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We study the dynamics of a single spin embedded in the tunneling barrier between two super-
conductors. As a consequence of pair correlations in the superconducting state, the spin displays
rich and unusual dynamics. To properly describe the time evolution of the spin we derive the effec-
tive Keldysh action for the spin. The superconducting correlations lead to an effective spin action,
which is nonlocal in time, leading to unconventional precession. We further illustrate how the cur-
rent is modulated by this novel spin dynamics.
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Introduction

The analysis of spins embedded in Josephson junc-
tions has had a long and rich history. Early on, Kulik
[1] argued that spin flip processes in tunnel barriers
reduce the critical Josephson current as compared to
the Ambegaokar—Baratoff limit [2]. More than a de-
cade later, Bulaevskii et al. [3] conjectured that
�-junctions may be formed if spin flip processes domi-
nate. The competition between the Kondo effect and
the superconductivity was elucidated in [4]. Trans-
port properties formed the central core of these and
many other pioneering works, while spin dynamics
was relegated to a relatively trivial secondary role. In
the present article, we report on new nonstationary
spin dynamics and illustrate that the spin is affected
by the Josephson current. As a consequence of the
Josephson current, spins exhibit novel nonplanar pre-
cessions while subject to the external magnetic field.
A spin in a magnetic field exhibits circular Larmor
precession about the direction of the field. As we re-
port here, when the spin is further embedded between
two superconducting leads, new out-of-plane longitu-
dinal motion, much alike that displayed by a mechani-
cal top, will arise. We term this new effect the
Josephson nutation. We further outline how transport
is, in turn, modulated by this rather unusual spin dy-

namics. Our predictions are within experimental
reach, and we propose a detection scheme.

The system

The system under consideration is illustrated in
Fig. 1. It consists of two identical ideal s-wave super-
conducting leads coupled each to a single spin; the
entire system is further subject to a weak external
magnetic field. In Fig. 1, �L R, denote the chemical
potentials of the left and right leads, B is a weak
external magnetic field along the z axis, and S �
� ( , , )S S Sx y z is the operator of the localized spin.
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Fig. 1. Magnetic spin coupled to two superconducting leads.



The Hamiltonian of the system reads
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where H L and H R are the Hamiltonians in the left
and right superconducting leads, while cik


† (cik
)
creates (annihilates) an electron in the lead in the
state k with spin 
 in the right (left) lead for
i L R� ( ). The vector � represents the three Pauli ma-
trices and � is the magnetic moment of the spin. When
a spin is embedded in the tunneling barrier, the con-
duction electron tunneling matrix becomes, not too
surprisingly, spin-dependent: � [ � �T T T� � �0 11 S �] [5,6].
Here T0 is a spin-independent tunneling matrix ele-
ment and T1 is a spin-dependent matrix element origi-
nating from the direct exchange coupling J of the con-
duction electron to the localized spin S. We take both
tunneling matrix elements to be momentum independ-
ent. This is not a crucial assumption and is merely
introduced to simplify notations. Typically, from the
expansion of the work function for tunneling,
T T J U1 0 ~ , where U is the height of a spin-inde-
pendent tunneling barrier [7]. A weak external mag-
netic field Bz ~ 100 G does not influence the super-
conductors and we may ignore its effect on the leads.
In what follows, we abbreviate �Bz by B. The opera-
tor e i	 2 is the single electron number operator.
When the junction is linked to an external environ-
ment, the coupling between the junction and the en-
vironment induces fluctuation of the superconducting
phase 	.

The effective action

Josephson junctions are necessarily embedded into
external electrical circuits. This implies that the dy-
namics will explicitly depend on the superconducting
phase 	. The evolution operator is given by the
real-time path integral

Z D D i i i� � �� 	 	 	S S Sexp[ ( ) ( ) ( , )].S S Scircuit spin tunnel

(3)

The effective action Stunnel describes the junction it-
self. We generalize the formerly known effective tun-
neling action for a spinless junction [8–10] to the
spin-dependent arena to obtain
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where
i t t G t t G t t
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and the Green functions are
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In Eq. (4)

K
� denotes integration along the Keldysh

contour. We now express the spin action on Keldysh
contour in the basis of coherent states

Sspin � � ��dt S

K

WZNWB S . (8)

Here, S denotes the magnitude of the spin S. The sec-
ond, Wess—Zumino—Novikov—Witten (WZNW),
term in Eq. (8) depicts the Berry phase accumulated
by the spin as a result of motion of the spin on a
sphere of radius S [11,12]. Explicitly,
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2

0
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The additional integral over � allows us to express the
action in a local form. At � � 0 the spin is set along
the z direction at all times, S( , )t 0 � const; at � � 1 the
spin field corresponds to the physical configurations,
S S( , ) ( )t t1 � .

