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The condensation of indirect excitons in double quantum wells is studied in an electric field created by elec-

trodes of different shapes. The finite value of the exciton lifetime, the pumping and nonuniformity of the electric 

field under the electrode are taken into account. It is shown that islands of exciton condensed phase emerge un-

der electrodes when the pumping exceeds a certain threshold value. They appear first under the rim where the 

potential energy of excitons has a dip. Calculations predict a complicated evolution of the exciton density distri-

bution: from the gaseous phase at low laser intensities to the condensed phase in the whole area under the elec-

trode at larger intensities. Therefore, the configurations of the exciton condensed phase may be manipulated by 

choosing the setups with conductive electrodes of different shapes via forming specific potentials of the electri-

cal field and controlled by the level of the laser irradiation. 

PACS: 71.35.Lk Collective phenomena; 

73.21.Fg Quantum wells. 

Keywords: quantum wells, condensed phase, indirect exciton, macroscopic trap. 

 

 

1. Introduction 

In recent years semiconductor double quantum wells 

remain a very popular and convenient physical system for 

studying the properties of indirect excitons in which an 

electron and a hole are separated by an electric field to 

different quantum wells [1]. As a consequence, the recom-

bination of the electron and the hole is inhibited and that 

causes the lifetime of indirect excitons to be by several 

orders of magnitude higher than the direct exciton lifetime. 

The study of indirect excitons is promising in terms of 

fundamental science, because excitons can be accumulated 

to a high density and many-exciton effects can be investi-

gated. Additionally, the system of indirect excitons can be 

promising for applications, since they can travel over large 

distances carrying energy and information and may be 

used in the double quantum well based semiconductor de-

vices [2,3]. A number of recent papers reported emergence 

of the macroscopic scale spatial structuring in the emission 

from the systems of high density indirect excitons in the 

double quantum wells based on GaAs/AlGaAs. Thus, the 

authors [4] observed a break-down of the emitting ring 

outside the laser spot into separate fragments periodically 

localized along the ring. In the paper [5], in which the exci-

tation of the quantum well was carried out through a win-

dow in a metallic electrode, the authors found a periodical 

structure of the luminescent islands situated along the ring 

under the perimeter of the window. The appearance of the 

structures in the exciton density distribution was observed 

for a periodical potential applied to excitons [6]. Recently 

Timofeev and co-authors [7,8] presented examples of emit-

ting structures, obtained through differently shaped windows 

in the electrodes: a rectangle, a triangle, two circles, two 

triangles, etc. In order to increase the exciton concentration 

at the same pumping a number of works [9–12] proposed to 

create so-called macroscopic traps for excitons. Such traps 

allow accumulating excitons up to higher density without 

increasing the laser pumping while avoiding negative ef-

fects of heating. 

Several different theoretical models of the formation of 

spatial patterns were proposed [13–20]. In the listed pa-

pers, the main efforts were applied for the ascertainment of 

the principal possibility of the onset of the periodicity in 

the exciton density distribution. They come short of the 

explanation of numerous experiments with different setups, 

at different pumping, temperature, for different type of 

external fields. 

The explanation of the experimentally observed spatial 

structures in the exciton density distribution was given in 

the papers [21–25]. The theoretical approaches of these  

works are based on two major assumptions: 1) there exists 
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an exciton condensed phase caused by an attractive inter-

action between excitons; 2) the finite value of the exciton 

lifetime plays an important role in the formation of the 

exciton condensed phase. The first assumption is supported 

by the existence of bound states of two indirect excitons, 

obtained in the calculations by several groups [26–28], and 

a new phase in the multiexciton system [29]. The attractive 

exchange and van der Waals interactions may exceed the 

repulsive long-range dipole–dipole interactions between 

excitons if the distance between the quantum wells in a 

double well setup, and, correspondingly, dipole moments 

of indirect excitons, are not too large. The second assump-

tion is connected with the fact that the exciton lifetime is 

less than the time of the establishment of the equilibrium 

between different phases. 

