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Exact analytical expressions for propagator of small-amplitude linear magnetostatic waves in ferromagnetic 
thin film between two antennae and their corresponding mutual impedance are obtained by solving the linearized 
torque equation of spin dynamics (Landau–Lifshitz equation) in magnetostatic approximation. This is done for 
the case of arbitrary orientation of uniform static magnetization of the film and full account for arbitrary magnet-
ic anisotropy. The result also contains full description of the magnetostatic spin-wave spectrum. 

PACS: 75.30.Ds Spin waves; 
76.50.+g Ferromagnetic, antiferromagnetic, and ferromagnetic resonances; spin-wave resonance. 
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1. Introduction 

The terms “magnetostatic oscillations” or “magnetostatic 
waves” (MSW) [1–4] mean relatively long spin waves (SW), 
whose properties are dominated by the long-range quasi-
static dipole interaction between “spins” and, thus, strongly 
influenced by geometry of ferromagnetic sample (its shape 
and dimensions). In contrast, properties of relatively short 
SW (spin waves in narrow sense) are dictated by the short-
range exchange interaction [3–5]. 

In ferrite films MSW can be easy excited by micro-
wave-frequency magnetic fields from wire or strip-like 
antennae [6–8] with amplitudes as high as to induce 
strongly nonlinear interactions of MSW between them-
selves and with SW. Other novel methods of creating small 
and high-amplitude spin-waves are based on spin-polarized 
current injection [9] or highly-focused femtosecond laser 
pulses [10]. In addition, their small velocity ensures com-
pactness of MSW-based nonlinear electromagnetic trans-
ducers. When exploring these possibilities, it is important 
to know characteristics of linear MSW modes and their 
contribution to the mutual impedance between the anten-
nae. There are widely used exact results by Damon and 
Eshbach [2] for MSWs in flat normally magnetized homo-
geneous films. Other authors [11,12] (see also paper by 
Kalinikos and coworkers in Ref. 6 and references therein) 
developed approximate approaches for the case of nonho-
mogeneous films having specific surface pinning effects. 
At the same time, to the best of our knowledge, the homo-
geneous case remains incompletely investigated. In this 

paper we present new solutions for this case believing that 
they can be useful both in practice and for theoretical mod-
eling of more complicated situations. 

Our consideration is restricted to “magnetostatic ap-
proximation”, which neglects SW (in narrow sense) at all, 
as if the exchange stiffness C  (and, consequently, the ex-
change length, 1/2= ( / (4 ))e sr C Mπ , relating it to the satu-
ration magnetization of the film's material, sM ) is equal to 
zero. This formal trick seems reasonable when cross-sec-
tional dimensions of all the antennae or/and their distances 
to film's surface are much greater than er . Indeed, under 
this condition, magnetic field, created by antennae, is so 
smoothly distributed in film's interior (with spatial scales 
much greater than er ) that it interacts very poorly with the 
SW, whose length is comparable or smaller than er , leaving 
them mostly unexcited. We do not know of a rigorous 
proof of this statement, but it follows rather convincingly 
from results of the “magnetostatic approximation” itself 
(including those, presented below) which consistently 
demonstrate insignificance of “infinitely short” MSW in 
the sense that both their excited energy and total contribu-
tion to film's linear response to weak external field are neg-
ligible. On the other hand, in strongly nonlinear regime 
SW much shorter than er  can be generated from a long 
MSW [6] (this behavior is shared by all the nonlinear 
models, collected in the Ref. 6). However, here we are 
interested in linear (small-amplitude) response only. 

Additionally, we will assume that the film under con-
sideration is thick — its thickness, D, is large, compared to 
er . This condition should bode well with applications of 
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our results to real films with surface-induced nonuniform-
ity. Moreover, if ground (static) state of film's magnet-
ization consists of domains and, hence, is strongly non-
uniform, then this state itself must be understood and 
described before its MSW excitations. Of course, we avoid 
this extremely difficult problem, being satisfied by consid-
eration of MSW on uniformly magnetized static backgro-
und. Fortunately (e.g., in yttrium–iron garnet films), such 
state can be enforced by comparatively small bias field. 

