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A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate
superconductors is given. We briefly discuss a phenomenological approach and a theory in the
limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit
is presented in more detail. In particular, results of our recently developed theory for the effective
p–d Hubbard model and the reduced t–J model are given. We have proved that retardation effects
for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge
carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation
interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing.
Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen
isotope shift are discussed.
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1. Introduction

Twenty years have passed since the discovery of the
high-temperature superconductivity (HTSC) in cup-
rates by Bednorz and M�ller [1]. While extensive
experimental investigations over the years have pro-
duced a wealth of high-precision data resulting in a
consistent description of the major physical properties
of the cuprate superconductors, the pairing mecha-
nism of HTSC is still under hot debate. To answer the
question of only the cuprate superconductors de-
monstrate Tc � 100 K, one should look for particular
properties of these compounds which single them out
among other materials. A unique property of cuprates
is that they belong to charge-transfer insulators with a
small splitting energy between 3d copper and 2p
oxygen levels and large Coulomb correlations at 3d
copper states [2]. This peculiar electronic structure of
cuprates results in a huge antiferromagnetic (AFM)
superexchange interaction of the order of J � 1500 K
which brings about a long-range AFM order in the
parent insulator compounds and ensures strong

short-range AFM dynamical spin fluctuations in me-
tallic and superconducting states (see, e.g., [3]).
Recent angle-resolved photoemission spectroscopy
(ARPES) studies proved an important role of AFM
spin fluctuations in the electron dispersion renormali-
zation close to the Fermi surface (the «kink» pheno-
menon — see, e.g., [4]). Therefore, one can suggest
that strong interaction of charge carriers in cuprates
with AFM spin fluctuations is responsible for their
anomalous normal state properties and can be an
origin of the superconducting pairing as proposed by
Anderson [5].

At the first International Conference on High-Tem-
perature Superconductors and Materials and Mecha-
nisms of Superconductivity (Interlaken, Switzerland
1988), Robert Schrieffer in his final remarks said that
«a horse race has started» in search of a mechanism
of the high-temperature superconductivity and said
that he stakes «on the antiferromagnetic horse». The
author believes that Robert Schrieffer has won the
race. Below we give a brief review of the magnetic
mechanism of the high-temperature superconductivity
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in cuprates based on the antiferromagnetic exchange
and spin-fluctuation pairing theory (for detail see [6]).

1.1. Phenomenological approach

Earlier the magnetic pairing mechanism was pro-
posed for systems with heavy fermions [7–9] where
the d-wave pairing was observed. Later on it was
suggested that this mechanism could be responsible
for the high-temperature superconductivity [10]. It
was shown that, under the exchange of AFM pa-
ramagnons, an attraction appears in the d-channel
and acts most effectively near the AFM instability
[11,12]. The spin-fluctuation pairing mechanism on
the basis of phenomenological approach was con-
sidered by several groups (see, e.g., [13–25]).

For the AFM ground state, transverse fluctuations
of the AFM order parameter ensure an effective at-
traction which is favorable for a magnetic pairing
mechanism. To describe the pairing in the AFM state,
a concept of the «spin bag» was developed by Schrief-
fer et al. [13]. This approach was based on the
assumption of a local depression by a hole of the AFM
gap in the electron spectrum. As a result, a magnetic
polaron — a spin bag, which moves together with the
cloud of spin deformation, appears. In this case, two
holes, i.e., polarons, attract each other due to the
overlap of their regions of deformation of the AFM
order. An extended analysis has shown that the
longitudinal spin fluctuations lead to a singlet pairing
with the maximum contribution coming from the
d-wave channel. Although in the copper-oxide com-
pounds superconductivity arises for hole concentra-
tion nh � 0 05. , where long-range AFM order is already
destroyed, due to the small superconducting cor-
relation length �0 the theory can be applied in the
region � �N � 0 (where �N is an AFM correlation
length).

In the paramagnetic phase, the contribution of spin
fluctuations near the AFM wave vector Q AF � ( , )� �
leads to the appearance of a pseudogap in the electron
spectrum near half-filling [14]. The additional ex-
change of the AFM spin fluctuations for two quasi-
particles (QPs), the «spin bags», decreases their
energy, similar to the case of the long-range AFM
order, and results in their mutual attraction. In this
case, an effective interaction potential V ,( )k k� is
attractive in the range of a small momentum transfer
q k k� � � and is of a repulsive character for large
q Q� AF . Therefore, in this case, the symmetry of the
superconducting order parameter, �(k), and the value
of Tc strongly depend on the form of the Fermi surface
for QPs. These calculations were performed under an
assumption of weak or intermediate Coulomb cor-
relations and in the framework of the one-band Hub-

bard model (for U t	 4 ). A generalization of the
theory for the case of strong correlations and for the
multi-band p–d model is important to compare its
conclusions with experiments in the copper-oxide su-
perconductors.

Interaction between QPs on a two-dimensional
square lattice under an exchange of AFM paramag-
nons was most extensively studied by Pines et al.
[16–21]. They have considered a model of a nearly
antiferromagnetic Fermi liquid (NAFL) where inter-
action between two QPs with spinsσ σ1 2, is mediated
by an exchange of spin fluctuations [19]

V gmag
eff ( , ) ( , )q q
 � 
� �2

1 2σ σ . (1)

The dynamical spin susceptibility was described by a
phenomenological model
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where �( )T is the AFM correlation length and �
 sf is
the typical energy of AFM fluctuation. The spin
susceptibility (2) at large values of �( )T can reach
high values at the AFM wave vector q Q� AF . The
authors numerically solved the Eliashberg equations
in ( , )q 
 -space and observed superconductivity in the
d-wave channel [20] with Tc � 90 K for a compa-
ratively modest value of coupling constant g. Studies
of the temperature dependence of the superconduct-
ing gap �( )T have shown that near Tc the gap grows
rapidly when the temperature decreases and reaches a
maximum value 2 0�( )/kTc � 6–8 which agrees with
experiments. In these calculations, the high Tc and
the d-wave pairing are conditioned by a strongly
anisotropic interaction due to the AFM spin fluc-
tuations. Strong enhancement of the spin suscep-
tibility (2) near AFM wave vector Q AF is capable of
bringing about high Tc in spite of strong pair-braking
effects due to spin scattering. Studies of normal state
properties of the cuprate superconductors have sup-
ported the NAFL model. Therefore, the authors have
concluded that the mechanism for high Tc is electro-
nic and magnetic in origin. However, several critical
remarks concerning the NAFL model should be men-
tioned [26,27].

