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We have studied theoretically how nonmagnetic dopants, which change the local coupling of
spins to the host, affect the low-temperature thermodynamic characteristics of quasi-one-dimen-
sional (Q1D) quantum spin antiferromagnets. Our theory qualitatively and, in some cases, quanti-
tatively describe the behavior of the magnetic susceptibility and specific heat of the Q1D system
BaCu Si Ge O2 1 2 7( )�x x . We have shown that in some cases the strong disorder in the distribution of
characteristics of magnetic impurities in quantum antiferromagnetic spin chains can be the cause of
magnetic ordering, if such chains are weakly coupled to each other, while for homogeneous chains
and chains with a weak disorder a small enough coupling between chains does not produce mag-
netic ordering. For other values of the parameters, magnetic impurities can decrease the N�el tem-
perature compared to that of the homogeneous Q1D spin system.
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In recent years interest in quasi-one-dimensional
(Q1D) antiferromagnetic quantum systems has grown
considerably. These systems are interesting from the
theoretical viewpoint, because one can check the pre-
dictions of exact theories by comparing them with ex-
perimental data. On the other hand, many Q1D com-
pounds are known to belong to the class of copper
oxides, the study of which is important in the connec-
tion with the high-Tc superconductivity. However,
most of the results of theories and experiments in this
field have been pertained to homogeneous spin chains.
At least for the theory, that is clearly because the
study of strongly correlated electron systems with dis-
ordered parameters is probably the most difficult
problem of quantum condensed matter physics. Exper-
iments on Q1D quantum spin systems with disorder
have been known since the 1970s; see, e.g., [1–3].
First the renormalization group approximate theories
were used to describe them; see, e.g., [4]. Much later,
exact Bethe ansatz theories were constructed [5–8],
which have shown that the finite concentration of mag-
netic impurities in quantum spin chains fundamentally

change the behavior of the low-temperature character-
istics of those chains. Recently, the class of solid
solutions of copper oxides BaCu Si Ge O2 1 2 7( )�x x ,
which presents an almost ideal realization of quantum
Q1D spin systems with disorder, was studied experi-
mentally [9,10]. The goal of our work is to study how
the concentration of nonmagnetic dopants (which,
probably, introduce randomness in the distribution of
exchange constants between magnetic ions [9] in such
systems) affect the low-temperature properties of
Q1D quantum spin antiferromagnets and to compare
our results with experiments.

We start with the consideration of the Hub-
bard-like model of electrons on a one-dimensional lat-
tice with a random hopping of electrons between sites
of the lattice due to dopants, the Hamiltonian of
which has the form
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where the sums are over random positions of elec-
trons, cj,

†
�

(cj,�) creates (annihilates) an electron
with spin � at site j, n c cj j j, ,

†
,� � �� , t j j( , )� are hop-

ping elements, U is determined by the Coulomb re-
pulsion of electrons localized at the same site, and 	 j
are the energies of localized at sites j electrons. The
hopping integrals can be approximated [11] as over
lap integrals
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where a is the Bohr radius and E U0 � is the effective
binding energy of the localized electron. The hopping
integrals are random because of the disorder of the
distribution of dopants. Here we limit ourselves to
consideration of the case in which the localized elec-
trons are in the magnetic state, i.e., the valences of
the sites are close to 1, because we are interested in
the behavior of a spin chain with disorder. This con-
dition is satisfied if t j j E UF j j

2( , ) ( ) ,� ��  �� 	 	
[12]. Here �( )EF is the density of states at the Fermi
level. Our analysis is close to Ref. 11 and we briefly
repeat the main steps from it. It is natural to assume
that the density of the localized magnetic moments
nl depends on the density of dopants c as nl �
� c c/cexp ( )max , where cmax is related to the cri-
tical distance between localization centers rc via
c /rcmax � 1 for the 1D case. Then we can get the
probability P r( ) to find the neighboring localized
magnetic moment of a given site at distance r. The
density of the localized magnetic moments can be
written as n P r drl rc

� �
� ( ) , from which we obtain

P r c cr( ) exp ( )�  . nl has a maximum at cmax, which,
in fact, justifies our above assumption. The depen-
dence of hopping integrals t j j( , )� (in what follows
we shall denote those integrals simply as t), Eq. (2),
implies r t a E /t( ) ln ( )� 2 0 . Hence, we obtain
~( ) ( )( )P t ac/t t/E ca�  0 . The Kondo temperature
of each localized magnetic moment can be written
as [12]
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Homogeneous distributions of local potentials 	 	j �
are supposed, and the low-energy cut-off D is used, as
usual for the Kondo problem [12]. Defining
x D/TK� ln ( ) and A U E E UF� � �8 0