Dipole-exchange theory of spin-wave spectrum [13,14], 
additionally to including the arbitrary anisotropy and mag-
netization direction, is valid in a wider range of wave-
lengths and covers both magnetostatic and exchange spin 
waves. For technical applications, however, it is conveni-
ent to express the resonant properties of magnetic medium 
in terms of directly measurable quantities, such as imped-
ances. This is why we derive here the “MSW propagator”: 
function, describing mutual influence of two antennae due 
to MSW propagating in the film, while restricting our-
selves to a simpler magnetostatic approximation. 

2. Basic equations 

The classical dynamics of magnetization [4,5,15] is bas-
ed on the Landau–Lifshitz equation (the torque equation) 

 = { ( )}d
dt

× + γ − ⋅
S F S F S S F . (1) 

Here S is the direction vector of the local magnetization 
(| | 1=S ); F is the thermodynamic force, or effective internal 
magnetic field, expressed in units of the saturation magneti-
zation, sM ; time t is expressed in units of 0 =τ  1(2 )sgM −π  
( 2.8g ≈  MHz/Oe is the gyromagnetic ratio); γ is the phe-
nomenological friction (dissipation) parameter. 

The internal field, F , is composed at least from [4,5,15] 
(i) the external bias field, eH ; (ii) the magnetic anisotropy 
field, aH ; (iii) “demagnetizing” magnetic field, created by 
the magnetization itself, sH ; and (iv) the exchange field, 

exchH . We do not consider magnetic field due to eddy cur-
rents, assuming that the medium is a good insulator. Usual-
ly small dimensions of real samples and typical frequen-
cies of MSW allow to neglect retardation effects in sH , 
permitting to express it as a quasi-static solution of the 
Maxwell's equations. In the absence of conductors and 
other ferromagnets in the vicinity of the sample, this solu-
tion can be written as  

 

( )=
| |s

r' dr'G
r r'

 
− ≡ ⋅ − ∫

SH S ∇ ∇ . (2) 

The usual simplest model for the exchange interaction 
corresponds to 2 2

exch = erH S∇  [4,5,15]. It should be noted 
that the exchange interaction ensures local smoothness of 
the magnetization distribution, S, while the dipole–dipole 
interaction operator, G , is bounded when acting on smooth 

distributions: || || 4G ≤ π. If we denote the anisotropy ener-
gy density by ( )A S , then 

 = ( ) ( ) /a A A′− ≡ −∂ ∂H S S S.  

In principle, all the consideration in this and the next sec-
tions can be easily generalized to the case of nonuniform 
anisotropy, when ( )A S  explicitly depends on spatial coor-
dinates. 

Let the subscript “0” mark the attributes of background 
equilibrium static magnetization state at constant bias field, 

0= = consteH H . According to Eq. (1) the vectors 0S  and 
0F  in such state are parallel: that is 0 0 0= WF S , where sca-

lar field 0W  (absolute value of static internal magnetic 
field) is defined by the requirement | | = 1S . 

When additional time-varying magnetic field is applied, 
0= ( )e t+H H h , the magnetization will deviate from its 

static value. This deviation, =s  0−S S , can be represented as 

 

0 0= ( 1) , = ,S⊥ ⊥+ − Π ⊥s S S S S S


 (3) 

 

2
0 01 , = 1 | | ,S ⊥Π ≡ − ⊗ ± −S S S



  

where ⊗ stands for tensor product, and Π  is a projection 
operator (matrix), projecting vectors onto the plane, per-
pendicular to 0S . If the perturbation is small enough not to 
completely overturn any spins, the quantity S



 is positive 
everywhere. In terms of s  and ⊥S , Eq. (1) transforms into 

 0= [ ] (1 ) ,
d S
dt
⊥

⊥ ⊥ ⊥ ⊥× + γ − ⊗
S F S S S F



 (4) 

where = /E⊥ ⊥ ⊥−δ δF S , and E⊥  is the excess energy (en-
ergy of excitation) implied by the perturbation, 

 



2
0

1= ( ) ( ) ,
2 2

GE W A C dr⊥
 ⋅

+ + − ⋅ + ⊗ 
  
∫

s ss s h s s∇  (5) 

where function A  is defined by 

 

0 0 00
( ) = ( ) ( ) ( ) ,A A A A+ − − ⋅ Ss S s S s S∇   

subscript in 
0S∇  implies differentiation over components 

of 0S  and function C represents the exchange contribution 
to the excess energy. In the mentioned model, 

2 21( ) = ( )
2 eC r sα β

αβ
∑s∇ ∇ . 