1.2. Microscopic theory

As was pointed out by Anderson [27], in conven-
tional metals only ferromagnetic electron correlations
can occur, while AFM interaction in the copper oxides
is of superexchange origin. The latter can be properly
described only in the framework of models with
strong electron correlations like the Hubbard model or
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the t–J model [5]. The one-band Hubbard model
reads [28]:

H t a a U n ni
ij

j i
i

i� � � ��

� �
� �� �( ) ,�

�
� h.c. (3)

where the first term is the kinetic energy of electrons
with an effective transfer integral t for a pair of
nearest neighbor sites, � �ij , i j� , andU is a Coulomb
single-site energy. For a large enough U U Wc� �
(W is the band width for free electrons, W t� 8 for a
two-dimensional square lattice) the model (3) de-
scribes the Hubbard—Mott insulator at half-filling,
n � 1. In the strong correlation limit, U t�� , when
only singly occupied sites are taken into account since
a doubly occupied site costs a large additional energy
U, the model (3) can be reduced to the t–J mo-
del [27]:

H t a a J n nt J
ij

i j
ij
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Here the projected electron operators ~ai�
� �

� ��
�a ni i� �( )1 act in a subspace without double

occupancy and n a ai i i� � �~ ~
�� � is the number operator

for electrons. The second contribution, written in
terms of the spin operators S a ai is

s s
s s is

� ��� � �

	
	 	( ) ~ ~

,
,1 2/ ,

describes an AFM exchange interaction with the ener-
gy J t U� 4 2 / for electrons on nearest neighbor sites.

So starting from the original Hubbard model (3)
for conventional fermions with the Coulomb repulsion
U we have arrived to the t–J model (4) for fermion-
like particles projected onto the singly occupied Hub-
bard subband which obey the nonfermionic com-
mutation relations with an additional AFM exchange
interaction between them. It should be pointed out
that the exchange interaction between these «pro-
jected» fermions results from the so-called kinematic
interaction caused by the nonfermionic commutation
relations. The latter present great obstacles for em-
ploying the conventional diagram technique for fer-
mions. Presently there are no rigorous methods to
study models with strong electron correlations like
(3) or (4) for dimensions D � 2. The recently de-
veloped dynamical mean-field theory (for a review see
[29,30]) which is exact in the infinite dimensions
is unable to treat nonlocal correlations as, e.g., the
exchange interaction, and to study the nonlocal
d-wave type superconducting pairing. To overcome
this deficiency a dynamical cluster theory was ela-
borated (for a review see [31]). In this connection
we should mention the studies of superconducting
pairing within the dynamical cluster approximation in
[32,33].

1.2.1. Weak correlation limit

In the weak correlation limit, U t�� , a pertur-
bation approach for the Hubbard model (3) can be
applied. In a number of studies (see [34–37] and
references therein) a self-consistent set of equations in
the fluctuation-exchange approximation (FLEX) [38]
for the single-electron Green functions and the spin
and charge susceptibility were numerically solved.
The FLEX approximation was also applied for the
three-band p–d model with Coulomb repulsion U on
copper sites [39] and for electronically doped cuprates
[40]. Within this approach a qualitative description of
the copper-oxide materials was obtained at moderate
and large doping regimes at intermediate values of the
Coulomb repulsion,U W t	 �/ 2 4 . However, starting
from the Fermi-liquid picture, the theory fails to
describe the underdoped regime with strong cor-
relations and large values of the Coulomb repulsion,
U W� , close to the insulating (and AFM) state. In
that region higher order corrections to the effective
interactions mediated by spin fluctuations are im-
portant [26].

Let us briefly discuss these studies of the strong
coupling equations for the Hubbard model in the weak
correlation limit [34–37]. In the framework of FLEX,
a self-consistent system of equations for the diagonal
G p n( , )
 and the off-diagonal F p n( , )
 single-electron
Green functions was written as (see, e.g., [35]):
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with X p pn p n( , ) º ( , )
 � � 
� � � . Here we used the
standard notation for the renormalization parameter
Z p n( , )
 , the energy shift � 
( , )p n , and the gap pa-
rameter � 
( , )p n in the Eliashberg-type equations for
the Nambu frequency 
 �n T n� �( )2 1 and the 2D
wave vector p p px y� ( , ). The interactions are me-
diated by the spin V qs n( , )
 and the charge V qc n( , )

fluctuations calculated in the random phase approxim-
ation (RPA). The irreducible spin � 
0

s
nq( , ) and

charge � 
0
c

nq( , ) susceptibility in the RPA formulas
are defined self-consistently in a one-loop approxim-
ation by using the Green functions (5), (6):
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where +(–) stands for � �0 0
s c( ). Numerical solutions

of the self-consistent set of equations for intermediate
values of the Coulomb repulsion, U t	 4 , for the full
momentum- and frequency-dependent renormalization
parameter Z p( , )
 , the energy shift � 
( , )p , and the
gap function �( , ) ( , ) ( , )p p Z p
 � 
 
� / have been ob-
tained. The gap function has been found to have the
dx y2 2� symmetry. In the vicinity of AFM instability
near half-filling the superconducting temperature Tc
reaches values of the order 0 02 60. t � K. Quasi-
particle and spin fluctuation spectra in the normal
and superconducting states, calculated also on the
real frequency axis by Dahm and Tewordt [37],
reveal strong dependence of the spectra on tempe-
rature and a strong feedback effect for the effective
interactions arising from the spin and charge sus-
ceptibilities as the superconducting gap opens. These
direct numerical solutions of the strong coupling
Eliashberg equations for the Hubbard model in the
weak correlation limit unambiguously confirm a pos-
sibility of the d-wave pairing mediated by the spin
fluctuations. However, superconductivity exists only
in a narrow range of U, very close to the AFM
instability in this model.

In a more rigorous treatment, a self-consistent
account of all three types of instability driven by spin
or charge density waves or transition into a super-
conducting state is required. As was shown in a
number of investigations within the renormalization
group technique, in the two-dimensional generalized
t t� � Hubbard model (3), allowing for the next-
nearest-neighbor hopping t�, several instabilities com-
pete close to half-filling at the Van Hove singularity
as was first pointed out by Dzyaloshinskii [41]. An
evolution from an AFM instability due to nesting
effects at small t t� �/ 0 over a d-wave superconducting
pairing at moderate t t� � �/ 0 3. to a ferromagnetic
ordering at large values of | |t t�/ was observed in a one
loop approximation in the weak correlation limit
U t� 3 [42]. A phase diagram as a function of the
Coulomb interactionU t/ and doping was investigated
in the original parquet approximation in [43]. The
renormalization group technique was also applied to
study Fermi surface instability and breakdown of the
Landau—Fermi liquid in the two-dimensional t t� �
Hubbard model close to half-filling (see, e.g., [44]
and the references therein). However, these results
obtained in the weak correlation limit U W� /2 do
not lead to a description of the strong-coupling phases
revealing only a complicated competition between
different types of instability.

Thus, in the framework of the Landau—Fermi li-
quid model (in the weak correlation limit) the electro-
nic interaction mediated by AFM spin fluctuations

can lead to a superconducting pairing. The magnetic
pairing mechanism is most effectively manifested it-
self in the d-channel where the local Coulomb re-
pulsion is suppressed. In spite of the pair-breaking
effects due to spin scattering which considerably
decreases Tc strong enhancement of the spin sus-
ceptibility near the AFM instability results in the
d-wave pairing. An exceptionally strong suppression
of Tc in all cuprates by nonmagnetic Zn impurities
which are also detrimental to the local magnetic order
and in this way suppress the effective spin-fluctuation
pairing, provides a «smoking gun» for the magnetic
mechanism [17].