Dynamics

We now perform the Keldysh rotation, defining the
values of the spin and the phase variables on the for-
ward/backward branches of the Keldysh contour (see
Fig. 2, Su l, for the upper and lower branch) and re-
writing all the expressions in terms of their average
(classical component S) and difference (quantum
component l):

S S S� �( )u l 2, l S S� �u l , S l� � 0. (10)

After the Keldysh rotation we obtain [13,14]

Spin and current variations in Josephson junctions

Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8 835



SWZNW
u u

t
u

S
d dt t, t, t,� � � 
� �

1
2

0

1

� � � � ��[ ( ) ( ( ) ( ( ))S S S

� �( )]u l .
(11)

The relative minus sign stems from the backward time
ordering on the return part of C. The individual
WZNW phases for the upper (u) and lower (l)
branches are given by the areas spanned by the trajec-
tories Su l t, ( ) on the sphere of radius S divided by the
spin magnitude (S). The WZNW term contains odd
powers of l. Insofar as the WZNW term of Eq. (11) is
concerned, the standard Keldysh transformation to
the two classical and quantum fields, S and l, mirrors
the decomposition of the spin in an antiferromagnet
(AF) to the two orthogonal slow and fast fields.* The
difference between the two individual WZNW terms
in Eq. (11) is the area spanned between the forward
and backward trajectories. For close forward and
backward trajectories the WZNW action on the
Keldysh loop may be expressed as

SWZNW t
S

dt� � 
�
1
2

l S S( )� . (12)

For the spin part of the (semiclassical) action we,
then, obtain

Sspin � � � � 
 �� �dt
S

dt tB l l S S
1
2

( ). (13)

Next, we perform the Keldysh rotation to the clas-
sical and quantum components with respect to both
the phase and spin variables in the tunneling part of
the effective action. Towards this end, we introduce
(with notations following Refs. 8, 10)

	 	 	� �( )u d 2, � 	 	� �u d . (14)

With these definitions in hand, the tunneling part of
the action reads

S S Stunnel � �
 �, (15)

where the normal (quasi-particle) tunneling part S

is expressed via the Green functions
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Similarly the Josephson-tunneling part S� is ex-
pressed via the off-diagonal Green’s functions
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where
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i t t F t t F t t�� � �� � � �( , ) ( , ) ( , )† .

In this paper we are interested in the interaction be-
tween the supercurrent and the spin. Thus we provide
the expression for the Josephson part:
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* These two orthogonal AF fields represent (i) the slowly varying staggered spin field (the antiferromagnetic staggered
moment m taking on the role of S and (ii) the rapidly oscillating uniform spin field l (paralleling our l). In the
antiferromagnetic correspondence, the two forward time spin trajectories at two nearest neighbor AF sites become the
two forward (u) and backward (l) single spin trajectories of the nonequilibrium problem. This staggered doubling
correspondence is general.

C

Su(t)

S
l(t)

Fig. 2. The sphere of radius S for the vectors Su l t, ( ) is
shown. The path C describes the evolution of the spin along
the upper (u) and lower (l) branches of the Keldysh con-
tour. To properly describe the spin dynamics on this closed
contour, we analyze the WZNW action, see Eq. (9). For
clarity, we draw a small piece of the closed trajectories.
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The normal-tunneling part S
 is obtained from S� by
the following substitution: � 
R K R Kt t t t( , ) ( , )� � � ,
	 	( ) ( )t t� � � � , and � �( ) ( )� � � �t t . The Keldysh
terms (those including �K and 
 K), which normally
give rise to random Langevin terms (see, e.g., Ref.
10) are, in our case, suppressed at temperatures much
lower than the superconducting gap (T �� '), due to
the exponential suppression of the correlators � �K( )
and 
 �K( ) at � � '.