In this paper, we apply our approbated approach to new 

systems investigating the formation of the exciton density 

patterns in double quantum wells in an external electric 

field applied by using metal electrodes of various spatial 

shapes: disk-shaped, square-shaped, rectangular-shaped 

and triangle-shaped electrodes. The paper consists of two 

main parts. The first one explains the procedure of the cal-

culations of the electrostatic field for the setups of different 

shapes. The second part presents the results of the calcula-

tions and analysis of the exciton density distributions for 

these setups.  The exciton density distribution is described 

phenomenologically using Landau model of phase transi-

tions generalized for particles with the finite lifetime. This 

approach is based on two main assumptions used in our 

previous papers [21–25,30,31] that were successful in the 

explanation of experimental results. 

2. Model of the system. Electric field potential 

We consider a double quantum well sandwiched be-

tween two flat metal electrodes. The upper electrode is 

finite-shaped (see Fig. 1). Let us direct the z axis perpen-

dicular to the quantum wells plane, then the XY plane will 

be quantum well plane. The electric potential difference 

 is applied to the electrodes, the top finite-sized elec-

trode has a potential 0  and the bottom electrode has po-

tential 0. The double quantum well where excitons reside 

is at a distance from the top electrode. The top finite size 

electrode creates a nonuniform electric field. An indirect 

exciton, having a dipole moment, acquires an additional 

energy V pE.  

The calculation of the electric field under the electrode of 

an arbitrary shape is a separate problem. Analytical solution 

is known for a disk-shaped electrode [32]. This solution has 

been used in the paper [31]. Remarkably, while the electro-

static potential does not have any feature under the rim of 

the disk, the electric field strength does have a dip. The 

physical significance of this is that while neither electrons 

nor holes are pulled under the disk the indirect excitons, 

having a dipole moment, are attracted to the regions situated 

under the rim. Therefore an electrode of a finite size creates 

potential energy dips for excitons and for excitons only. The 

electric field under an electrode of arbitrary shape has to be 

calculated numerically. We have developed a simple proce-

dure to perform these calculations and tested it for the case 

of the disk where the analytical solution is known. After 

obtaining a satisfactory approximation we have applied the 

same procedure to other geometries. 

To find the electric field we need to know how the 

charges are distributed on the surface of the electrode. The 

electrostatic potential in the system is determined by the 

surface charge density  on the top electrode 
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The surface charge is determined by the condition 

0( , ,0)x y  for any point on the electrode. The solution 

of the integral equation is difficult because of a singularity 

in the kernel. To avoid the difficulty we simulate the con-

tinuous charge distribution ( , )x y  with a set of point 

charges { }iq  situated slightly above the electrode on a grid 

(Fig. 2). We demand that the potentials of this system of 

charges were equal to 0  in the points on the surface of 

the electrodes below the charges. The charges { }iq  can be 

found from the system of linear equations 
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where h  is the step of the grid and  is the elevation of 

the grid over the electrode’s plane. 

To take into account influence of the bottom electrode 

on the electric field the method of mirror images has been 

used as for the similar problem in the article [31]. The pro-

posed procedure, applicable for any flat electrode, gives 

solutions that while not being the solutions of the initial 

problem approximate these solutions satisfactory if  is 

Fig. 1. Setup of the system in the case when the top electrode is 

square-shaped. Potentials of the top and the bottom electrodes are 

0 and 0, respectively. 
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small enough compared to h. This has been checked for the 

disk-shaped electrode. 

The electric potential at the level of the double quantum 

well is nonuniform. As in the case of the known solution 

for a disk, the electric field strength has a minimum direct-

ly below the rim of the electrode, especially pronounced 

under the corners (see Fig. 3 for the square-shaped elec-

trode). The electric field affects the potential energy of 

excitons, while the potential energy of the charged parti-

cles such as electrons and holes is affected by the electro-

static potential itself which remains smooth. Therefore, the 

macroscopic traps appear for excitons only. 