The functional derivative ⊥F  in Eq. (4) should be evaluat-
ed carefully taking into account full dependence of s  on 
⊥S  according to Eq. (3). 

One may check directly that the frictionless ( = 0γ ) ver-
sion of Eq. (4) follows from the variational principle 

 0 = 0,
1

d dr E dt
dt S
⊥

⊥ ⊥
    δ ⋅ × +    +    
∫ ∫

SS S


 (6) 

while the dissipation, as it is usual in the Lagrange formal-
ism, has to be added externally. 
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Of course, in general, 0S  is a complicated function of 
spatial coordinates, hence all the related values ( 0W , Π , 
( )A s , and so on) depend on spatial coordinate. 

3. Linear waves 

If the static magnetization pattern 0S  is stable with re-
spect to small perturbations, the functional (5) must repre-
sent a positively defined quadratic form, which allows us 
to speak about linear eigenmodes of the excitation. In this 
case, let us introduce the spin precession operator, R , the 
anisotropy matrix, A , and the exchange operator, C , by the 
relations 

  

2 2
0 , ,eR C r≡ × ≡ − ∇V S V V V   

 

2
0 0 0= ( ) /A Aαβ α β∂ ∂ ∂S S S .  

For the linear regime Eq. (4) yields 

   = ( )( ) ,
d R W
dt
⊥

⊥− − γΠ −
S S h  (7) 

where we introduce the integral-differential operator 

    

0W W A G C≡ + + + .  

Omitting in Eq. (7) both dissipation and external pump-
ing, we get equations for SW and MSW eigenmodes and 
eigenfrequencies: 

 e , =i t i RW− ω
⊥ ≡ − ωS V V V. (8) 

Herewith it is sufficient to consider positive frequencies 
only. Let the eigenmodes be enumerated by an index k . 
Since in a stable state the operator W  is positively defined, 
we can write 

 
 

 


1/2 1/2 1/2
= ,k k kk kiW RW Wω ≡V V V V . (9) 

The operator on right-hand side of the left of these two 
equations must be self-adjoint, hence, its eigenfunctions 
 kV  can be made mutually orthogonal. Which, for eigen-
modes, results in the following orthogonality rule: 

 0 [ ] = ,k m mki dr∗⋅ × δ∫ S V V  (10) 

with star denoting the complex conjugation. The same rule 
follows from the variational principle (6). 

For a more general formulation of linear theory, let us 
turn from the “pre-made” dipole interaction operator G  
directly to Maxwell's equations: 

    

0= ( ){( ) },S
d R W A C
dt
⊥

⊥− − γΠ + + − −
S S h h  (11) 

 ( 4 ) = 0, = 0,S S⊥⋅ + π ×h S h∇ ∇  (12) 

where we introduced a new vector field, Sh , representing 
time-varying part of magnetic field, self-induced by time-

varying part of magnetization (that is, by s ). As before, it 
is assumed that the sample is nonconducting. 

Applying Fourier transform to the Eq. (11), in the fre-
quency domain we have from (11) and (12) 

  = [ ], [ ] = 0,S S⊥ χ + ⋅µ +S h h h h∇  (13) 

       

1
0= { ( )( )} ( ),i R W A C R−χ ω+ − γΠ + + − γΠ  (14) 

where  1 4µ ≡ + πχ . Obviously, because of the presence of 
differential operator C  in denominator of the polarizability 
matrix χ in (14), χ, in fact, is an integral operator. 

At this point let us apply the “magnetostatic approxima-
tion”, formulated and discussed in Sec. 1. Specifically, 
by neglecting the exchange operator C  from denominator 
of (14). Formally, this is equivalent to putting the exchange 
radius er  equal to zero (of course, by this the exchange 
interaction is not neglected completely, since it remains 
responsible for the magnetization phenomenon itself). 
Strictly speaking, the static magnetization (i.e., the patterns 

0S  and 0W ) must also be treated in this limit. But this does 
not matter in the case of uniform static magnetization, 
which is considered below. 

Following this assumption, χ turns into an algebraic 
expression, literally, becoming a matrix, and the problem 
reduces to the solution of purely differential equations for 
the field Sh . Direct analytical calculation yields a very 
simple expression for the polarizability: 

 

 





0 1 2
2

0 01 2

( )
= ,

( )( )

W A A A i R

W A W A

⊥+ + Π − + ω
χ

+ + −ω
 (15) 

   
 0 0 2, ,

1
A A W W i⊥

ω
≡ Π Π ≡ − γω ω ≡

+ γ
.  