1.2.2. Strong correlation limit

Finite cluster calculations. To deal with the
strong correlation limit for the Hubbard model and
the t–J model a number of numerical methods for
finite clusters has been developed (for a review see
[12,45–47]). These studies have revealed strong AFM
correlations and tendency to the formation of the
dx y2 2� pairing correlations. However, the finite clus-
ter calculations due to known limitations can give
only restricted information and usually show contra-
dictory results. For instance, by applying the const-
rained-path Monte Carlo method [48] to the two-
dimensional Hubbard model dx y2 2� pairing corre-
lations were detected for small size lattices and a weak
interaction while with increasing of the lattice sizes or
the interaction, they vanished. Close results were also
obtained for the t–J model [49]. In later studies
pronounced dx y2 2� pairing correlations were found for
the t–J model [50], while for the original Hubbard
model no long-range pairing correlation were observed
[51]. It seems that for the t–J model the d-wave
pairing correlations are much easy to detect since they
already emerge in the mean-field approximation
(MFA) while in the Hubbard model in MFA one gets
a very complicated anomalous pairing function (see
Sec. 2.2). So to prove the superconducting pairing in
the strong correlation limit, an analytical treatment is
highly demanded.

Slave-boson representation. To take into account
the kinematic interaction caused by the projected
character of the electron operators in the t–J model
(4), different types of slave-boson (-fermion) tech-
nique were proposed (see, e.g., [52–58] and references
therein). In the simplest version of the slave-boson
theory the projected electron operators ~ai�

� in (4) are
replaced by a product of fermion (spinon) fi�

� and
boson (holon) bi operators: ~a f bi i i� �

� �� . However, to
reduce the enlarged Hilbert space of the spinon-holon
particles to the physical one of the projected electron
operators one has to introduce a local constraint
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q b b f fi i i i i� � �� �� �
�

� 1. (7)

In MFA the local constraint are substituted by a
global one, q qi� � � � 1 that reduces the problem to
free spinons and bosons in the mean-field. The de-
coupling of spin and charge degrees of freedom in
the slave-boson theory results also in quite a differ-
ent description of the superconducting phase transi-
tion by two order parameters, a bose-condensate ex-
pectation value � �bi , and a spinon pairing function,
� ��

�
�f fi j� �, , instead of one order parameter for the

original model, � ��
�

�~ ~
,a ai j� � .

The enlargement of the Hilbert space in the slave-
boson (-fermion) representation results in contro-
versial representations for basic physical parameters.
For instance, let us consider the slave-fermion hard-
core ( )CP1 boson representation proposed in [54]. To
decouple the charge and spin degrees of freedom for
physical electrons in the theory [54] the projected
electron operators are represented as a product of a
spinless fermion hi

� for the charge degree of freedom
(holon) and a hard-core boson bi� for the spin degree
of freedom (spinon): ~a h bi i i� �

� �� , ~a h bi i i� �� � . This
representation has some advantage over other axillary
field representations since the constraint of no double
occupancy can be fulfilled without introducing the
Lagrange multiplier. The hard-core bosons bi�

� are
anticommute on the same lattice site prohibiting
double occupancy:

�
� �

�
� �� �� � � �� � � 	~ ~ ,a a h h b b h hi i i i i i i i1 1 (8)

since b bi i� ��
�� � 1. However, the spin-charge sepa-

ration imposed by this representation results in extra
degrees of freedom: a spin 1 2/ is assigned to any
lattice site including an empty site, while for the
projected electron operators we have only 3 states: an
empty state and a filled state with spin �1 2/ . To cure
this defect one should introduce a projection operator
to exclude the unphysical states [54]. Otherwise
the commutation relations for the original projected
electron operators and their representation give dif-
ferent results. The double counting of empty sites
results also in controversial equations for an average
number of electrons which is valid only with an
accuracy of � � and for a violation of the sum rule
for the single-electron Green function (for details
see [55]).

To treat the constraint in a systematic way a large-N
expansion was proposed [56,57] with N /2 being a
number of states (orbitals) at a lattice cite. In that
approach the local constraint (7) are relaxed to a
much weaker one, q b b f f Ni i i i i� � � �� �

�� � /2. By

using the 1/N expansion, the d-wave superconducting
instability induced by the superexchange interaction
was detected in the generalized t–J model close to half
filling [58]. The 1/N expansion was also used within
the Baym—Kadanoff variation technique for the
Green functions in terms of the Hubbard operators in
[59,60] to study superconducting pairing in the t–J
model. It was observed that in the lowest order of
1/N there is a strong compensation of different contri-
butions to the pairing interaction and for infinite
U J( )� 0 the superconducting Tc is extremely small
[59]. For a finite exchange interaction J the d-wave
superconducting instability mediated by the exchange
and spin- and charge-fluctuations was obtained below
T tc � 0 01. [60]. It was also proved that the results in
the Hubbard operator technique differs from that one
in the slave-boson representation even in the same
order of1/N expansion due to different Hilbert spaces
used in two cases. In the limit of large N the kinematic
interaction, as in the slave-boson method, is sup-
pressed. This results, in particular, in suppression of
the spin-fluctuation contribution which is of the order
1/N in comparison with the charge-fluctuation one.
Therefore, this approach, being rigorous in the limit
N � �, is difficult to extrapolate to real spin systems
with N � 2 where the spin-fluctuation pairing
contribution plays the major role.

Spin-polaron model. Important analytical results
for the t–J model were obtained in the limit of small
concentrations of holes when one can consider the
motion of holes on the AFM background within the
spin-polaron model [61,62]. A number of studies of
this model (see [63–67] and references therein) pre-
dicts that a doped hole dressed by strong AFM spin
fluctuations can propagate coherently as a QP, spin-
polaron, on one of the two AFM sublattices (with spin
up and down) in a narrow band of the order J even for
a finite hole doping [65,66]. It was natural to suggest
that the same spin fluctuations could mediate a super-
conducting pairing of the spin polarons.

This problem was treated in the framework of the
weak coupling BCS formalism. Simple phenomeno-
logical models of QP with numerically evaluated
spectrum and effective pairing interaction in the ato-
mic limit [68] or mediated by AFM magnon exchange
[69] were studied. By applying the rigid band approx-
imation high superconducting transition temperature
was obtained for the d-wave pairing. However, since
the pairing spin-fluctuation energy J is of the same
order as the QP band width the weak coupling BCS
equation is inadequate to treat the problem. Also the
rigid band approximation for QP fails to describe
a strong doping dependence of the QP spectrum
[65,66].
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A self-consistent numerical treatment of the strong
coupling equations for the Green functions and the
self-energy for spin-polarons in the t–J model was
given in [70]. It was observed a strong renormal-
ization of the QP hole spectrum due to spin-fluc-
tuations and d-wave singlet pairing of two holes
on different AFM sublattices with maximum
T tc � 0 01. at optimal concentration of doped holes
� � 0 2. . In [71] the authors have to introduce an
additional electron-phonon coupling to obtain super-
conducting instability. However, a two-sublattice re-
presentation used in the spin-polaron model can be
rigorously proved only for a small doping within the
long-range AFM state.

