ISSN 1027-5495. Functional Materials, 22, No.2 (2015), p. 233-244.
doi:http://dx.doi.org/10.15407/fm22.02.233 © 2015 — STC "Institute for Single Crystals”

Triangular billiard in a constant field

Yu.N .MaslovskyI, S.V.Slipushenkol, A.V.Turg, V.V.Yanovsky1’2

! Institute for Single Crystals, STC "Institute for Single
Crystals™ National Academy of Sciences of Ukraine,
Kharkiv 61001, Ukraine
2 V Karazin Kharkiv National University 4 Svobody Sq., Kharkiv 61022,
Ukraine
3 Universite de Toulouse [UPS], CNRS, Institut de Recherche en
Astrophysique et Planetologie, 9 avenue du Colonel Roche, BP 44346,
31028 Toulouse Cedex 4, France

Received March 23, 2015

The motion of a charged particle in a constant field inside the triangular region with
elastically reflecting boundary is considered. The natural phase space is introduced and its
properties are clarified. The dynamical map defining a motion of point in the phase space
is derived analytically. The typical properties of trajectories and characteristic features of
the phase portraits are found.
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PaccMorpeHo ABMIKeHME 3aPAKEHHON UaCTUIBI B TIOCTOSTHHOM TIOJIE B TPEeyToJbHOM o6jac-
TV TIPU YIPYTOM OTPAKEHWH ee OT TpaHull. BBemeHO ecrecTBeHHOe (PazoBoe MPOCTPAHCTBO U
BEISICHEHBI €T0 CBOiicTBa. AHAJMUTUYECKMW MOJYUEHO AMHAMUYECKOe OTOOpasKeHUe, ompese-
JAMOIee ABMKEHWEe TOUKU B (Pas0BOM IIPOCTPAHCTBE. YCTAHOBJEHBI TUIUYHBIE CBOHCTBA
TpaekTOpUil 1 00IIMe XapaKTepHBIe 0COGEHHOCTH (PAa30BEIX MOPTPETOB.

TpukyTHuii 6inbapa y mocriiitnomy moai. 10.M.Macnoscvruii, C.B.Crinyuwenxo, A.B.Typ,
B.B.AHoscvkuil.

Posrnaryto pyx 3sapamKeHol UACTUHKU y TOCTiHHOMY ToJii y TPUKYTHi#T obmacti 3
npyskHIM BizbuTTaAM Bix rpanuns. Beegeno mpupopHuit dasoBumil mpocTip, 3’scoBaHO OTO
BJACTUBOCTi. AHATITUUYHO OTPUMAHO AMHAMiUHe BifoOparKeHHs, TIO0 BU3HAYUAE PYX YACTHHKU
y (asoBomy mnpocTtopi. BeranoBneno THUIIOBI BiacTMBOCTI TpaeKkTopi#l i saranbHi xapaxkTepHi
pucu $a3oBUX TOPTPETIB.

1. Introduction

Interest to the nanoobjects with a small number of internal degrees of freedom has grown recently.
Simple models of such objects have been proposed in the paper [1]. In that work were also found the
anomalous laws of reflection of such objects from perfectly elastic barriers. Even more interesting prop-
erties arise from the collisions between such objects [2]. Unusual properties are also exhibited during
their movement in external fields [3]. Numerical simulation of collisions of the argon nanoparticles with
structureless wall revealed the preservation in more realistic cases of anomalous laws, [4] obtained for
simpler models [1]. Models corresponding to particles with internal degrees of freedom in the presence
of charged degrees of freedom are relevant also to interesting plasma problems. Such particles can both
simulate the clusters of particles and lead to the anomalous emission modes of the waves under the influ-
ence of external fields. As it was shown previously in [3], the problem of motion of a structurally complex
charged particle with two internal degrees of freedom appear equivalent to a motion of charged particle
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in a triangular billiard in some effective constant electric field. Therefore, the study of motion of billiard
particle in a triangular billiard in an external field is of interest for many problems. In addition, such
billiards are of independent interest for a motion of particles in cavities under the influence of constant
field [5]-[9]. In such cases the unusual properties of the ballistic conductance are observed.

