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In this Letter we show that a strong disorder in the distribution of exchange couplings between
magnetic impurities and hosts in quantum spin chains and non-Fermi-liquid rare earth and actinide
compounds can be the reason for magnetic orderings in these systems at low temperatures.
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Low-dimensional quantum spin systems and
heavy-fermion systems are of a great interest of physi-
cists, because in those systems an interaction between
quantum particles plays an important role. Such an in-
teraction manifests itself in many characteristics of
those systems. It is important to point out that in
heavy-fermion systems, as well as in many compounds
with the properties of quantum spin chains, quantum
spin fluctuations often define their low-energy proper-
ties. For low-dimensional spin systems quantum spin
fluctuations are enhanced. According to the Mer-
min—Wagner theorem [1] isotropic Heisenberg mag-
nets have no magnetic order in one and two space di-
mensions at any nonzero temperature. In rare earth
and actinide compounds exhibiting properties of
heavy fermions [2] and so-called non-Fermi-liquids
[3] a hybridization of rare earth or actinide localized
electrons of 4f or 5f states with conduction electron
band(s) usually produces the Kondo effect [4], i.e.,
the screening of the spin of a localized electron (mag-
netic impurity) by spins of conduction electrons. In
heavy-fermion compounds it also gives rise to spin
fluctuations of localized spin moments, which are

completely screened below some characteristic energy
(the Kondo temperature, TK), i.e., the ground state is
a singlet with a finite magnetic susceptibility. Due to
this effect, effective masses of carriers are enhanced,
comparing to normal metals. It manifests itself in
large values of the low-temperature magnetic suscepti-
bility, linear in temperature Sommerfeld coefficient of
the electron specific heat, and low-temperature coeffi-
cient of the resistivity. Such a behavior can be de-
scribed in the framework of a standard Fermi liquid
theory [5] with a heavy effective electron mass. On
the other hand, for non-Fermi-liquid compounds the
magnetic susceptibility and the Sommerfeld coeffi-
cient of the specific heat are usually divergent at low
temperatures. It turns out that there is often no mag-
netic ordering in heavy-fermion systems (they are
metals with zero order parameter). However, very of-
ten, by tuning some parameters, like a concentration
of impurities, such systems are undergone phase tran-
sitions to ordered magnetic or superconducting states
[2,3]. Sometimes such phase transitions happen only
at zero temperature, i.e., they are quantum critical
transitions.
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In both of these two classes magnetic impurities play
an important role. For example, according to two
known scenarios the non-Fermi-liquid behavior in rare
earth and actinide compounds is caused either by the
so-called multi-channel Kondo effect (the spin of the
magnetic impurity is overscreened by spins of electrons
from several channels), or by the disorder in the distri-
bution of Kondo temperatures of magnetic impurities*.
The idea of (nonscreened) magnetic moments existing
in disordered metallic systems and quantum spin chains
has been formulated in [6–8]. It was proposed that the
change in interactions between the impurity sites and
the host spins can be considered as a modification of the
Kondo temperature. The same characteristic, i.e. TK ,
can be introduced for the description of the behavior of
magnetic impurities in quantum spin chains [8–10].
The random distribution of magnetic characteristics of
impurities renormalizes the single universal parameter,
TK , which characterizes the state of each magnetic im-
purity. Later it was pointed out that the problem of the
behavior of magnetic impurities with random distribu-
tions of their Kondo temperatures in metals can be
solved exactly, with the help of the Bethe ansatz
[8–10]. It was shown also [9–12] that distributions of
effective Kondo temperatures for each magnetic impu-
rity can cause divergencies of the magnetic susceptibil-
ity and the Sommerfeld coefficient of the specific heat
for quasi-one-dimensional organic conductors and
quantum spin chains, where such a behavior was obser-
ved experimentally [13–16]. To explain power law di-
vergencies of magnetic susceptibilities and Sommerfeld
coefficients of rare earth and actinide compounds, as
well as quasi-one-dimensional organic conductors and
quantum spin chains, it was necessary to use the distri-
bution of Kondo temperatures (the strong disorder dis-
tribution, for which «tails» were large enough), which
starts with the term P T G TK K( ) ( )� � �� � 1 (� � 1)
valid till some energy scale G for the lowest values of
TK [9,10,12]. Such a distribution was recently derived
from the first principles in [17].