Variational approach. To overcome the compli-
cated commutation relations for the original projected
electron operators, a variational approach was pro-
posed for the t–J model [72] within the resonance
valence bond ground state (see [73] and the references
therein). The basic idea in this variational theory was
to approximate the original model (4) by a renormal-
ized Hamiltonian for the conventional electron Fermi
operators but with the renormalized hopping para-
meter ~t g tt� and the superexchange AFM interaction
~J g JJ� . By using the Gutzwiller variational wave
function these variational parameters were estimated
in [72] as follow: gt � �2 1� �/( ), gJ � �4 1 2/( )� .
However, this approach in the limit of low hole
concentration � � 0, gives the four times larger ex-
change interaction, ~J J� 4 for the spin-1 2/ Heisen-
berg model which casts doubts on the validity of this
simple approximation. A more accurate numerical
calculations for the variational wave function in the
form of the Gutzwiller projected BCS wave function
was performed in [74]. The authors performed exten-
sive numerical studies of superconducting properties
of cuprates which appeared in quantitative agreement
with experimental data. A certain deficiency of the
method, as of any variational approach, is an intro-
duction of a particular variational wave function
which may be far away from the real ground state of
the complicated system under consideration.

Diagram technique. A rigorous method to treat the
unconventional commutation relations for the pro-
jected electron operators in the t–J model (4) is based
on the Hubbard operator technique [75] since in this
representation the local constraint (7) are rigorously
implemented by the Hubbard operator algebra. A su-
perconducting pairing due to the kinematic inter-
action in the Hubbard model in the limit of strong
electron correlations (U � �) was first obtained by
Zaitsev and Ivanov [76] who studied the two-particle
vertex equation by applying a diagram technique for
Hubbard operators. However, they studied only the

lowest order diagrams which are equivalent to MFA
for a superconducting order parameter and obtained
only the k-independent s-wave pairing.

Systematic investigation of the t–J model within
the diagram technique was performed by Izymov et al.
[77]. In the framework of this approach spin fluc-
tuations and superconducting pairing in the t–J model
in the limit of small J were studied in [78,79]. The
first order diagrams for the self-energy reproduced the
results of MFA obtained by the projection technique
for the thermodynamic Green function in [80]. In
calculations of the second order diagrams only the
exchange interaction J was taken into account while
the corresponding contributions due to the kinematic
interaction of the order t2 was disregarded which is
in fact gives a large contribution to the spin-fluc-
tuation pairing [81]. As a result, estimations in the
weak coupling limit for the Eliashberg equation for a
three-dimensional model near AFM instability re-
sulted in quite a low superconducting Tc.

Equation of motion method for the Green func-
tions. The equation of motion method for the thermo-
dynamic Green functions [82] appears to be much
more simple than the diagram technique. To overcome
the problem of uncontrollable decoupling procedure
in the method, one should use the Mori-type pro-
jection technique which has proved to be quite accu-
rate for systems with strong correlations. For ins-
tance, as has been demonstrated in [83], this approach
accurately reproduces the results of the diagram tech-
nique for the spin-1 2/ Heisenberg model within the
second order of the exchange interaction for the
self-energy.

At first superconducting pairing was considered for
the Hubbard model in [84,85] by applying a de-
coupling procedure within the equation of motion
method for the Green functions. The s-wave pairing
due to the kinematic interaction proposed in [76] was
obtained in MFA-type approximation. However, as
was shown later [80], the s-wave pairing in the limit
of strong correlations violates an exact requirement of
no single-site pairs and should be disregarded. The
BCS-type theory for the t–J model was developed in
[80] within the projection technique for the Green
functions in terms of the Hubbard operators. It was
proved in MFA that the d-wave superconducting
pairing mediated by the exchange interaction J is
stable and has high T tc � 01. for J t� 0 4. . Later on, Tc
dependence on the in-plane lattice constant (or pres-
sure) and the oxygen isotope shift were studied [86].
The theory of electron spectra and superconducting
pairing beyond MFA was formulated for the t–J
model in [81] by self-consistent solution of the Dyson
equation within the noncrossing approximation for
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the matrix self-energy (see Sec. 3). Our results for the
effective p–d Hubbard model [87–89] and studies of
superconducting pairing in the original Hubbard mo-
del (3) by several authors [90–92] by the equation of
motion method are considered in the next Section.

2. Superconducting pairing in the p–d Hubbard
model

As we discussed above, studies of the reduced
one-band t–J model have demonstrated that the AFM
exchange interaction already in the MFA mediates the
d-wave pairing with a high Tc. To go beyond the
MFA, one has to consider the original two-band p–d
model for CuO2 layer without reduction the inter-
band hopping to an effective instantaneous exchange
interaction in the t–J model. The same problem
emerges when instead of an instantaneous pairing
interaction in the BCS model one studies an original
electron-phonon interaction in the Eliashberg equa-
tion. In this case retardation effects in the elect-
ron-phonon interaction result in restriction of the
pairing attraction within a narrow energy shell of the
order of phonon frequency close to the Fermi surface.
In this section we describe a microscopic theory of
superconductivity within the effective p–d Hubbard
model and demonstrate that the retardation effects in
the exchange interaction are negligible, while in the
spin-fluctuation pairing they are important and cut off
the attraction by the characteristic spin-fluctuation
energy 
 s J� .

The superconducting properties of metals are prin-
cipally defined by their electronic structure in the
normal state. Therefore it is essential to determine the
latter before studying a mechanism of superconduc-
tivity. Electronic spectrum and nature of charge car-
riers in the cuprate superconductors have been ex-
tensively discussed but it is still a controversial
problem. First of all, a lot of numerical calculations
within the LDA method should be mentioned (see,
e.g., [93,94] and the references therein) which, ho-
wever, failed to reproduce a charge-transfer insulating
phase of undoped cuprate compounds. Therefore, a more
sophisticated methods were developed as LDA + U
method (for a review see [95]). Based on these
investigations, a simplified model for analytical ana-
lysis of the low-energy part of electronic spectrum can
be constructed [94]. To take into account the most
important oxygen p px y, and copper 3 2 2dx y� orbitals
in CuO2 layers and strong Coulomb correlations in
the unit cell, a p–d model was proposed originally by
Emery [96] and Varma et al. [97]. A more general
many-band model was considered by Gaididei and
Loktev [98]. However, to be able to treat many-band

models analytically, one has to simplify them further
to keep only the lowest electron excitations close to
the Fermi surface.

There are generally two different types of approach
to the problem. In the first one, the Bloch repre-
sentation for the oxygen and copper hole wave func-
tions are used that results in appearance of two bands
of oxygen and copper states (see, e.g., [99] and the
references therein). In this case no singlet-triplet
splitting occurs since the pd� hybridization vanishes
in the Bloch representation at the center of the
Brillouin zone, at k � 0. Therefore a spin direction of
an oxygen hole will be frustrated and, as was shown
within a two-level spin model for an oxygen hole
between two copper sites by Maleev [100], a strong
spin scattering of oxygen holes on copper spins in a
single unit cell will prevent formation of oxygen
coherent quasiparticles. This scattering is usually ne-
glected in construction of oxygen hole QPs in ionic
models within the Bloch wave-function represen-
tation.