To study this unusual billiard, basing on the properties of the trajectories of charged particles in a
constant field, the natural phase space was proposed. As the phase space were selected the positions of the
focal points of all possible parabolic trajectory segments. In this paper we analyze the properties of such
phase space, set the criteria of lacuna appearance in it. The accurate dynamical map defining the motion
in phase space was build. Chaotic modes of motion and possible qualitative restructuring of the phase
portrait was defined. The case of strong fields, which is reduced to a billiard in an angle was considered
in more details. The characteristic parameters of the islands of stability were found analytically.

2. Phase space and its properties

Let’s consider a billiard in triangle in an external field. The total energy of the billiard particle is
preserved. This is due to the fact that the Hamiltonian of this system does not depend on time. Each
trajectory between collisions with the walls of the triangle is a parabola. Collisions of particles with the
walls are absolutely elastic. Further, for definiteness, we will speak about the motion of a charged particle
with charge e in a constant electric field E, which is directed along the axis y in negative direction (see
Fig.1). Then any trajectory has the form

Vi
(z — ) + o2 (2w —2p) + 9

g9
2‘/02z ‘/Ow

of parabola, containing as parameters some distinguished point, for example the initial (xs, ys), the ini-
tial velocity of the particle (Vo,, Vo,) and acceleration g = % in a given constant field. To introduce a
natural for this case phase space let us recall some properties of a parabola. Let’s start with its definition.
Parabola is a geometric set of points equidistant from a straight line, called the directrix and a given
point, called focus [10]. The focus does not lie on the directrix. Parabola is uniquely determined by the
directrix and focus positions.

Now we introduce some notations and system of coordinates. Let the constant field E be directed
vertically downward, and the effective particle charge e be greater than zero (see Fig.1). We write the

total energy of the system W as

-2
W = % + ey = const.

Where field F = (0, —F), m — effective mass, y — coordinate. Dividing both sides of the equation by eF,
we obtain the value of % with dimension of coordinate. It is easy to prove (see Appendix A) that this
value of i determines the common position of directrix of all possible parabolic trajectories with a given
total energy W.

ma? 2
h—= = — = t 1
P U= ooy — const )

here g is a value of acceleration in the given field. Thus the value of directrix is uniquely determined by
the total energy and field value as b = %

This means that the position of the directrix is the same constant for all segments of billiard trajectory.
Thus any segment of the trajectory between two collisions is uniquely determined by the parabola focus
position. Mapping subsequently the segments of trajectory as the focus positions we obtain the motion of
focuses of appropriate trajectory. Thus the phase space coincides with the space of focus positions on the
plane. Next we consider the dynamical map determining the motion of a point in this phase space. Each
point of introduced phase space corresponds to a particular segment of billiard trajectory. The sequence
of segments and consequently of points in the phase space defines a billiard trajectory.
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Fig. 1. The position of the tnanguar pilnard and direction of the electric neid E is shown in the chosen
coordinate system. Also shown is a segment of billiard trajectory coming to point 1, the normal at the
point of incidence and the segment of reflected trajectory.

directrix N

Fig. 2. The grey marked area is all valid points of the phase space, corresponding to all segments of
trajectories. On the background of phase space the triangular billiard ABC is shown. The white area in
the neighborhood of vertex C — lacuna.

Now on the basis of geometric considerations we describe some general properties of the introduced
phase space. Let’s consider two segments of a trajectory before and after reflection from the point of
incidence lying on a triangular border. We recall that according to the properties of parabolas with the
same directrix, the locus of parabola focuses passing through a single point will be a circle with center
at this point and with radius equal to the distance from the point to the directrix » = h — yo, where yg
is the ordinate of the point of reflection. We will call such circle to be characteristic for a given reflection
point. Thus the focuses of incident and reflected segments are located on this circle. This property will
be important in the derivation of the map determining the law of motion of the focuses.

Based on the foregoing, for any triangular billiard can geometrically be constructed the domain of all
possible segments of the trajectories and consequently the phase space.

To do this it is necessary to construct the locus of the focuses of all possible segments for the given
triangular border. Then the phase space will be determined by the points of all circles with centers on
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billiard’s boundary and tangent to the directrix (see Fig.2). It should be noted that in this way it is also
possible to introduce the phase space for billiards in polygons in an external constant field.