3. Exciton density patterns 

We use the phenomenological model of phase transi-

tions generalized for particles of the finite lifetime for sim-

ulation of the exciton density profiles under electrodes of 

different shapes. This section provides only a brief descrip-

tion of the simulation method, a detailed description of the 

approach can be found, for example, in [25,30]. The time-

dependent distribution of the exciton density n  satisfies 

the nonlinear equation: 

 ( )
B

n D df n
n K n V G

t k T dn
r , (1) 

where D  is the exciton diffusion coefficient, Bk  is the 

Boltzman constant, T  is the temperature, 

 2 3 4
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2 3 4
B
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is the free energy density, ( , , )V V x y z is the external po-

tential energy,  is the exciton lifetime, ( )G r is the exciton 

creation rate due to the laser pumping, i.e., the number of 

excitons created in unit time per unit surface of the quantum 

well. , ,a b c  are phenomenological coefficients. 

Using dimensionless units for time, length, exciton 

concentration and energy 2
1 / ,u ut d l D  / ,ul K a  un  

/ ,a c  ,u uV an  respectively, where 1 / ,B ud k T V  we 

get a dimensionless equation for the exciton density: 

  2 3
1 1[ ( )] ( )

n n
d n n n n b n n V G

t
r . (2) 

The first term describes the diffusion of excitons; the 

terms in brackets are due to the free energy contribution and 

the external potential energy. Equation (2) is a nonlinear 

phenomenological equation which describes the exciton 

density distribution taking into account the finite exciton 

lifetime and the external laser pumping. We have chosen the 

exciton creation rate in the form of a spot with the Gaussian 

form 2 2
0 exp [ /(2 )],G G r  where G0 characterizes the 

intensity and  defines the radius of a spot. 

The potential ( )V r  creates a trap for excitons. The 

excitons would tend to localize under the electrode, espe-

cially under the rim and the corners where the trap is dee-

per. With increasing pumping the processes of the conden-

Fig. 2. Illustration of the procedure of the calculation of the elec-

trostatic field profiles. The top metal electrode is approximated 

by a grid of discrete point charges. To avoid singularity charges 

are shifted by  above the electrode. l is the distance between the 

top electrode and the plane of quantum wells. 

Fig. 3. 2D (a) and 3D (b) profiles of the exciton potential energy for the case of a square-shaped electrode. The applied bias is 1 V, the 

electrode size is 15 15 m,  the distance to the quantum wells plane is l = 0.2 m.  Potential energy depth at minimum is 0.68 meV. 
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sation occur. As the result of the finite value of the exciton 

lifetime various patterns emerge in the density distribution. 

Due to the nonhomogeneous potential of the finite size 

electrode, the islands of the condensed phase arise at first 

under the rim of the electrode. Below we present the dy-

namics of the modification of the density distribution with 

increasing pumping. 

Firstly, let us consider the steady-state exciton density 

distribution in the quantum wells plane for different spatial 

shapes of electrodes. Four types of finite-shaped electrodes 

have been used: a disk, a square, a rectangle and a triangle. 

The trap depth depends on the voltage applied to the elec-

trodes and the position of the quantum wells plane relative 

to the top electrode. This provides a possibility to tune the 

configuration of the trap in a controllable manner. Exam-

ples of the steady-state solutions of the Eq. (2) for 4 setups 

are presented in the Fig. 4. One can see that the accumula-

tion of excitons with the creation of the islands of the con-

densed phase tends to occur under the rim of the elec-

trodes, especially under the corners where the traps are 

deeper. 

Exciton density patterns appear only when the laser 

pumping exceeds a certain threshold value. The regions of 

the high exciton density correspond to the condensed phase 

and the regions of the low density correspond to the gase-

ous phase. The results show that the trapping of excitons 

takes place along the electrodes rims in all cases, inde-

pendent of the electrodes’ shapes. Note, that in the case of 

the rectangular-shape electrode the islands of the con-

densed phase appear not only in vicinity of the electrode’s 

corners, but along the longer sides as well. This indicates 

that the condensation of excitons plays an important role in 

pattern formation. 