Here 1A  and 2A  are those two eigenvalues of matrix A⊥, 
which correspond to the pair of its eigenvectors perpendic-
ular to 0S  (and to one another):  1,2 1,2 1,2A A⊥ =a a . We 
enumerate them so that 0 1 2[ ] 0⋅ × >S a a . In practically 
interesting ferrite samples 310−γ   and, therefore, 2γ  
plays no role. 

4. Propagator of magnetostatic waves in films 

Let the time-varying field h be produced by some con-
ductors, placed outside the ferromagnetic sample and car-
rying ac currents nI , distributed with densities n nI J  
( = 1, 2, ...)n . Then 

 4= , = 0, = .n n n n n
n

I
c
π

⋅ ×∑h h h h J∇ ∇  (16) 

Here nh  is the magnetic field, created by a unit-value cur-
rent in nth conductor. The same quantity determines volt-
age (emf), nε , induced in the nth conductor by the time-
varying magnetization in the sample: 
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 =n n
d dr
dt

 ε ⋅ 
 ∫

sh . (17) 

The fields nh  as well as the self-induced field Sh  can be 
represented in the potential form. 

In the linear regime, when ⊥s S , the response of the 
sample divides into a sum of partial responses: 

   = , = , = ,
SS S

n n nn n S n
n

U I U− −∑h h h h∇ ∇   

where 
S
nU  is the potential of the field, produced by the 

sample in response to influence of the nth conductor. After 
obtaining Sh  together with ⊥S  from (17), we will deter-
mine mutual impedances of the conductors, nmZ , due to 
their interaction via the ferromagnet: = nmn mZ Iε ∑  (the 
hat marks convolution operators). 

Now concretize the sample as a plate (film, formally an 
infinite plate), whose in-plane dimensions are much larger, 
compared to its thickness. At sufficiently large bias field, 

0H , the state of uniform magnetization becomes stable. In 
real finite-size films the stable state may contain closure 
domains at film's edges, whose width is of the order of 
a few D  (D  is film thickness). This conditions applicabil-
ity of the theory for an infinite uniformly magnetized film 
to the MSW in real plates. 

Let our film occupy the region / 2 < < / 2D z D− . The 
Fourier transforms of various functions with respect to 
time and in-plane coordinates, x and y will be marked by 
tilde. Let us also denote = { , }x yk kk , = { , , }x y zik ik ∇∇ . 
In film's interior 

2 = 0nU∇ , and, therefore, the potentials 
of conductors have the form 

  ( , ) = ( )exp{| | ( / 2)},n n nU z z DΦ σ −k k k  (18) 

where = 1nσ  ( 1− ), if nth conductor is placed above (be-
low) film, and form-factor ( )nΦ k  describes distribution of 
nth current. In combination with (12) and (17) the latter 
formula implies relation between impedances, on one 
hand, and values of the potentials, taken at film's surfaces, 
on the other hand: 

  = | | , , , ,
2 2 2

S
m nnm n n

i D DZ U U dω    ω σ − σ   π    ∫ k k k k  (19) 

where 2/ (2 )x yd dk dk≡ πk . The potentials are taken at the 
surface, closest to the receiving antenna (nth conductor). In 
contrast to nU , potentials 

S
nU  are frequency-dependent. 

The Eq. (13), or equivalently, 

 
 ( )( ) = 0,S

n nU U⋅µ +∇ ∇  (20) 

should be solved under standard boundary conditions [4,15]. 
To write the answer, introduce the unit-length vectors 

 { / | |, / | |,0}, {0,0,1},x yk k≡ ≡k k zν    

and the matrix 

 
ˆ ˆ

=
ˆ ˆ

z

z zz
M νν ν

ν

µ µ ⋅µ ⋅µ   
≡   µ µ ⋅µ ⋅µ  

z
z z z
ν ν ν

ν
. (21) 

As usual, the solution is composed of two exponents: 

   = exp ( ), = | |,S
n n nU U u q z q± ± ± ±

±
+ λ∑ k  (22) 

 0 0, = ,
2
z z

zzi
ν ν

±
µ +µ

λ ≡ λ ± Λ λ
µ

 (23) 

 
2

=
2
z z

zz zz

νν ν ν µ µ +µ
Λ − µ µ 

. (24) 

Let us emphasize, however, that in general case (at arbi-
trary orientation of the vector 0S ) the exponents q±  are 
neither poorly imaginary nor poorly real but complex (that 
is, MSW are not standing in Z direction). 