It is easy to notice that in the phase space there may be a region, whose points are not able to serve as
segments of trajectories of the corresponding triangular billiard. This area is formed by the intersection
of three circles that touch the directrix and have their centers at the vertices of the triangle (see Fig.2).
Further, such areas will be called lacunas. If the intersection of these three circles is absent, there is no
lacuna. We will give a condition of the appearance of lacunas below. Geometrically it means that all
parabolas belonging to the lacuna would completely contain a triangle within themselves (i.e. without
intersections).

In both cases, the corresponding critical value of the directrix h, is easy to find. In the first case

1

he = 3 (yB +yc — \/(xB —zc)? + (yp — yc)g)

and in the second

, _ Thrt(es — xo)’ + (vtyp — whyo)’

drpro(ep —xo)(TpYc — Tcyn)

Here (x4,y4) are the coordinates of respective vertex of triangle, A for example. Then the criterion for
the appearance of lacuna in the phase space is the condition

h> h, (2)

In numerical experiments it was observed that the transition through this value of directrix leads to
qualitative changes of the phase portrait. With substantial discrepancy of b from h. when A >> h, the
lacuna in the phase space increases and it degenerates into a ring with typical thickness of the order of
linear dimensions of the triangle.

Thus the introduced phase space occupies a finite region of the plane, bounded by circular arcs and
straight segments. If the condition (2) is satisfied, this area contains a lacuna. The shape of this area
depends on the shape of billiard’s boundary and the position of directrix.

3. Dynamical map of triangular billiard

Now we transfer to the derivation of the dynamical map in phase space, that determines the evolution
of the billiard’s trajectory. Taking into account the sense of the phase space it is clear that the starting
point corresponds to a segment of trajectory that begins with some start point and continues to the point
of falling. Next point will correspond to the segment starting from the point of incidence, or previous
reflection point, and continuing to the new point of falling. Therefore, this map transfers the previous
segment in the subsequent segment. It is clear that to obtain the billiard mapping for the triangle we
need to get a maps that define the reflection segment for each side of the triangle.

To do this, let’s consider the problem of mapping for a straight line inclined at an angle « to the axis
x as depicted in Fig.3. Selected straight line corresponds to a specific side of the triangle. Changing the
angle and moving the line it is possible to overlay it to any side of the triangle. Indeed, let the reflectance
point have the coordinates (zq, yo). Then, as mentioned above, the focus F' of falling parabola will lie on
the characteristic circle of radius & — yo with center at (zo, yo), which lies on one of the sides of triangle.
We write the equation of a parabola from its definition as a locus of points equidistant from the focus
and directrix:

(X =2 + (Y —9)" = (h—y)° (3)

Here (X, Y) — the focus coordinates, and (z,y) coordinates of the parabola points. From that the tangent
of the tangent slope angle for any point of the parabola can be found.

dy z-X
de Y —h (4)
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Fig. 3. The part of the particle’s trajectory showing the reflection from a straight line corresponding to
certain side of the triangle is shown. The geometry of the focuses positions of the parabolic segments

before and after reflection and characteristic straight lines are also shown at the figure. It is visible that
the focuses are located on a circle centered at the point of reflection and touching the directrix y = h.

Accordingly, we can rewrite this expression for the incident and reflected parabolas at the point
(z0, yo) taking into account that reflection is elastic and substituting instead of (X, Y’) the corresponding
coordinates of the focuses:

%:tan(ngoz—O),%:tan(ngaJrﬁ) (5)
Where 6 — the angle of incidence of a particle on the wall. Let us denote the coordinates of the focus
of falling segment as (zp,yr), and of reflected focus as (Zp,7r). In principle, these relations allow to
determine the coordinates of the incidence point and the angle of incidence on the provision of the focuses
before and after reflection. Now, substituting the appropriate values of the focuses in equation (3) and
taking into account the relations (5) we obtain the following relation for the two consecutive focuses of
parabolic segments of the billiard trajectory:

IEZIF _ tan2a (6)
Trp —Ip

This relation means that for any reflection from one of billiard’s walls the next phase portrait point
will lie on a straight line passing through the previous focus position and having the angle of 2a to the
axis « (see figure3). This is a direct consequence of the elastic nature of reflection. Therefore, the corre-
sponding mapping can be also easily constructed geometrically, as shown in Fig. 3. In addition, writing
this relation in the form

Tp =2p — (yF —gF)COEQOz

we get one of the components of the dynamical map.