In another approach local basis set of the oxygen
and copper wave functions is used since the pd�
hybridization tpd is so strong that instead of free
doped oxygen holes the pd� Zhang–Rice singlet
(ZRS) states appear [101]. To derive ZRS state one
should start from the local representation for the
oxygen Wannier states around the Cu-site to take into
account strong exchange interaction of the order of
1 eV between the copper and oxygen holes in a single
unit cell. A perturbation theory over tpd pd/ � in this
case (used originally in [101]) is not justified (the
charge transfer gap º ºp d pd pdt� � �� 2 ) and a direct
diagonalization of these local states should be per-
formed. In exact diagonalization for electronic states
for a single site Hamiltonian, all the Coulomb in-
teractions in a single unit cell, not onlyUdd , but also
U Vpp pd, along with the oxygen hole hopping matrix
element tpp can be taken into account rigorously (see,
e.g., [87,102] and the references therein). This cell
cluster perturbation theory was also extensively stu-
died by applying exact numerical diagonalization by
Feiner et al. [103] who have shown an efficiency of
this method. It provides a proper perturbation theory
over a small intercell hopping, t ti j pd
 � 01. , which
results from a small overlapping of the local oxygen
Wannier states in the neighboring unit cells. There-
fore, to take into account strong spin correlations
between oxygen and copper holes and to derive a
coherent spectrum of QPs in the CuO2 plane it is very
important to start from a proper basis for the wave
functions: not extended Bloch waves but localized
states in a single unit cell.
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2.1. Dyson equation

By applying the sell-cluster perturbation theory
cited above we can reduce the original two-band p–d
model for CuO2 layer to an effective two-band
Hubbard model with the lower Hubbard subband
(LHB) occupied by one-hole Cu d-like states and the
upper Hubbard subband (UHB) occupied by the
two-hole ZRS states. In terms of the Hubbard ope-
rators the model reads:

H X Xi
i

i
i

� � �� �� ���

�
1 2

22

,

�� � �


� t X X t X Xij i j ij i j

i j

11 0 0 22 2 2� � � �

�,

�� �2 12 2 0� � �t X Xij i j( )h. c. , (9)

where X in imi
nm � ��| | are the Hubbard operators for the

four states n m, | , | , | |� � � � � ���0 2� , � � � � � �1 2/ ( , ),
� �� � . Here � � �1 � �d and � �2 12� � � are the
single-site energy where � is the chemical potential
and � � �º ºp d is the charge transfer gap which
plays the role of U in the conventional Hubbard
model (3). The superscript 2 and 1 refers to the
singlet UHB and the one-hole LHB, respectively. The
hopping integrals are given by t K tij ij

��
�� �� � 2 ,

where t is the p–d hybridization parameter and
� ij are estimated as: � �1 014� ��j j ax y/ � . , �2 �
� �� �� j j a ax y

� 0 02. (see [87]). The coefficients
K�� � 0 5. take into account the p–d hybridization in
a single unit cell. Therefore, the effective hopping
parameter t K t teff � � �22 12 014� . are small and for
the bandwidth W t t� �8 112eff . we get the ratio
W / /� � 1 2 for the standard parameters � �
� 2 3t � eV. This shows that the Hubbard model (9)
corresponds to the strong correlation limit. The che-
mical potential � depends on the average electron
occupation number

n N X Xi i i� � � � � � � � ��
�

�� 2 22 , (10)

where Ni is the number operator. The Hubbard
operators entering (9) obey the completeness relation

X X X Xi i i i
00 22 1� � � ��� �� , (11)

which rigorously preserves the constraint of no
double occupancy of any quantum state | in� at each
lattice site i.

It is important to point out that interaction of
charge carriers with spin or charge fluctuations comes
from the nonfermionic commutation relations of the
Hubbard operators (kinematic interaction). This can
be seen explicitly, for example, from the commutation
relations for the hopping term

[ , ] .
, ,

X t X X t B Xi lm
l m

l m il
l

i l
0 0 0 0�

�

� �

�
��

�


 	

	 	

	
	

	� �� (12)

Here the Bose-like operator is introduced

B X X Xi i i i��
��

� �
��

� �� �	 	 	� � � �( )00

� � � �	 	( )1
1
2

2N S Si i
z

i� � �� �
�

� � , (13)

which is defined by the number and spin operators as
follows from (11). Therefore, the hopping probability
of an electron in the Hubbard model depends on the
spin and charge states of the lattice site which results
in a renormalization of the electronic spectrum due to
this kinematic interaction.

To discuss the superconducting pairing within the
model Hamiltonian (9), we introduce the four-com-
ponent Nambu operators �Xi� and � †Xi� and define the
thermodynamic 4�4 matrix Green function (GF) [82]

~ ( ) � ( )| � ( )†G t t X t X tij i j� � �� � � �� � ��,

~ ( )
� ( ) � ( )
� ( ) � ( )†G

G F

F Gij
ij ij

ij ji
�

� �

� �




 



 

�

� �

 

!

"
"

#

$

%
%

, (14)

where � ( )†X X X X Xi i i i i�
� � � �� 2 0 2 0 and �Gij� and

�Fij� are normal and anomalous 2�2 matrix com-
ponents, respectively. By applying the projection tech-
nique for equation of motion method for GF (14),
we derive the Dyson equation in ( , )q 
 -representation
[88]:

( ~ ( , )) ( ~ ( , )) ~ ( , )G G� � �
 
 
q q q� �� �1 0 1 & ,

~ ( , ) ( ~ ~ ( )) ~G E� �
 
' �0
0

1q q� � � ,
(15)

where ~'0 is the 4 4� unity matrix and
~ { � , � }†� � �� � �X Xi i . The zero-order GF ~ ( , )G� 
0 q within
the generalized MFA is defined by the frequency
matrix which in the site representation reads

~ ~ ~~Eij ij� ��� �A 1, ~ {[ � , ], � }†A ij i jX H X� � �� � �, (16)

where { , }A B AB BA� � , [ , ]A B AB BA� � . The
self-energy operator in the Dyson equation (15) in
the projection technique method is defined by a
proper part (having no single zero-order GF) of the
many-particle GF in the form

~ ( , ) ~ � | � ~( ) ( )† ( )
,

& � � �
 � �
�

q
q

� �� ��� �1 1Z Zir ir prop . (17)

Here the irreducible �Z-operator is given by the
equation: � [ � , ] ~( )

^Z X H E Xi il
l

l� � � �
ir � � � which follows

from the orthogonality condition: � � �{ � , � }( ) †Z Xj� �
ir 0.

The Eqs. (15)–(17) provide an exact representation
for the GF (14). However, to calculate it one has to
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use approximations for the self-energy matrix (17)
which describes the finite lifetime effects.

2.2. Mean-field approximation

In the MFA the electronic spectrum and super-
conducting pairing are described by the zero-order GF
in (15). By applying the commutation relations for
the Hubbard operators we get for the frequency
matrix (16):

~ � �

� �
*A ij
ij ij

ji ji
�

� �

� �






�

�

 

!