If we'd take into account the exchange radius > 0er  and 
deal with the operator-valued polarizability matrix (14), 
then in place of (22) one would get a sum of at least six 
terms, where transverse wave numbers of the order of | |k  
(as q±  in (22)) are more or less hybridized with real or 
imaginary wave numbers of the order of / erπ . From the 
point of view of our aims, such complication would be too 
big price to pay for a small increase in accuracy. But it 
may be necessary when considering short SW or small-
scale details of long MSW on background of a nonuniform 
domain structure. A more natural approach to these harder 
problems would be the direct analysis of the system of 
Eqs. (11) and (12). 

Consider the susceptibility matrix M . Introducing 
spherical coordinate system, such that its azimuthal angle θ 
is the angle between Z axis and 0S . In the XY plane (film's 
plane), we introduce quantities ν



 and ⊥ν  as cosine and 
sine, respectively, of the angle (counted clockwise) between 
projection of 0S  onto this plane and the above defined unit 
vector ν, lying in it. Additionally, in the plane 1 2a a  (per-
pendicular to 0S ) let us define the polar angle ψ  as the 
angle between the plane 0ZS  and the vector 1a  (definition 
of vectors 1a  and 2a  is given at the end of Sec. 3). Finally, 
introducing the quantities 2 1( ) / 2A A A± ≡ ± , and letting Ω  
be the numerator of the polarizability matrix (15), 

  

0 1 2= ( )W A A A i R⊥Ω + + Π − + ω   

we get for its components 

 2
0= ( cos 2 ) sin ,zz W A A+ −Ω + + ψ θ  (25) 

 2 2 2
0= ( )( cos )W Aνν + ⊥Ω + ν + ν θ +



  

 2 22{( )cos 2 2 sin2 cos },cosA− ⊥ ⊥+ ν θ− ν ψ − ν ν ψ θ
 

 (26) 
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 , = sin ,z z iν ν × ⊥Ω Ω ων θ  (27) 

 sin { sin 2A× − ⊥Ω ≡ θ ν ψ −  

 0( cos 2 )cos }W A A+ −− ν + + ψ θ


. (28) 

These formulas make it evident that effects of anisotropy 
are determined by A−, while A+  merely redefines the mag-
nitude of static internal field, 0W . 

Then, for given in-plane orientation of the wave, ν, in-
troduce the following characteristic frequencies: 

 2 2 2
00 ( ) ,W A A+ −ω ≡ + −  (29) 

 2 2
0 4 ,u zzω ≡ ω + πΩ  (30) 

 2 2
1,2 0 2 ( )zz ννω ≡ ω + π Ω +Ω    

 2 2 2
02 ( ) (2 sin ) ,zz νν ⊥π Ω +Ω − ν θ ω  (31) 

 2 2 2 2
3 1 2{ (4 sin ) } / 2⊥ω ≡ ω +ω + πν θ . (32) 

The frequency uω , which is independent on the in-plane 
wave vector k, is the uniform precession frequency. In 
terms of these frequencies, 

 
2 2

2 2 2 2
0 0

8 sin
= , = ,u

zz z z
i ⊥

ν ν
ω −ω π ων θ

µ µ −µ −
ω −ω ω −ω

 (33) 

 
2 2 2 2
1 2

0 2 2 2 2
( )( )4

= , =
u u

i × ω −ω ω −ωπ Ω
λ Λ

ω −ω ω −ω
. (34) 

Besides, below we will need the determinant 

 
2 2 2
3 0

2 2
0

2
det =M

ω −ω −ω
∆ ≡

ω −ω
. (35) 

It appears that despite ∆  being a quadratic function of the 
matrix elements of M and χ , it always has only a simple 
pole. 