Let’s write the equation of a line as y = = tana + b, where b — parameter defining the position of the
side. Then for coordinates (zq, yo) it took place

Yo = Xo tana + b (7)
Now solving altogether two equations (3) for each focus and equations (6) and (?7), we finally obtain
the desired dynamical mapping:
zp =z — (yr — yr)cot 2a,
8k3zp + (1 — 2k + 5k%) yp + 8k%0 4k

Yr = (1+k2)2 + 1+ k2 <_hk:‘:\/ﬁ) (8)
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Where the function D, included in this mapping, is determined explicitly by the relation
D=(h—yr) (=26 + 01+ )+ (1 - k) yp — 2k zp)

where k£ = tan . It should be noted that the value of D is included in map in the form of v/D. This
means that the physical meaning has only D > 0. The value of D < 0 means that the parabolic trajectory
does not intersect the side at no point, and if D = 0, the trajectory touches the side and in this case we
can consider that there was no collision with the wall. In addition, there is an essential uncertainty in the
choice of sign of the root. This is because the parabola with D > 0 and specified focus always intersects
the strait line in 2 points. Therefore, the choice of sign determines what point of these two is the point
of incidence. Thus, mapping (8) corresponds to two maps

841
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z
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which differs in the choice of sign before v/D.

It is easy to notice that the choice of map actually corresponds to the direction of particle’s motion
or direction of time. Thus, the choice of mapping is dictated by the choice of the direction of move-
ment or direction of the original path segment. Already from these simple considerations it is possible to
understand that the built maps possess some very special properties

T . oT_ =T o1, =1

which means that the composition of these maps coincide with unitary or identical map.

It should be noted that if we talk about entire billiard trajectory, it may continue both in the positive
and reverse time directions starting from the initial segment. The association of these trajectories will
give a full billiard trajectory.

Let’s discuss some of the properties and characteristics of the dynamical map. To do this we some-
what transform this mapping, taking into account the condition (6). Then we can rewrite (8) to a more
convenient

Ip =ap+tycos2a, gr = yp + t+ sin 2a. (9)

It is easy to notice that this is a parametric equation of line with the variable parameter ¢-. Hence,
choosing t- in accordance with the length of the interval F'F" we will get another form of dynamical
mapping. The value of ¢+ can be found as

2k (b+ kap) + k(=1 + k) yp :F\/5> (10)

tI2<—hk+ e

Where the sign before v/D has the same meaning as in the relation (8). From equation (9) it is easy
to notice that if ¢+ = 0 then the falling segment matches the reflected segment. It is possible to speak
about local stationary point of the dynamical map. Local, because after an iteration (and in fact the
reflection from the wall) we have to change the sign before v/D, that is because we need to took the next
point of intersection of the parabola with a straight line, corresponding to another side of the triangle.
This distinguish equations that define the fixed points of mapping.

Solving the equation for ¢+ = 0 we get two solutions corresponding to the equations of some lines:

—2b+h(1+k?) =2k 2 h(1+k?) +2k* (b + k x)
v —1+ k2 v 1+ 3k? (1
The first equation corresponds to the tangential trajectories. The second - to local stationary points.
They are of the particular interest (see Fig.3). Green and red dotted lines indicate respectively the first

and second types of trajectories. Moreover, it is easy to notice that an angle of inclination of a straight
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line, responsible for the tangents trajectories, is equal to % = 1272325“& = tan 2« and is also tangent
to the characteristic circle of the reflection point. In addition, both lines — let’s call them stationary anc
tangent — intersect at the point of intersection of side-making line and directrix (Fig.3). It should also be
noted that the intersection of stationary lines characterizes the critical points of the phase portrait, as

shown below.