To obtain �R, we start from the Gorkov Green
functions
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e ,
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where the quasiparticle energy Ek k� �'2 2º , ºk be-
ing the free-conduction-electron dispersion in the
leads. Putting all of the pieces together, we find that

� �R

k pk p
k pt t t t

E E
E E t t( ) ( ) sin[( )( )].
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2
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The kernel �R t t( )� � decays on short time scales of
order O( )� ' . Varying the full action with respect to
the quantum components l and � and setting these to
zero, we obtain coupled equations of motion for both
the spin and phase:

d t
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Note, that, if the rest of the circuit contains dissi-
pative elements, e.g., resistors, then Scircuit will con-
tain the nonvanishing Keldysh components, and one
should include the corresponding Langevin terms into
Eq. (20). The rather complicated equations of motion

(19) and (20) are very general. To make headway, we
now adopt a perturbative strategy. In Eq. (19), we
first assume an ideal voltage bias, i.e., an imposed
phase 	 �( )t tJ� , where the «Josephson frequency»
�J eV� 2 �. To this lowest order, we neglect the in-
fluence of the spin on the phase. Next, we use the sep-
aration of characteristic time scales to our advantage.
To this end, we note that the spin dynamics is much
slower as compared to electronic processes, i.e.,
�J B, �� '. This separation of scales allows us to set
S( )t� � S S( ) ( )t t t d dt� � � in the integrand of
Eq. (19), wherein we obtain

d
dt
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with g T1 1
22� ( )� + being the spin channel conduc-

tance. In Eq. (22) we employ the separation of time
scales (�J �� ') again. When expressed in the sphe-
rical coordinates (in the semiclassical limit)
S � S(sin cos ,sin sin ,cos )� 	 � 	 � , Eq. (21) transforms
into two simple first order differential equations

d

dt
B

S tJ
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�1 2 2 2sin ( )
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d
dt
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d
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�
(

	
� �� � sin sin . (24)

These equations can be solved exactly. For a spin ori-
ented at time t � 0 at an angle �0 relative to B,
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with c S S� �( (1 2 2 and 2 (3 �� �S cJ2 . For
S( �� 1, 	 � – Bt and � � ( 3 � �� 0 0� 
S J( )sin

 cos�Jt. Typically, whenever a spin is subjected to a
uniform magnetic field, the spin azimuthally precesses
with the Larmor frequency �L B� . In a Josephson
junction, however, the spin exhibits additional polar
(�) displacements. The resulting dynamics may be li-
kened to that of a rotating rigid top. The Josephson
current leads to a nonplanar gyroscopic motion
(Josephson nutations) of the spin much like that gen-
erated by torques applied to a mechanical top. For
small (, we find nutations (see Fig. 3) of amplitude

� � (
�

� �1 2 1� 4 4S
B

Sg
B

J
sin sin

'
.

The origin of the first term on the right-hand side
of Eq. (21) can be understood as follows (this origin
can be also traced in the calculations): the spin is
subject to the electron-induced fluctuating field
h � �T c ci

1
25 e h. c.	 †

� The same coupling may be
thought of as an influence of the spin on the leads,
which results in a nonzero low-frequency contribution
�h to h. Since the response function of the electron li-
quid is isotropic but retarded, �h( )t is not aligned
with S( )t but contains information about the values of
S( )t� at earlier times. The response function decays on
a time scale ~ � ', much shorter than the period of the

spin precession, ~ 1 B. As a consequence, in addition
to a contribution 4 S the field h acquires a component
4 �S ', which leads to the first term on the right-hand
side of Eq. (21).

The right-hand side of the second equation of mo-
tion (20) clearly corresponds to the Josephson cur-
rent. Indeed, in the Keldysh formalism one has
I � � �( )2 0� �6 S (instead of I � � �( )2 0� 	6 S ).
Thus we obtain for the Josephson current
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We start from the lowest order (local in time) adia-
batic approximation, i.e., we set S S( ) ( )t t� � and
	 	( ) ( )t t� � . This yields
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where E T dt t T gJ
R

, ( ) ( )0 0
2 2 2

0
2

02 1 4� � �� � � + ' ' is
the spin-independent Josephson energy [2] (g0 being
the conductance of the spin-independent channel).
The second term of Eq. (26) gives the spin-related re-
duction of the Josephson critical current studied in
Ref. 1. We now evaluate the lowest-order correction
to this equation due to deviations from locality in
time and spin precessions. Expanding S( )t� in Eq.
(25) in ( )t t�� and using the fact that for the Larmor
precession we have S S� �� 0 and S S S� � ��� ( )B Sz

2 2 2 ,
we find a correction to the Josephson current which
depends on Sz

2:
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2 2 2
2

1
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16
( ) ( )' .