We omit trivial but tremendous evaluation of the sur-
face potentials appearing in Eq. (19). The result, for the 
surface, closest to a given antenna, is 

  ( , , / 2) = ( ) ( , ) ,S
n n nU D Pω σ Φ ωk k k  (36) 

 
1 ( )

( , )
1 2 coth( | | )

z z

zz

i
P

D
ν ν− ∆ − µ −µ

ω ≡ =
+ ∆ + µ Λ Λ

k
k

  

 
2 2
0 3 4 sin

,
( , )G

⊥ω −ω − πων θ
=

ω k
 (37) 

where denominator is given by 

 2 2 2 2
3( , ) ( ) coth( | | )uG Dω ≡ ω −ω + ω −ω Λ Λk k . (38) 

For brevity, we do not mark dependencies of the factors 
∆ and Λ  on ω and k  as well as dependencies of 1,2,3ω  on 

k  (or, to be precise, on direction of the in-plane wave vec-
tor k ). Combining these formulas and Eq. (19), we obtain 
the mutual impedance between two antennae, located on 
the same side of film: 

 = | | ( ) ( ) ( , )
2nm n m
iZ k k k P k dkω

Φ − Φ ω
π ∫ . (39) 

The latter formulas are the main results of the paper 
and, as far as we know, can be a useful addition to results 
of Damon and Eshbach [2] and other authors (see Sec. 1). 
Function ( , )P kω  is the sought propagator of linear (weak) 
magnetostatic excitations from one antenna to another. At 
the same time, ( , )P kω  contains complete information 
about the spectrum of MSW. The condition that its denomi-
nator turns into zero, ( , )G kω  = 0 (in the absence of dissi-
pation, at = 0γ ) yields a set of dispersion laws for all pos-
sible types of MSW. Their study will be the subject of a 
separate work. 

5. Mutual impedance of wire antennae 

To give a specific example of application of these for-
mulas, consider relatively simple but practically interesting 
case of straight cylindrical wire antennae, parallel to 
the film's surface. Besides, let all of them be oriented along 
the Y axis and located at X-positions nx , on the same side 
of the film at distances nρ  from its closest face. In this case 

 
24( ) = exp ( | | ) ( )n x n x n y
x

k k ik x k
ick
π

Φ − ρ − δ   

(here c  is the speed of light), and Eq. (39) becomes 

 
0

[Ohm]
= 4 exp{ ( )}

[cm] [GHz]
nm

n m
Z

i q
w f

∞

π − ρ +ρ ×∫   

 
(1 )cos( ) ( )sin( )

1 2 coth ( )
z z

zz

qx qx dq
qD q

ν ν− ∆ + µ −µ
×

+ ∆ + µ Λ Λ
. (40) 

Here on the left w  is the film's width (formally infinite) 
measured in centimeters along antennae (i.e., in Y  direc-
tion), f  is the frequency expressed in GHz, while on the 
right-hand side x ≡ n mx x− , and the integral is taken over 

xq k≡  at 0yk → . The latter means that matrix elements 
of the magnetic susceptibility matrix M  and the functions 
Λ  and ∆ are calculated at =ν  {1,0,0}. 

Note that the dimensionless circular frequency ω, enter-
ing all these functions, is connected with the actual fre-
quency f , expressed in GHz, by the relation (see Sec. 2) 

 1
0 0 0= / , (2 ) = sf f f gM−ω ≡ πτ .  

The impedance (40) possesses evident asymmetry with 
respect to sign of x, if 0z zν νµ −µ ≠ . This is another ex-
ample of the nonreciprocity, inherent to wave propagation 
in presence of static magnetization. 
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One can also see that the impedance is a function of the 
dimensionless ratios / nD ρ  and /x D  only. This is the con-
sequence of the scale invariance of the dipole interaction, 
which is sensitive to the shape of the sample, but not 
to its size. 

In obvious way, one can generalize Eq. (40) for multi-
component antennae, consisting of several (mutually paral-
lel) wires, each with alternated signs of current in them. It 
should be also noted that all the formulas (25)–(35) are 
useful for analytical calculations, but, when using comput-
er, it is sufficient to numerically calculate the matrix (21) 
and then (24) and (35) only (for this reason we have ex-
pressed the impedance directly in terms of Λ  and ∆). In 
general, of course, first of all, one must find the static dis-
tribution of the magnetization vector 0S , but this is also not 
a hard task for a computer. 

For the case of two parallel wires, situated on the oppo-
site sides of the film, evaluation of the corresponding 
boundary potentials yields (in the same units): 

 | |( )= 2 e q iqxnm n mZ
i

wf

∞
− ρ +ρ +

−∞

π ×∫   

| | 02 exp ( | | )
e .

(1 )sinh ( | | ) 2 cosh ( | | ) | |
q D zz

zz

q D dq
q D q D q

− µ Λ λ
× − 

+ ∆ Λ + µ Λ Λ 
  (41) 

Of course, here in the integrand = { ( )s ,ig 0}n 0,qν , and 
0λ  is defined in (34). 