Returning to the dynamical map in the triangular billiard, it is easy to get maps for the point of
incidence lying on any of the three sides of triangle. It is enough for it to change the parameters of
straight line, included in the map (8). Thus the above map Ty gives the next reflected trajectory seg:
ment if the point of reflection lies on the side AC. Convenient is to use for these mappings the notation
coinciding with the notation of one of the vertices of this side. So we will denote T as Ay. Changing
the parameters (tanca,b) of a line in mapping T4 to the corresponding to side C'B we will receive &
mapping Cy for points of reflection from the side C'B. Similarly, after substitution of parameters of side
BA in the mapping T} we will receive a map By for reflections from the side BA. The composition o
these mappings completely determines the dynamics of trajectories of the triangular billiard in a con-
stant field. It is interesting to note that the entire trajectory and the law of motion can be uniquely
characterized by a sequence of six symbols {A,, A _,B,,B_,C,,C_} denoting the maps as describec
above. Of course, the subsequences like AL A_ are excluded. Then each trajectory is uniquely determinec
by an infinite sequence of six characters, which is equivalent to a specific number written in sextuple
system of calculus. In principle, this number can be placed on a unit interval. Already this presentatior
allows the introduction, similarly as in paper [12], of the quantity characterizing the complexity of the
law of particles motion. Hence we can expect the existence of the laws of motion of different complexity
[12], [13], [14]. Then becomes possible the appearance of random sequences in the sense of Kolmogoroy
complexity [13]. This means the appearance of such type of chaos, in which chaotic is the law of motior
of the particle. This type of chaos was proposed in the work [12] for more complex billiard systems. Ar
interesting open question for considered triangular billiards is the enumeration of admissible sequences
It can be proved that not all sequences coincide with realizable laws of motion. As an example of invalic
trajectory in triangular billiard can serve a sequence AL Ay AL ... Ay .... Thus, an interesting problenr
is to establish a deterministic chaotic nature of laws of motion in the triangular billiard in constant field
For any chosen trajectory this sequence is easy to obtain using the billiard map (8). Indeed, given that the
position of directrix (fixed) and focus uniquely identifies a parabola and therefore the points of incidence
and reflection of the corresponding parabolic segment with a triangular border. Then by determining
from the focus position on which side of the triangle is the next point of incidence, we complement the
sequence by corresponding symbol. Continuing similarly, we build an arbitrarily long sequence of these
six characters.

In principle it is easy to obtain a geometric criteria governing the selection of desired map. As notec
earlier, purely geometrically for a defined reflectance point O, the focus of reflected segment lies on &
circle centered at the point of reflection and touching the directrix. The map AL transfers focuses lying
on the segment of circle, shown by the dotted line in Fig.4, in focuses belonging to the upper segment
located between the two touch points of straight lines with an angle 2a.. Geometrical meaning of the mar
Ay is exceptionally simple. It is a reflection with respect to the line connecting the above-mentionec
touch points Zp and #;. The next map is determined by the position of incidence point of the trajectory
Therefore we need to obtain a criterion determining on which side the trajectory with focus F falls. Criti-
cal trajectory segments, which determine a choice of mapping from a known set, pass exactly through the
vertices of the triangle. Note that same as in other nonsmooth billiards, the trajectories falling into vertex
are dropped due to the uncertainty of reflection from such points. In our case the focuses of such trajec
tories lie on the circles centered at the corresponding vertexes of the triangle and touching the directrix
Such circles, intersecting with the circle of reflected focuses, determine the region of permissible focus
positions of reflected segment for a particular map. At Fig.4 the corresponding geometric constructions
are shown. Of which it is easy to get the desired criteria. For example for the map A, with satisfiec
inequality

Yor <yYr < Ycr
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Fig. 4. Geometric construction of criteria for the selection of appropriate mappings. Thick site of the
circle between points ©; and ¥y is the area of focuses positions after applying A, . O is the point of
reflection of the incident segment with the focus at the point F'. The position of the reflected segment is
F. Straight lines touching the circle are directed at an angle 2« to the horizontal axis. Side AC is directed
at an angle o to the horizontal axis. The focus lying on the segment of circle, shown by a dotted line,
under the action of map A becomes the focus position of the reflected trajectory. The map corresponds
to a reflection with respect to the line connecting two touch points Zy and .