2� 	 	( ) /| | ( )
� J EFeff �( ), where Jeff is the effective minimal ex-
change coupling of the magnetic moment of the loca-
lized electron to the chain, we obtain the distribution

of local Kondo temperatures in the chain of correlated
electrons

P T
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2 (4)

The divergence of P TK( ) as TK � 0 (due to the fac-
tor TK

�1) is weakened by logarithmic factors. This is
why P TK( ) can be normalized to unity over some in-
terval T T TKmin max� � , where Tmax is determined
as T D /Amax exp ( )� 1 . The distribution of local
Kondo temperatures depends on 	, Coulomb repulsion
U, density of states of electrons at the Fermi level,
Bohr radius, and the density of dopants. However,
Eq. (4) implies that such a set of parameters is real-
ized in two main governing parameters: c/ c n2 max �
and A (or Tmax). It is easy to see that for large
enough domains of TK the distribution P TK( ) is remi-
niscent of TK

��1 (� � 1), see Fig. 1. Such a distribution
was used in [1,6,8] without derivation. Notice that
the energy parameter G of [6,8], where we used the
distribution function P T T /GK Kapp( ) � �� �1 , valid till
T GK � , can be related to A (or to Tmax) via G �
�  � �D n /A/ n n/ nexp ( )( ) ( )1 1 1 .

For a quantum antiferromagnetic spin-1/2 Hei-
senberg chain it is natural to connect the local Kondo
temperature with the effective coupling of the mag-
netic impurity to the chain Ji , by which the impurity
is distinguished from other spins of the chain;
cf. [6,8]. We shall study the case 0 � �J Ji , where J
is the value of the exchange interaction between
neighboring spins in the homogeneous Heisenberg
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Fig. 1. The logarithms of the distribution function
Eq. (4), the solid line, and P T /TK Kapp const( ) � �1 �, the
dashed line, as functions of ln TK for � � 039. , A � 1,
n � 05. , and D vF� � 377 K (see text).



chain. Then the local Kondo temperature of such
an impurity in the chain is equal to T vK F� �
�  exp ( ( ) )� J J /Ji i , where vF is the Fermi ve-
locity of spinons in the homogeneous spin chain (no-
tice that we use units in which vF has dimensions of
energy, as usual for studies of such systems); cf. [6,8].
In the absence of the magnetic field we have
v J/F � � 2. It is natural then to use D vF� [6,8], so
that for J Ji � one has T vK F� . For the case Ji � 0,
i.e., if the impurity is totally decoupled from the
chain, we have TK � 0.

With the obtained distribution function of local
Kondo temperatures for a one-dimensional correlated
electron system with electrons in the magnetic state it
is easy to get average characteristics of the disordered
Heisenberg spin chain using exact results for a single
magnetic impurity in a Heisenberg chain; see, e.g.,
[8]. The low-temperature behavior of average values
of the magnetic susceptibility, � and the Sommerfeld
coefficient of the specific heat, c/T are equal to
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The ground state average magnetization can be calcu-
lated as � � �M T H/Gz ( ) ( )0 �

�. These weak power-
law dependencies are related to Griffiths singularities
[13] near the critical point T � 0. The Wilson ratio at
T � 0 for the obtained distribution is equal to 2 32� / ,
characteristic for a Fermi liquid situation.

Now we can compare our theoretical results with
the data of the experiments on BaCu Si Ge O2 1 2 7( )�x x
[9,10]. The parameters D, 	, U, and E0, appropriate
for that disordered correlated electron compound pro-
duce A � 1. It was shown that for x � 0 5. the low-
temperature behavior of the magnetic susceptibility
of that compound well reproduce the relation
� � � �� � T /T1

0
2[ln( )]� [4] for�0 430� K; see Fig. 1

of [9]. In Fig. 2 we plotted this dependence and the
approximate one, which follows from our theory (the
log—log plot, as in Fig. 1 of [9]).