For the simplest example, let us evaluate the self-
impedance, 11Z , of a straight wire antenna (to be precise, 
the part of full self-impedance due to the presence of the 
film) in the special case, when the bias magnetic field, 0H  
lies in the film's plane. For concreteness, let it be oriented 
along Y axis. Additionally, we assume that the anisotropy 
field is small compared to 0| | 4 sM+ πH  and neglect it. 
Finally, we orient the antenna parallel to 0H , so that the 
impedance is primarily caused by the so-called surface 
MSW, discovered by Damon and Eshbach [2]. Under the 
above formulated conditions, these waves occupy the sec-
tor 0| / | 4 / | |y x sk k M< π H  in the k  plane. But sufficient-
ly (infinitely) long antenna excites mainly the waves with 
| / | 0y xk k → , running perpendicularly to the field. Appar-
ently, the latter case is the only case when the dispersion 
law of MSW (Damon–Eshbach waves with 0⊥k H , or 
DE-waves) can be written in the evident analytical form [2]: 

2
0 0( ) = | | (| | 4 ) 4 [1 exp( 2 | |)].DE H H Dω + π + π − −k k  (42) 

Here the field and frequency are expressed in the dimen-
sionless units, introduced in Sec. 2. 

In this case there is a good analytical approximation for 
the integral (40), which yields 

/2 1
11

2
4[Ohm] 1 1ln ,

[cm] [GHz] 1 11

D
t XR X X

w f X XX

ρ −πω − +   ≈    + −   −
 (43) 

 
2 2

0 02
0

, = , = | | (| | 4 ) ,
4

u
u

fX
f

ω −ω
≡ ω ω + π

π
H H   

 0= | | 2tω + πH .  

In this formula, 11 11= ReR Z  is the film-induced contribu-
tion to the resistance of the antenna ( 2 );Z R ifL= − π  mag-
netic field is dimensionless, expressed in units of sM ; fre-
quency belongs to the interval 0 uf ω  < f  0< tf ω ; uω  is 
dimensionless frequency of uniform precession and, at the 
same time, the lower bound of Damon–Eshbach spectrum, 
while tω  is its upper bound (and of the MSW spectrum in 
general). Outside this frequency range, there are no waves, 
perpendicular to the antenna, and hence 11R  turns into zero 
(or, to be more precise, becomes comparatively small). 

Let us notice that 1X →  when f → 0 tf ω . Therefore, 
under condition / 2 1Dρ < , the resistance (43) tends to in-
finity at the upper edge of the DE spectrum. This is be-
cause the group velocity of DE-waves, gv , goes to zero and 
the density of states (DE-wave modes) tends to infinity. 

Under the opposite condition, / 2 > 1Dρ , this effect 
is canceled by sufficient weakness of excitation of short 
DE-waves. The presence of the exponent in (43), which 
depends on dimensionless geometric parameters of the 
system, is, eventually, the consequence of the scale invari-
ance of dipole interaction. 

It is interesting, that in the lower part of DE spectrum 
the resistance 11R  is almost independent on the film's 
thickness, D, although seemingly the emf and thus the re-
sistance must be proportional to the amount of magnetic 
moments (spins) under excitation and thus to D. The matter 
is that the energy outflow from the antenna, p, is propor-
tional to the group velocity, gv , of the excited DE-waves: 

2| |gp Dv ⊥∝ S  (where ⊥S  represents magnitude of spin 
precession). On the other hand, we can write 2

1 11/p R∝ ε , 
while 1 | |D ⊥ε ∝ S . These three relations result in 

11 / gR D v∝ . But, as it follows from (42), group velocity 
of long DE-waves is proportional to the film thickness, 

gv D∝ . This is the reason for the insensitivity of 
11( )uR ω→ω  to variation of D. 

A simple analytical estimate for the inductance, 
11 11Im / (2 )L Z f= − π , can be deduced at / 1Dρ   only, 

and then 

 11
0

[nH]
(2 | | / ) exp ( )Ei( )

[cm]
L H X X
w

≈ − + π −  (44) 

(Ei is the integral exponent function). Clearly, 11L  can be 
both positive and negative. 