"
"

#

$

%
%

�

�
. (18)

The normal component �
 �ij defines quasiparticle
spectra (12, (q) for the two Hubbard subbands of the
model in the normal state which have been studied in
detail in [87]. As an example, Fig. 1 shows the
dispersion (12, (q) calculated in the paramagnetic
state for the parameters � � �2 3t eV in the model
(9). For n � 1 an insulating state is observed with the
Fermi level (dotted line) being between the subbands.
The singlet band dispersion (2(q) is defined by the
next nearest neighbor (n.n.n.) hopping as in the AFM
state due to the renormalization of the hopping
parameters by the short-range spin correlation
functions for the n.n. � ��S Si i a ax y/ and the n.n.n.
� �� �S Si i a ax y

sites. With doping, the Fermi level
shifts to the singlet subband and for the overdoped
case n � 1 4. the dispersions are defined by the nearest
neighbor (n.n.) hopping since the short-range spin
correlation functions are suppressed. This type beha-
vior of dispersions qualitatively agrees with the
ARPES experiments.

The anomalous component �� ij� defines the gap
functions for the singlet and one-hole subbands, re-
spectively, ( )i j) :

� �ij ij i j ij ij j it X N t N X� �� �22 12 02 11 12 022 2 2� � � � � � � �, ( ) � .

(19)

Using the definitions of the Fermi annihilation opera-
tors: c X Xi i i�

� ��� �0 22 , we can write the anomalous
average in (19) as � � � � � �� �

� �c c N X X Ni i j i i j
0 2

� � �X Ni j
02 since other products of the Hubbard oper-

ators vanish according to the multiplication rule for
the Hubbard operators: X X Xi i i

� ��
 �

���� , . There-
fore the anomalous correlation functions in MFA
describe the pairing at one lattice site but in dif-
ferent Hubbard subbands.

The same anomalous correlation functions were
obtained in MFA for the original Hubbard model in
Refs. 90–92. To calculate the anomalous correlation
function � �� �c c Ni i j in [90,92] the Roth procedure
was applied based on a decoupling of the operators on
the same lattice site in the time-dependent correlation

function: � � � �� �c t c t N ti i j( )| ( ) ( ) . However, the de-
coupling of the Hubbard operators on the same lattice
site is not unique (as has been really observed in Refs.
90, 92) and unreliable. To escape uncontrollable
decoupling, in Ref. 91 kinematical restrictions im-
posed on the correlation functions for the Hubbard
operators were used which, however, also have not
produced a unique solution for superconducting equa-
tions.

In our approach we perform a direct calcula-
tion of the correlation function � �X Ni j

02 with-
out any decoupling by writing equation of motion
for the corresponding commutator GF L t tij ( )� � �
� �� � ��X t N ti j

02( )| ( ) as follows:

( ) ( )
 � 
 �� � � �2
022L Xij ij i�

� �� �� �� � �� ��


�2 12 0 0 2 2

m i
im i m j i m jt X X N X X N

,

| |
�

� �
�

� �
�� ,

(20)

where we neglected intraband hopping | |tim
�� ��� 2 �

� �. After applying the spectral theorem and ne-
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Fig. 1. Hole dispersion curves (solid lines) along the sym-
metry directions for the half-filled case, n � 1 (a) and for
the overdoped case, n � 14. (b). Thin lines show the
dispersions without hybridization ( )tij

12 0� [87].



glecting exponentially small terms of the order of
exp( )� ��� /T 1 , we obtain the following represent-

ation for the correlation function at sites i j) for the
singlet subband in the case of hole doping [89]:

� � � � � �


�X N t X X Ni j

m i
im i m j

02 12 2 21
2

�
,�

� �� �

� � � �
4

2
12

2 2t
X X

ij
i j�

� � � . (21)

The last equation is obtained in the two-site approx-
imation, m j� , usually applied for the t–J model.
This finally allows us to write the gap function in
(19) in the case of hole doping as follows

� ij ij i j ij i jt X N J X X�
� ���22 12 02 22� � � � � � � . (22)

This result is similar to the exchange interaction
contribution to the pairing in the t–J model with the
exchange energy J tij ij� 4 12 2( ) / �. In the case of
electron doping, an analogous calculation for the
anomalous correlation function of the one-hole
subband � � �( )2 02N Xj i gives for the gap function
� ij ij i jJ X X�

� �11 0 0� � �. We may therefore conclude
that the anomalous contributions to the zero-order
GF (15) is just the conventional anomalous pairs of
QPs in one subband. Their pairing in MFA is me-
diated by the exchange interaction which has been
studied in the t–J model (see, e.g., [80,81]) and there
are no new «composite operator excitations» («ce-
xons») proposed in [92].

2.3. Self-energy and the gap equation

The self-energy matrix (17) can be written in the
same form as GF (14):

~ ( ) ~
� ( ) � ( )
� ( ) � ( )†&

*

*ij
ij ij

ij ij

M

M�
� �

� �

 �


 



 

�

� �

 

!

�1"
"

#

$

%
%

�~� 1, (23)

where the 2 2� matrices �M and �* denote the normal
and anomalous contributions to the self-energy, re-
spectively. The self-energy (23) is calculated below
in the non-crossing or the self-consistent Born ap-
proximation (SCBA). In the SCBA, the propagation
of the Fermi-like X X Xj j j� 0 2� �( ) and the Bose-like
Bi (13) excitations in the many-particle GF in (23)
are assumed to be independent of each other. This
approximation is given by the decoupling of the
corresponding operators in the time-dependent cor-
relation functions for different lattice sites (i j) ,
l m) ) as follows

� � � �B t X t B t X ti j l m( ) ( ) ( ) ( ) �

� � � �� � �X t X t B t B tj m i l( ) ( ) ( ) ( ) . (24)

Using the spectral representation for these correlation
functions we get a closed system of equations for the
GF (14) and the self-energy components (23) [89].
Below we write down explicitly only the anomalous
part of the self-energy for the singlet band which is
relevant for further discussion:
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� �Im [ ( , ) ( , )]K F K Fk k . (25)

The kinematic interaction for the nearest and the
second neighbors is given by t t t( ) ( ) ( )k k k� � �1 2
� � �8 1 2t[ ( ) ( )]� 1 � 1k k , where 1( ) ( )(cosk � �1 2/ kx
� cos )ky and � �1 ( ) cos cosk k kx y . The pairing inter-
action is mediated by spin-fluctuations defined by the
susceptibility �� � � �� ��� �� 
 � � �s q q i( , ) ( )Im |q S S1/
which comes from the correlation functions
� � �B t B ti l( ) ( ) in (24) in terms of the Bose-like

operators (13).
For the hole doped case, at frequencies

| , |
 
 
1 �� ��s W close to the Fermi surface (FS)
(
 s J	 is a characteristic spin-fluctuation energy) we
can use the weak coupling approximation (WCA) for
calculation of the first term in the self-energy (25).
The contribution from the second term F� 
11

1( , )k is
rather small since the one-hole band lies below the FS
at the energy of the order � �� W. Neglecting it and
taking into account the contribution from the ex-
change interaction in MFA (22), we arrive at the
following equation for the superconducting gap at the
FS in the singlet subband:

*22
22
21

( ) [ ( ) ( , )]q k q k q k
k

� � � � ��N
J K 2

�
*22

2

2

2 2
( )
( )

tanh
( )k

k
k

E

E

T
, (26)

where 2 � 
( , ) | ( )| ( , )k q k k q k� � � � �t s
2 0 0. The

quasiparticle energy in the singlet band is given by
E /

2 2
2 22 2 1 2( ) {[ ( )] [ ( )] }k k k� �( * where (2( )k is

the quasiparticle energy in the normal state (see
Fig. 1). Similar considerations hold true for an
electron doped system, n 	 1 when the chemical
potential lies in the one-hole band, � � 0. In that
case, the WCA equation for the gap *11( )q is quite
similar to (26).

