 257.8 261.9 264.3 268.4 363.5 365.5 377.0 379.0
15% 259.6 261.6 263.6 271.2 362.9 364.9 366.9 381.0
44% 265.1 269.2 271.2 273.2 350.7 352.7 363.6 373.9
72% 269.7 271.7 273.7 279.6 342.8 344.8 350.9 360.6
94% 269.5 271.5 278.5 280.5 345.8 347.8 349.8 351.8

� [cm–1] 1% 8.64 4.06
15% 10.04 6.58
44% 10.74 11.52
72% 6.00 9.24
94% 3.99 11.50

A 1% 0.00 0.00 0.00 0.04 1.84 0.05 0.00 0.00
(given 15% 0.02 0.01 0.08 0.17 1.05 0.55 0.09 0.01
to two 44% 0.13 0.21 0.28 0.12 0.26 0.57 0.42 0.11

decimals) 72% 0.52 0.46 0.18 0.02 0.02 0.13 0.31 0.26
94% 1.63 0.28 0.02 0.00 0.00 0.00 0.03 0.17



4. Summary and conclusions

The spectrum of any pure canonical, zinc blende ter-
nary ABZ (or AYZ) material with its 5 tetrahedron con-
figurations {Tk} exhibits 8 phonon lines (4AZ + 4BZ).
The number of lines can be less than 8 when in pure
defect-free materials extreme preferences prevent the
formation of some configuration; this is observed with
a transient element in B = {Mn, Fe,...} [10,11]:
ZnMnSe lacks one, ZnMnS lacks two; however,
GaAlN also lacks one with another nearly evanescent
[16]. Thus only 6, 4, 4 intense + 2 weak phonon lines,
respectively. More than 8 lines are observed when
point defects occur (antisites, vacancies, …), respon-
sible for the extra lines (as reported for HgCdTe
[17]). Thus FIR admits the detection of defects: va-
cancies, intersites, antisites, H-loading deformations,
quantifying amount of impurity ions [18].

The statistical model of the optical dielectric func-
tion is applied to five GaAsyP1–y (of type AYxZ1–x)
FIR spectra [14] (see Fig. 4). In spite of the restricted
number of parameters, the results show a good fit of
the spectra (Fig. 5, Table 5); but most important, the
best fit yields for GaAss and GaPs values that overlap
with published values within the uncertainty bars
(Table 6).

Such a satisfactory reproduction validates the mo-
del assumptions and gives confidence the model is use-
ful in giving a deeper understanding of the FIR re-
sults.

Equations, tables and figures taken from our previ-
ous publications (as referenced) are documented in
greater detail.

Part of the work was supported by the EU TARI-
project contract HPRI-CT-1999-00088.
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Fig. 5. Model best fit unfolding of GaAsyP1–y Im [���,y)]
spectrum for SOP coefficients {W1=0.98, W2=1.07,
W3 = 1.03}. The four line bands of {GaAs�k}k=1,4 and of
{GaP�k}k=0,3 are distinctly seen below and above
� = 300 cm–1, respectively; experimental points (circles),
best fit (solid lines), deconvolved lines (various discontin-
uous lines); the frequencies and intensities obtained are
given in Table 5.

Table 6

Individual unfolding of GaAsyP1–y spectra, {W1=0.975,
W2=1.0715, W3=1.034}: table of best fit values {GaAssy,
GaPsy}, their average values, and comparison to values in
literature. An asterisk indicates unreliable low-signal values.

y
As GaAs GaP

1% * 1.97
15% 2.18 1.98
44% 1.68 2.49
72% 1.58 2.77
94% 2.00 *

All 5 together
(global values)

1.75 1.98

Aver. experimental 1.84±0.11 2.24±0.17
Aver. literature 1.815±0.21 2.06±0.16

ratio 0.90±0.14 1.15±0.17
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