the point of incidence is on the side AC. Here yor and yip is the y-coordinates of the touch points
of strait lines directed at an angle 2a to the horizontal axis with the circle of focuses positions centered
at the point O. gy is the y-coordinate of focus of the reflected segment g, obtained under the action of
mapping Zp = A, (Zp), yor — y-coordinate of the point of intersection of the circle of reflected focuses
with the circle centered at point C and touching the directrix. For a given triangle the value of yop is
easy to determine analytically, and also of yop. If the inequality is satisfied, than the transition of focus
Zp is due to the mapping A, and the point of reflection lies on the side A. Accordingly the next map
coincides with A. Absolutely similarly it is easy to obtain the criteria for position of a falling point to
lie on the sides BA and CB (Fig.4). So if Zr = A, (#r) belongs to the segment of circle between points
7 and @ then the reflected segment falls on the side of triangle C'B. Finally, if #p = A, (2p) belongs to
the segment of circle @, and Z1, then the point of falling of the reflected trajectory lies on the side BA.

Now using the received dynamical map it is possible to explore trajectories in the phase space.

4. Regimes of motion in the triangular billiard

Let’s consider the characteristic modes of possible motion in the triangular billiard in the presence
of constant field. First of all, as numerical experiments show, in the general case on the phase portraits
are present both regions of strong chaos and regions of laminar motion (see Fig.5). As chaotic we are
going to call a trajectories in phase space with common properties, in particular the positive Lyapunov
exponent for the trajectory. It should be noted that there exist certain triangles whose phase space is
fully chaotic or completely laminar depending on the position of directrix, and therefore the magnitude
of electric field. At Fig.5 is shown the triangle (a) and the structure of phase space for different values
of the directrix in the area of parameters close to the appearance of lacuna. These are phase portraits
with pronounced areas of chaotic and laminar motion. Alone with this, before the appearance of lacuna
(Fig.5(b) ) some stationary points are elliptic, and after the appearance they become hyperbolic Fig.5(c).
In other words there is some kind of bifurcation of fixed points.

In addition, as a result of numerical simulation, the regimes were found that correspond to the chaotic
intermittency regimes (Fig.6). It should be noted that such regime was found in the case of symmetrical
position of the triangle in a field with the directrix located entirely below one of the sides. In fact, it
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Fig. 5. On the left is shown an example of typical triangle with mixed phase space in which the chaotic
and regular regimes are observed. The characteristic structure of the phase space with islands of stability
is shown on the right.

15

1.0

T T T T T T T T T — T — T T
-20-15-10-05 0 051015 -3.0 20 -1.0 0 10 20 30

Fig. 6. On the left is an example of a triangle and the part of billiard’s trajectory that implements the
intermittency motion regime. On the right is the structure of trajectory in phase space with intermittency
mode.

corresponds to the billiard in an angle, which we’ll discuss in the next section. In intermittency regime
of motion, the same trajectory many times move from chaotic to laminar regions and vice versa.

If to analyze the behavior of laminar stage, it is possible to find that the intermittency corresponds to
the intermittency of the 3rd type [11]. In this type of intermittency, when approaching the chaotic region,
the "amplitude"between, say, odd and even iterations grows, and between odd and even decreases.

We now proceed to the case of strong field. With increase of field value the directrix may decrease
below one of the sides of triangle h < min(yp,yc). Then the trajectories of billiard will be located in
the area bounded by the angle and the directrix. In other words, the reflection of trajectory becomes
possible only from two sides of a triangle. This leads to a simpler case of billiard in an angle. Of course
in the presence of constant field. Special cases of angular billiard in another phase space were considered
in [5]-[7]. Without loss of generality, for convenience we place the vertex of this angle at the axes origin.
Let’s denote the angle at this vertex as 26, and as & — the deviation from the vertical axis Oy of the
bisectrix of this angle. We also assume that —% <f < % (This condition may be not used, some results
will still remain until |0] < F), with [5] < |0].