6. Conclusions 

In brief, we have expressed (i) the propagator (37) of 
magnetostatic waves (MSW) running in infinite ferromag-
netic film from one antenna to another and (ii) the linear 
(small-amplitude) mutual impedance of the antennae, for 
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the case of arbitrary orientation of uniform static magneti-
zation of the ferromagnetic film with an arbitrary magnetic 
anisotropy. 

The equation ( , ) = 0G ω k , with G being the denomina-
tor (38) in (37), determines the dispersion laws for various 
linear eigenmodes of MSW, thus, allowing generalizations 
of classical results of Ref. 2. 

Finally, let us discuss the applicability of formulas, ob-
tained for continuous spectrum of MSW in infinite film, to 
real finite-size samples, where the MSW spectrum is dis-
crete [16]. When in-plane dimensions of a film decrease, 
the characteristic frequency separation between neighbor-
ing MSW modes increases, but, at the same time, selection 
of the modes by any simple (for instance, straight-line 
wire) antenna becomes progressively worse. The formulas, 
derived for infinite film, can give a good estimates for im-
pedances of antennae, interacting with real films as con-
firmed by comparison between the analytical estimates and 
measurements of impedances, induced by millimeter-size 
ferrite films, as well as by results of our numerical simula-
tions. Moreover, numerical simulations of the torque equa-
tion (1) with dipole–dipole interactions between spins show 
that spatiotemporal patterns of spin precession even in ra-
ther small films (with length to thickness ratio 30–100 ) 
and even in essentially nonlinear regimes possess clear 
imprints of qualitative and quantitative characteristics in-
herent to linear MSW modes in infinite system. 

The authors are thankful to Konstantin L. Metlov for 
reading the manuscript and valuable remarks. 

 

1. L.R. Walker, J. Appl. Phys. 29, 318 (1958). 
2. R. Damon and J. Eshbach, J. Phys. Chem. Solids 19, 308 

(1961), ISSN 0022-3697.  
3. R. White, Quantun Theory of Magnetism, Springer-Verlag 

(1983). 
4. A. Akhiezer, V.G. Bar'yakhtar, and S. Peletminski, Spin 

Waves, Nauka, Moscow (1967). 
5. E.M. Lifshitz and L. Pitaevski, Statistical Physics. Part II, 

Nauka, Moscow (1978). 
6. Nonlinear Phenomena and Chaos in Magnetic Materials, 

P.E. Wigen (ed.), World Scientific, Singapore (1994). 
7. P.A. Kolodin, P. Kabos, C.E. Patton, B.A. Kalinikos, N.G. 

Kovshikov, and M.P. Kostylev, Phys. Rev. Lett. 80, 1976 
(1998). 

8. B.A. Kalinikos, N.G. Kovshikov, and C.E. Patton, Phys. 
Rev. Lett. 80, 4301 (1998). 

9. V.E. Demidov, S. Urazhdin, and S.O. Demokritov, Nat. 
Mater. 9, 984 (2010). 

10. Takuya Satoh, Yuki Terui, Rai Moriya, B.A. Ivanov, Kazuya 
Ando, Eiji Saitoh, Tsutomu Shimura, and Kazuo Kuroda, 
Nat. Photon 6, 662 (2012). 

11. B.A. Kalinikos, Sov. Phys. J. 24, 719 (1981) [Izv. VUZov 
Fizika 24, 42 (1981)]. 

12. V. Dmitriev and B.A. Kalinikos, Sov. Phys. J. 31, 875 (1988) 
[Izv. Vyssh. Uchebn. Zaved. Fiz. 31, No. 11, 24 (1988)]. 

13. B.A. Kalinikos and A.N. Slavin, J. Phys. C: Solid State 
Phys. 19, 7013 (1986). 

14. B.A. Kalinikos, M.P. Kostylev, N.V. Kozhus, and A.N. 
Slavin, J. Phys.: Condens. Matter 2, 9861 (1990). 

15. L.D. Landau and E.M. Lifshitz, Electrodynamics of Con-
tinuos Media, Nauka, Moscow (1982). 

16. C. Mathieu, J. Jorzick, A. Frank, S.O. Demokritov, A.N. Sla-
vin, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, 
F. Rousseaux, and E. Cambril, Phys. Rev. Lett. 81, 3968 (1998).

 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2014, v. 40, No. 8 921 


	1. Introduction
	2. Basic equations
	3. Linear waves
	4. Propagator of magnetostatic waves in films
	5. Mutual impedance of wire antennae
	6. Conclusions