To solve the gap equation (26) we used the follow-
ing model for the static spin-fluctuation suscepti-
bility: � � � 1s ( , ) [ ( )]}q q0 1 10

2� � �/{ where � is
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the AFM correlation length and the constant �0 �
� �3 1 2 1( ) ( )� �
/ sC with C N1

21 1 1� � ��( ) { [/ �
q

� �1( )]}q 1 is defined from the normalization con-

dition: ( ) ( )( ).1 3 4 1/ /N i i
i
� �� � �S S � Let us at first

estimate the superconducting transition temperature
Tc by solving the gap equation (26) for a model
d-wave gap function *22( ) (cos cos )q � � 3�d x yq q

3 � 4d ( )q in the standard logarithmic approximation
in the limit of weak coupling. Integration over q both
sides of (26) multiplied by 4( )q results in the fol-
lowing equation for Tc:

1
1

42 2 2� � ��N
J s

k

k k k[ ( ) ( ( )) ( )]4 2 1 4

�
1

2 22

2

(

(

( )
tanh

( )

k
k

Tc
, (27)

where 2 
s st� eff
2 / . For the first term — the ex-

change interaction mediated by the interband hopp-
ing, the retardation effects are negligible that results
in coupling of all electrons in a broad energy shell of
the order of the bandwidth W and high Tc [86]:

T Wc � � � 2( ) exp ( )� �1/ ex , (28)

where 2 �ex � JN( ) is an effective coupling constant
for the exchange interaction J and the average density
N( )� of electronic states for doping �. For the second
term in (26), the spin-fluctuation pairing mediated
by the intraband hopping, the interaction is restricted
by a narrow energy shell � 
 s at the FS which
results in Tc s5 
 . By taking into account the both
contributions, we can write the following estimation
for Tc:

Tc s
sf

� 

2

exp ~�
 

!

"
"

#

$

%
%

1
,

~
ln ( )

2 2
2

2 � 
sf sf
s

� �
�

ex

ex1 /
,

(29)

where 2 2sf s FN E� ( ) is the coupling constant for
the spin-fluctuation pairing. By taking for estimation
� � W /2 0 35� . eV, 
 s J� � 013. eV and
2 2sf � ex � 0 2. we get ~ . . .2 sf � 0 2 0 25 0 45� � and
Tc � 160 K, while only the spin-fluctuation pairing
gives Tc s sf

0 1 10� �
 2exp ( )� / K.
Results of a direct numerical solution of the gap

equation (26) are shown in Fig. 2 for the super-
conducting transition temperature Tc( )� and the gap
*22( )k [89]. The following parameters are used: � � 3,
J t� 0 4. eff , 
 s � 015. eV and t K teff � 22 12 0 2� � . eV.
The maximum Tc � 280 K (dotted line) is achieved for
the chemical potential � � E WF � /2 at the opti-
mal doping �opt � 012. . The spin-fluctuation inter-

action produces lower Tc (solid line) since it is rather
weak at the FS close to the AF zone boundary along
the lines | | | |k kx y� � � where the main contribu-
tion coming from the n.n. hopping vanishes:
t k k kx y x1 0( ) ( , | | | | )k 5 � � �1 � .

We can confirm the AFM pairing mechanism by
considering Tc dependence on pressure or lattice cons-
tants. While in electron-phonon superconductors Tc
decreases under pressure, in cuprates Tc increases with
compression of the in-plane lattice constant a. In
particular, in mercury superconductors dT dac / �
� � �1 35 103. K/� [104] and for Hg-1201 compound
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Fig. 2. (a) Superconducting Tc( )� (in units of
teff � 02. eV) for (i) spin-fluctuation interaction (solid
line), (ii) exchange interaction (dashed line), (iii) for the
both contributions (dotted line). (b) Wave-vector depen-
dence of the gap function �

22( )k over the first quadrant of
the BZ ( .� � 013). The circles plot the Fermi surface. The
( )� �/ denote gap signs inside the octants [89].



we get d T d acln ln/ � � 50. From (28) we get an
estimate:

d T

d a

d T

d J

d J

d a
c cln

ln

ln

ln
ln
ln
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14

47
2

(30)

which is quite close to the experimentally observed
one. Here we use 2 �� JN( ) .� 0 3 and take into ac-
count that for the exchange interaction we can use an
estimate J a tpd( ) 5 4 where t apd 5 1 7 2/ / for the p–d
hybridization.

Concerning an oxygen isotope effect in cuprates, on
substitution 18O oxygen for 16O, we can estimate it
also from (28). By using the experimentally observed
isotope shift for the N�el temperature in La2CuO4
[105]:  N Nd T d M d J d M� �( ln ln ) ( ln ln )/ /� �
� 0 05. we obtain




2c
c c N Nd T

d M

d T

d J

d T

d M
� � � �

ln

ln

ln

ln

ln

ln
.� � 016 ,

(31)

for 2 � 0 3. which is close to experiments:
 c cd T d M� � 	ln ln ./ 01. As we see, we can explain
qualitatively experimental data in superconducting
state of cuprates within the proposed theory based on
the effective p–d model with only two fitting
parameters, � and t tpd� , used in the calculations of
the electron dispersion in the normal state.

3. Superconducting pairing in t–J model

It is interesting to compare the results of the
original two-band p–d model for CuO2 layer (9) with
the calculations for the t–J in Ref. 81. In that paper, a
full self-consistent numerical solution for the normal
and anomalous GF in the Dyson equation was per-

formed in the strong-coupling limit. The QP re-
normalization and finite life-time effects caused by the
self-energy operators which were neglected in the
above calculations were fully taken into account.

In the limit of strong correlations the interband
hopping in the model (9) can be excluded by per-
turbation theory which results in the effective t–J
model (4) which can written in terms of the Hubbard
operator as follow:

H t X X Xt J ij
i j

i j i
i

�



� � � �� �
,�

� � ��

�

�0 0

� �


�1

4
J X X X Xij

i j
i j i j

,

( )
�

�� �� �� �� , (32)

where only the lower Hubbard subband is considered
with the hopping energy tij . Exclusion of the inter-
band hopping results in the instantaneous exchange
interaction J tij ij� 4 12 2( ) / �. The superconducting
pairing within the model (32) can be studied by
considering the matrix GF for the lower Hubbard
subband in terms of the Nambu operators: 6i� and
6i i iX X�

� �� � ( ; )0 0 :

� ( ) ( )| ( ),G t t t tij i j� � �� � � �� � ���6 6 ,

� ( )
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21 22

#

$
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.