The systems with the finite-size electrodes have not 

been realized experimentally so far. Therefore, our calcula-

tions provide predictions of the density patterns. Similar 

systems with differently shaped windows in the conductive 

electrodes have been constructed experimentally [5,7,8]. 

Secondly, let us explore the dynamics of the exciton 

density pattern with increasing the laser pumping intensity 

for the square-shaped electrode (see Fig. 5). The detailed 

analysis shows complicated modification of the exciton 

density distribution: from the gaseous phase at low laser 

intensities to the condensed phase at large intensities. 

When the laser pumping is below a certain threshold value 

the exciton distribution is smooth without any particular 

features, almost uniform (Fig. 5(a)). As the pumping in-

creases, the excitons start to condense, at first in the vicini-

ty of the electrode’s corners and when the pumping ex-

ceeds a certain threshold value the islands of the condensed 

phase emerge (Figs. 5(b), (c)). The spatial structure be-

comes even more complicated at higher excitation level: 

additional islands of the condensed phase grow between 

the corners along the rims of electrode (Fig. 5(d)). At still 

Fig. 4. Exciton density distribution in the QW plane for electrodes of different shape: (a) square 15 15 µm; (b) rectangle 9 18 m;  (c) 

triangle 7 7 7 m;  (d) disk with radius 15 m.  Islands of exciton condensed phase appear first in the regions under the electrodes’ 

corners. The following parameters are used for numerical simulations: applied potential difference is 1 V, distance to quantum wells 

plane is l = 0.2 m.  
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stronger pumping they merge creating a continuous wall 

(Fig. 5(e)). And, finally, at very large intensities of the 

laser pumping, the condensed phase, without any inclu-

sions of gaseous phase, occupies the whole space under the 

electrode (Fig. 5(f)). Such dynamics is really similar to 

process of phase transition saturated steam-liquid phase. 

Thus, the situations when only the gaseous or only the 

condensed phases exist are separated by the coexistence of 

the condensed and gaseous phases at the intermediate level 

of pumping. 

4. Conclusions 

In this paper we have studied formation of patterns in 

the exciton density distribution in laser irradiated double 

quantum wells with macroscopic traps for excitons. Simu-

lations were performed for traps created by metal elec-

trodes of different spatial shapes: a disk, a square, a rec-

tangle and a triangle. Calculations have shown that the 

electric field created by electrodes is strongly nonuniform 

along its rims. The traps appear for excitons only and do 

not emerge either for electrons or the holes. The theory of 

phase transitions generalized for unstable particles has 

been applied for the study of the exciton density distribu-

tion. The regions of the condensed phase shaped as islands 

arise when the laser pumping exceeds a certain threshold 

value, parameters of which depend on the pumping, the 

lifetime of the excitons, and the structure of the external 

field. We report also the dynamics of the modification of 

the exciton density profiles with increasing the laser pump-

ing: the condensation starts under the corners or under the 

rim of the electrodes where the exciton energy has minima. 

Fig. 5. Exciton density distribution in the quantum well plane for different values of the exciton creation rate characteristic G0 in dimen-

sionless units for the square-shaped electrode 20 20 m :  0.001 (a); 0.003 (b); 0.004 (c); 0.005 (d); 0.007 (e); 0.015 (f). The other pa-

rameters are the same as in Fig. 4. 
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Additional condensed phase islands emerge at higher 

pumping  at a certain distance from the minima, at still 

higher pumping separate islands merge into a continuous 

wall encircling a gaseous phase in the center of the under-

electrode region with one additional island of the con-

densed phase, and, finally, the continuous condensed phase 

occupies the entire area under the electrode. The formation 

of patterns is caused by distinct features of phase transitions 

in the nonequilibrium systems of finite lifetime particles. 

The considered system may useful for the study of the 

dynamics of phase transitions in nonhomogeneous and 

nonequilibrium systems and for the creation of various 

distributions of the exciton density controlled by the laser 

irradiation applicable in the optoelectronics. 
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