The results agree reasonably well for � � 0 39. (here
we used J � 240 K of the case x � 0 [9], which corre-
sponds to vF � 377 K). It is easy to check that for
� � 0 39. , A � 1 and such a value for vF , the distribu-
tions agree for the value n � 0 5. (see Fig. 1). It corre-
lates well with the concentration of Ge, x � 0 5. of the
experiment [9]. For these values of parameters we
have G � 201 K, i.e., our distribution is valid well
above the upper limit of temperatures, considered in
Fig. 1 of [9]. Now, let us see how the exponent � is re-
lated to the concentration of dopants, c (and, hence,
to n). We checked that for A � 1, and the same as
above value of vF , the case � � 0 2. of the approximate
distribution reproduces well the obtained distribution

of Kondo temperatures, Eq. (4), for n � 0 005. . [It
turns out that � � 0 2. was observed in the experiments
[2], but it is necessary to renormalize the values of A
and vF for them.] � � 0 25. (cf. [10]) is related to the
value of c c� 01. max, and � � 0 3. corresponds to n � 01. ,
i.e., the increase of the concentration of dopants pro-
duces the increase of �. It correlates with the low-tem-
perature behavior of the magnetic susceptibility and
the Sommerfeld coefficient of the specific heat of
BaCu Si Ge O2 1 2 7( )�x x [10]. Notice that the behavior
of those compounds for x � 0 5. is probably connected
with the renormalization of not only n, but also vF
and A (the doping in this case should be considered
from the starting compound BaCu Ge O2 2 7, for which
J � 500 K [9,10]). We emphasize that renormalization
group-based theories like [4] do not give the exp-
licit dependence of the critical behavior of thermo-
dynamic characteristics of disordered quantum spin
chains, while our theory produces results that agree
qualitatively (and even quantitatively for x � 0 5. )
with the behavior of the disordered spin-1/2 com-
pound BaCu Si Ge O2 1 2 7( )�x x . Similar results can
be obtained for the correlation length [6,8]: � � ��
� �( )G/T /� �� �, where � is the conformal dimen-
sion of the critical spin chain ( ( )[( )� �� �1 2 2/ M
� �( ) ]�D n2

ph, where �M, �D, and nph are in-
tegers or half-integers determining the spin pro-
jection of the chain, its momentum, and the
number of particle—hole excitations, respectively).
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Fig. 2. The dependencies of the logarithm of the average
magnetic susceptibility for the disordered spin-1/2
Heisenberg antiferromagnetic chain versus ln T, calculated
for two distribution functions: � � � � �� T /T1

0
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�0 430� K [4,9] (solid line), and � � � �� �T1 for � � 039.
(dashed line).



These results can be checked experimentally for
BaCu Si Ge O2 1 2 7( )�x x using the low-temperature in-
elastic neutron scattering.

Now, let us consider the behavior of Q1D quantum
spin systems (i.e., with the interaction between chains
being smaller than the coupling of spins along chains)
with and without disorder. The magnetic susceptibil-
ity � q of a Q1D quantum spin system, consisting of
spin chains, weakly coupled to each other by the weak
exchange interaction J� in the random phase approxi-
mation reads

�
�

�
q k T

k T

z J k T
( , )

( , )

| | ( , )
�
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1

11
, (6)

where �1( , )k T is the susceptibility of each chain as a
function of the wave vector k and temperature and z
is the coordination number. If the denominator of
Eq. (6) becomes zero, a phase transition to a magneti-
cally ordered state takes place. The temperature of
magnetic ordering Tc is determined from the condi-
tion

�1 1( ) | |T /z Jc � � . (7)

Notice that such a definition of the temperature of
magnetic ordering in quasi-one-dimensional quantum
spin systems has been used succesfully not only quali-
tatively but also quantitatively in many theoretical
and experimental studies; see, e.g., [14,15]. Here one
has to take the highest value of the magnetic suscepti-
bility of the spin chain among those with different
values of k. Consider first a ferromagnetic interaction
between chains J� � 0, which corresponds to the case
k � 0. Here we closely follow the ideas recently set
forth in [14]. Such an interaction produces an anti-
ferromagnetic ordering in the total system with mag-
netic moments alternating in the direction of chains
[15]. For the homogeneous spin chain �1 0( )k � is
less than some maximum value. For example,
for a spin-1/2 Heisenberg antiferromagnetic chain
�1 0 014max( ) .k /J� � , cf. [5,7,16]. Hence, for
small enough values of the inter-chain interaction,
| | ( )J k /z� � ��1 0max , there are no solutions of Eq. (7),
i.e., there is no magnetic ordering in such systems.
For example, for a spin-1/2 Heisenberg Q1D system
there is no such ordering for | | .J J/z� � 014 (we use
units in which the Bohr magneton and g-factor are
g B � 1). Consider now spin chains with magnetic
impurities (let us limit ourselves with the most inte-
resting case, in which there is no spontaneous magne-
tization in each chain, even in the ground state).
Then, according to [5,7,8], magnetic susceptibilities
of each chain with single impurities are less than their
maximal values, which are determined by the Kondo
temperatures, �1 0max( )k � � const/TK . In that case,