(33)

Here we introduced the Hubbard factor Q n� �1 2/
depending on the average number of electrons
n Xi� � �� ��

�
. By applying the projection technique

as described above we get the Dyson equation which
can be written in the Eliashberg notation as

� ( , )
( , )� [ ( ) ( , ) ~]� ( ,

G Q
Z E

�
� � � �



 
 ' � 
 � ' 

k

k k k k
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 � 
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1
2 2 2Z Ek k k k� � � � *

, (34)

where �' i are the Pauli matrices. The quasiparticle
energy E�( )k in the normal state and the renor-
malized chemical potential ~� � ��� � are calculated
in MFA as discussed above (for details see [81]). The
frequency-dependent functions
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1
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k k ,
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1
2

22[ ( , ) ( , )]& &�
�� k k
 
��

are defined by the normal components of the self-
energy & &� �

��
 
22( , ) ( , )k k� � � . The gap function is
specified by the equation:

* � & �
��

� �
 
( , ) ( ) ( , )k k k� � ,

� �
� �( ) ( )k k q

q
q q� � ��1 0 0

NQ
J X X– – .

(35)

The self-energy is calculated in SCBA (24) as in the
Hubbard model:
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where the interaction g t J /( ) ( ) ( )q, k q q k q� � � – 2
and the spectral densities are defined by the corres-
ponding GF:

A z G z i� ��
�11 12 11 121( ) ( )( , ) ( , ).q q� � �Im (37)

The electron-electron interaction is caused by the
spin-charge fluctuations defined by the boson-
like commutator GF: D –� � �� �� �( , ) ( )| ( )q S q S q( �
� �� ��n n /( )| (– )q q � 4 where, in comparison with the
Hubbard model, the charge (number) fluctuation
contribution is written here explicitly.

The equation for the self-energy (36) is similar to
(25) obtained for the Hubbard model if we disregard
in the latter the small contribution from the second
subband 5 F� 
11

1( , )k . However, contrary to the gap
equation (26) in the WCA for the Hubbard model, for
the t–J model in the Eq. (35) the frequency-de-
pendent self-energy contribution & � 
12( , )k (36) is
taken into account. Moreover, in Ref. 81 for the t–J
model a full self-consistent solution for the normal GF
G� 
11( , )k in (34) and the corresponding self-energy
& � 
11( , )k (36) was performed. These calculations for a
low hole concentration, � � 01. , and for a modest
AFM correlation length, � � 3, reveal the quasi-
particle-like peaks only in the vicinity of the Fermi
level (Fig. 3,a) and an anomalous behavior for the
self-energy Im & � 
 � 
11( , )k � 5i close to the Fermi
level. The occupation numbers N Q X( ) ( )k k� � �1/ ��

show only a small drop at the Fermi level which is
generic for strongly correlated systems (Fig. 3,b).

The superconducting Tc was calculated from a
linearized gap equation which was solved by direct
diagonalization in ( , )k 
 -space:

*� 
( , )k i n �

� � � � � ���T
N

J i in m
m

{ ( ) ( | )}k q q, k q
q

2 
 
12

� �G i G i im m m� � �
 
 
11 11( , ) ( , ) ( , )q q q* , (38)

where the interaction function 2 
�12( | )q, k q� �i
� � ��g D i2( ) ( , )q, k q k q 
� and the Matsubara fre-
quencies 
 �n T n� �( )2 1 were introduced. Also the
eigenfunctions *� 
( , )k i n of the Eq. (38) were deter-
mined which unambiguously demonstrated the d-wave

character of superconducting pairing (for details
see [81]).

Comparison of the Tc( )� dependence for the Hub-
bard model in Fig. 2,a with the results obtained in
[81] for the t–J model, reveals a strong reduction of
Tc

max in the latter model due to accounting for a large
contribution from the Im & � 
11( , )k . At the same time,
large value of the �opt � 0 33. in the t–J mo-
del in comparison with experimentally observed
�opt � 016. and �opt � 012. in the Hubbard model
shows that the t–J model cannot properly reproduce
the doping dependence of Tc since in the model the
weight transfer between the Hubbard subbands under
doping is neglected. Therefore, to obtain a reliable
values of Tc( )� a full self-consistent numerical so-
lution of the Dyson equation in the Hubbard model
should be performed.

4. Conclusion

Various theoretical approaches considered in this
paper, both of a phenomenological character with a
fitted electron—spin-fluctuation interaction as in (1),
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Fig. 3. Spectral density A� �
11( , )q (37) along the symmet-

ry direction M( , ) ( )� � � 	 00 (a) and occupation numbers
N n X X( ) ( )k k k� � 
 �

�1 2 1 0 0/ � � (b) at hole concentration
� � 01. . Energy is measured in units of t with J t� 04.
[81].



and the microscopic theory based on the Hubbard
model (3) in the weak correlation limit, as well in the
strong correlation limit described by the t–J model
(4), unambiguously, demonstrate a possibility of the
spin-fluctuation d-wave pairing with high Tc. The
clearest description of the magnetic pairing mecha-
nism was obtained within the effective p–d Hubbard
model considered in Sec. 2. We have demonstrated
that there are essentially two channels of super-
conducting pairing. The first one is the AFM exchange
pairing caused by the lowering of the QP kinetic
energy produced by the inter-subband hopping in a
lattice with a short-range AFM order. The retardation
effects in this pairing are negligible, which results in
coupling of all charge carriers in the conduction
subband. The second one is the conventional spin-
fluctuation pairing due to hopping in one Hubbard
subband, which is usually considered in the pheno-
menological approach. We have proved the singlet
dx y2 2� -wave superconducting pairing both for the
original two-band p–d Hubbard model [89] and for
the reduced effective one-band t–J model [81]. It is
essential to stress that the both pairing channels are
induced by the kinematic interaction, characteristic to
the Hubbard model. These mechanisms of supercon-
ducting pairing are absent in the fermionic models (for
a discussion, see Anderson [27]) and are generic for
cuprates revealing strong Coulomb correlations. The-
refore, we believe that the proposed superconducting
pairing is the relevant mechanism of the high-tem-
perature superconductivity in the copper-oxide ma-
terials.

However, to develop a quantitative theory of su-
perconducting pairing in the cuprates one has to take
into account a pseudogap formation in the underdoped
region of the T � � phase diagram. As it was first
pointed out by Kampf and Schrieffer [14], the AFM
spin fluctuations lead to a pseudogap in the electronic
spectrum. A more accurate consideration of the self-
energy in the t–J model, in comparison with our
results (36), also revealed a pseudogap formation and
an effective truncation of the large Fermi surface at
low doping caused by short-range AFM fluctuations
[106]. By incorporating these results and developing a
theory of spin fluctuations in strongly correlated
systems within the effective p–d Hubbard model (9),
one can hope to develop a self-consistent microscopic
pairing theory in the superconducting cuprates.
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