Let us consider a number of quantum spin chains,
weakly coupled with each other (quasi-one-dimen-
sional system). Then the magnetic susceptibility of
the three-dimensional set of one-dimensional spin
chains is determined by the Dyson’s formula
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where J� is the constant of the interaction between
spin chains, z is the number of the nearest neighbor-

ing chains, and �1 is the magnetic susceptibility of
the chain. In a similar way one can calculate the mag-
netic susceptibility of an ensemble of weakly coupled
between each other magnetic impurities in a metal (in
such a case �1 describes the magnetic susceptibility of
magnetic impurities in a metal without interaction
between them, and J� defines the interaction between
impurtities). Notice that the interaction between each
impurity and the host (a quantum spin chain, or a
metal for non-Fermi-liquid systems) is considered ex-
actly in our approach; it defines �1. Obviously, the
denominator in Eq. (1) becomes zero at the point of
the phase transition to a magnetically ordered state,
and the critical temperature is determined from the
condition: �1 1( )T zJc � � .

We know [18] that for a set of homogeneous quan-
tum spin chains the magnetic susceptibility �1 as a func-
tion of temperature has a maximum with the value (we
consider units in which g-factors and Bohr’s magneton
are equal to 1) ~ . /| |014 J , where J is the exchange con-
stant along the quantum spin chain. Hence, for weak
enough interactions J J z� � | |/ .014 the quasi-one-dimen-
sional spin system never undergoes a phase transition to
the ordered state. The same is true for spin chains with
single impurities and for spin chains with a weak disor-
der in the distribution of their Kondo temperatures: In
those cases the ground state is a singlet, and the mag-
netic susceptibility of those spin chains is finite at low
temperatures. Thus, for small enough values of
interchain couplings ( )J TK� � const , the denominator
in Eq. (1) never becomes zero, and there is no phase
transition to a magnetically ordered state. On the other
hand, for a strong disorder in the distribution of Kondo
temperatures of magnetic impurities in quantum spin
chains the magnetic susceptibility of each chain is diver-
gent at low temperatures, and any, even infinitely weak
interchain interaction has to produce a phase transition
to a magnetically ordered state. For example, for the
distribution of Kondo temperatures, derived in [17] the
magnetic susceptibility of a spin chain with disordered
magnetic impurities is � �

1
1� �T . This is why, the criti-

cal temperature of the magnetic transition can be esti-
mated as T zJc ~ ( ) /( )� �1 1 � . For the special case � � 0
one has �1 � � lnT and the critical temperature is ap-
proximately T /zJc ~ exp( )� �1 . Obviously, we can
made similar conclusions about the possibility of phase
transitions to magnetically ordered states for rare earth
or actinide compounds, which exhibit non-Fermi-liquid
behavior: Any, even infinitely weak interaction between
magnetic impurities with the strong disorder in the dis-
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* Another reason, which can cause the non-Fermi-liquid behavior, is the presence of a quantum critical point:
Fluctuations of an order parameter interact with itinerant electrons and can cause low-temperature divergencies of
thermodynamic characteristics [2,3].



tribution of their Kondo temperatures has to produce a
phase transition to a magnetically ordered state. On the
other hand, for heavy-fermion systems and for metals
with single Kondo impurities and impurities with a
weak disorder in the distribution of their Kondo tempe-
ratures there exist critical values of impurity-impurity
couplings J�. In those cases, if the coupling J� is smaller
than the critical one, the total system cannot undergo a
phase transition to a magnetically ordered phase. The
reason for weak inter-chain or impurity-impurity cou-
plings can be the magnetic dipole-dipole interaction,
present in any magnetic system; it is weak and long-range
one. Notice that the presence of a phase transition at low
temperatures Tc � 0 for rare earth or actinide systems
with non-Fermi-liquid behavior obviously questions the
applicability of the «quantum critical point» scenario in
those cases.

Summarizing, in this Letter we have shown that
due to a strong disorder in the distribution of charac-
teristics of magnetic impurities (Kondo temperatures)
in quantum spin chains and non-Fermi-liquid rare
earth and actinide compounds any weak interaction
between spin chains or between magnetic impurities in
non-Fermi-liquid systems can produce a phase transi-
tion to a magnetically ordered state. On the other
hand, for homogeneous spin chains, spin chains and
heavy-fermion systems with a weak disoder of the dis-
tribution of Kondo temperatures, there exists a criti-
cal value of the coupling, below which there is no such
a phase transition.
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