if | |J T / zK� � const , Eq. (7) has also no solutions,
and such a Q1D system is magnetically disordered.
The same is true for spin chains with a weak disorder
in the distribution of local Kondo temperatures of im-
purities (here by a weak disorder we mean narrow
distributions with the values of the functions at their
maxima being much larger than the values on their
«tails»). For this case there is a maximum value of
�1 0( )k � also, and Eq. (7) has no solutions for small
| |J� . On the contrary, for chains with a strong disor-
der in distributions of local Kondo temperatures any,
even a very weak coupling between chains | |J� pro-
duces magnetic ordering. The illustration of this con-
sideration is depicted in Fig. 3.

Hence, one is faced with the interesting situation:
Magnetic ordering is caused by a disorder. For the
Q1D system consisting of weakly coupled spin-1/2
antiferromagnetic chains with the strong disorder con-
sidered above we have � � �

1
10 1( , )k T /G T� � � . Then

the critical temperature can be evaluated as
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�1 1
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How do impurities affect the critical temperature for
J� � 0? This case produces alternating magnetic mo-
ments in all directions [15], and it is necessary to con-
sider the staggered magnetic susceptibility of anti-
ferromagnetic chains, � �1( , )k T� . Unfortunately,
this situation cannot be studied in detail, as for J� � 0.
Only few results are known for the temperature be-
havior of the staggered magnetic susceptibility. How-
ever, for the most important case of the spin-1/2
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Fig. 3. Graphical solution of Eq. (6). The solid curve de-
scribes the temperature dependence of the homogeneous
magnetic susceptibility of a homogeneous spin-1/2 Hei-
senberg antiferromagnetic chain; the dashed curve de-
scribes a similar inhomogeneous chain with weak disorder
in the distribution of parameters of impurities; the dotted
curve describes a similar inhomogeneous chain with strong
disorder.



Heisenberg antiferromagnetic chain we know that
in the bosonization approximation � �1( , )k T� �
� 0 28. ( )ln J/T /T [17]. Then the critical tempera-
ture is equal to T zJ J zJN � � �0 28 0 28. ln (| |/ . ). TN
can be larger than the impurity-renormalized critical
temperature. Nevertheless, generally speaking, for
some range of parameters Tc can be larger for a system
with disordered magnetic impurities than in the case
of weakly coupled homogeneous antiferromagnetic
chains. On the other hand, for different sets of pa-
rameters the disorder in the distribution of parame-
ters of interactions between spins in spin chains can
cause a substantial reduction of the N�el temperature.

Let us consider the quasi-one-dimensional system
BaCu Si Ge O2 1 2 7( )�x x . There is a weak coupling be-
tween chains. For x � 0 the N�el ordering takes place
at TN � 9 2. K [9,10]. We can estimate the value of
the inter-chain interaction as J T / zN� � �0 28 8 21. . K
(taking into account logarithmic corrections we have
J T / z J/TN N� � �0 28 4 55. ( ) .ln K). For rough esti-
mations we can suppose that the inter-chain interac-
tion does not depend on dopants, and that we can use
Eq. (8) for the case J� � 0 replacing | |J J� � �. Then es-
timations for the critical temperature of the ordering
for �( ) .T � �0 0 01 yield Tc � 0 06. K, i.e., T Tc N�� .
Hence, in the case of BaCu Si Ge O2 1 2 7( )�x x inhomo-
geneities decrease the critical temperature of the mag-
netic ordering. This our conclusion agrees qualita-
tively with the data of [9,10].

Summarizing, in this work we have studied how
nonmagnetic dopants, which change the local cou-
pling of spins to the host, affect low-temperature ther-
modynamic characteristics of Q1D quantum spin
antiferromagnets. The results of our theory qualita-
tively and, in some cases, quantitatively describe the
behavior of the magnetic susceptibility and specific
heat of the Q1D system BaCu Si Ge O2 1 2 7( )�x x . We
have shown that in some cases the strong disorder in
the distribution of characteristics of magnetic impuri-
ties in quantum antiferromagnetic spin chains can be
the cause of magnetic ordering, if such chains are

weakly coupled to each other, while for homogeneous
chains and chains with a weak disorder a small enough
coupling between chains does not produce the mag-
netic ordering. For other values of the parameters,
magnetic impurities can decrease the N�el temperature
compared to that of the homogeneous Q1D spin sys-
tem, which is the case for BaCu Si Ge O2 1 2 7( )�x x .
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