Here we clearly elucidated the manner in which the
spin dynamics alters the Josephson current.

For S � 1 2 the semiclassical approximation is in-
sufficient. In this case it is easier to perform a calcula-
tion with spin operators [13], rather than a path inte-
gral. One, then, obtains [13] an expression for the
Josephson current identical to Eq. (25) with S(t)
being, however, the spin operator in the interaction
representation. Using the commutation relations of
the spin operators one obtains an extra contribution to
the Josephson current proportional to Sz . This allows
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O

Fig. 3. The resulting spin motion on the unit sphere in the
general case. As in the motion of classical spinning top,
the spin exhibits undulations along the polar direction.



reading out of the spin state via the Josephson current.
This extra contribution scales as S while the spin-de-
pendent contributions in Eq. (27) scale as S2.

Detection

We now briefly discuss a detection scheme for the
Josephson nutations for S �� 1, e.g., in the semiclassi-
cal limit. In principle the nutations should affect the
Josephson current. The level of approximation em-
ployed in this paper was, however, insufficient to de-
scribe this effect. Indeed, one has to substitute S( )t
containing the nutations into Eq. (25). As the ampli-
tude of the nutations is of the order g1, the correction
to the current will be of the order g1

2. We will study
this correction elsewhere.

Here we discuss a more direct detection strategy.
The spin motion generates a time-dependent magnetic
field,

�
�

�
B r r r m m( , ) [ ( ( )) ( )]t

r
t r t� � �0

5
2

4
3 ,

superimposed on the constant external field B. Here r
is the position relative to the spin, with magnetic mo-
ment m S( ) ( )t t� � . A ferromagnetic cluster of spin
S � 100 generates a detectable field �B ~ 10 10� T which
appears a micron away from the spin. For a SQUID
loop of micron dimensions located at that position, the
corresponding flux variation �6 6~ 10 7

0
� (with 60 a

flux quantum) are within reach of modern SQUID’s.
For such a setup with T T1 0 01~ . , the typical critical
Josephson current is J AS

( ) ~0 10 � , | |' � 1meV, and
eV ~ | |10 3� ' . We find that (S ~ .01. Since
S Sx � sin cos� 	, S Sy � sin sin� 	, the spin compo-
nents orthogonal to B vary, to first order in ( )(S , with
Fourier components at frequencies | |� �L J7 (�L B� ),
leading to a discernible signal in the magnetic field
B B� � . For a field B ~ 200 G, �L ~ 560 MHz, and a

new side band will appear at | |� �L J� , whose magni-
tude may be tuned to 10–100 MHz. This measurable
frequency is markedly different from the Larmor fre-
quency �L.

The efficiency of the detector may be further im-
proved by embedding the spin in one of the Josephson
junctions of the SQUID itself. The setup is sketched in
Fig. 4. The Josephson junction containing the spin is
used both for driving the nutations and, together with
the second junction of the SQUID, for detecting them.

Conclusion

In this article, we illustrated that the dynamics of a
spin embedded in a Josephson junction is richer than
appreciated hitherto. We reported unusual nonplanar
spin motion (in a static field), which might be probed
directly and which was further shown to influence the
current in the Josephson junction. Using a path-inte-
gral formalism, we described this nonplanar spin dy-
namics and the ensuing current variations that it trig-
gers. To describe the time evolution we derived the
effective action for a spin of arbitrary amplitude S on
the Keldysh contour. In passing, we noted a similarity
between the resultant effective action and that en-
countered in quantum antiferromagnetic spin chains.
Our central results are encapsulated in the effective
action (16).

In the semiclassical limit of large S, relevant to fer-
romagnetic spin clusters [14], we obtained two cou-
pled equations of motion (Eqs. (19) and (20)). These
equations may be solved perturbatively, as outlined
above, or numerically. We presented an exact limit-
ing-case solution and illustrated how the new spin dy-
namics may be experimentally probed.

The formalism developed can also be applied to the
minimal S � 1 2 system. In this case, however, it is
simpler to perform a calculation with spin operators
[13], rather than a path integral.
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