Let’s rewrite the mapping in new variables for each of the sides on the basis of relations (9) and (10)

Lpt1 = Ty — COS (2 ((;Zt 0))t (xn7y’n)7

Ynt1 = Yn — SID (2 (5i0)) t(xnvyn) (12>

where
t{x,y) = (2cos(d £ 0)(1 —ycos2(d £0)+ zsin2(d £+ 0))F
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V(1 —9)(1 —ycos2(0 £ 0) | xsin2(0 + 9))) /sin(é + ) (13)

—4z cos® (§ £ 0) + 2sin (6§ £ 0)
3sin (6 £60) +sin3 (5 +0)

Here the choice of sign of £+ means the choice of side of the billiard (left and right, respectively), the
sign before the root is selected in the same way as in relation (10). Without loss of generality we choose
h to be unity.

The intersection of the straight lines (14) corresponds to a global stationary point S. A starting point
with this coordinates in the phase space never leaves it. It corresponds to the only one 2-periodic parabolic
trajectory in the angle at which the angles of incidence of the particle on each of the sides of triangle are
equal to zero. Accordingly, it can be expected that the trajectories in phase space, located close to the
point § must also be «laminar» or quasiperiodic trajectories. In other words the points of close trajectory
must lie on some invariant curve, of one of two types. It is an ellipse or a hyperbola. Indeed numerical
experiments confirm this assumption. Let’s determine the characteristic parameters of these invariant
curves.

Suppose that the invariant curve we are searching for is an ellipse. Then, since all segments connecting
points of the trajectory are inclined at angles = — 2 (8 £ ) (6), they are chords of the desired ellipse. It is
known that the median diameters of such parallel chords is the diameter conjugate to these chords. In this
case, we have two sets of chords and two sets of conjugate diameters [10]. Alone with this, the calculations
show that in the zero-order approximation at distances close to the stationary point, conjugate diameters
correspond to the directions of the pair of stationary lines (14).

Let’s consider the case & = 0. In this case, we have the symmetric case!), for which the direction of
main axis of the ellipse is along the axis Oy. Therefore, the problem of ellipse parameters is reduced to
the search of its eccentricity. According to the relation, the angle of inclination of the chord and the angle
of slope of the conjugate diameter with eccentricity (see for example [10]) has the form

e=+/1+tanatan g (15)

where « — is the angle of inclination of the chord, and g — the angle of slope of the conjugate di-
ameter. Furthermore, according to the relations (12) and (13), we substitute tana = £cot26 and
tan3 = F2eI0ELs38 Then the chord corresponding to the reflection from one side is paired with
a "fixed"direction of the other side. Notice that the sign vanishes after multiplication and both values

after the substitution in (15) give the same value of eccentricity. The result is

y = (14)

1

- 1+ cos 260

From the obtained simple dependence of the eccentricity it follows that when 8 — 0 the eccentricity

is e = 1/2, and when # = 7 — the eccentricity is e = 1, i.e., the ellipse turns into a circle. But this is not
the only one special values. Also of interest is the value of eccentricity for # corresponding to two pairs of
conjugate directions turning into one pair. It is enough to equate the tangents of the angles of conjugate
directions, which we mentioned above. In this case, choosing the sign corresponding to different sides of
the triangle, i.e., —% — —ctg26. From where tgd = v/v/5 — 2 or § ~ 25.91°. Substituting in the

relation (16) we get e = % (—1++/5), which corresponds to the inverse value of the so-called «Golden

(16)

section» (recall that «Golden sections ¢ = HT*/E) However, as numerical experiments show (see Fig.6)
this stationary point is hyperbolic and characteristic curves are already hyperbolas. In addition, for any
arbitrary small variation of an angle 6, both downwards and upwards, the numerical experiments show
the transformation of this stationary point back to elliptical again.

Let’s now discuss the changes arising from the breaking of the symmetry. At small deviations of the
angle from the symmetrical § < 1, i.e. when d # 0, there will not only be the displacement of stationary

In the paper [5] were already discussed some aspects of dynamics in the special case of symmetric angle, our approach
reveals some analytical aspects that were not previously discussed. This is due to the choice of geometrically more vivid

phase space.
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Fig. 7. The upper figures show the displacement and deformation of characteristic ellipses due to the
violation of symmetry, and the bottom figures show the entire phase portrait for the same parameters.
Well visible is a correlation between the deformation of characteristic ellipses and the shape of the islands
of stability.

point S, but also the change of the angle of inclination of the ellipse’ characteristic axes (Fig. 7). When
distance between initial and stationary points rises, the characteristic curve becomes more and more
deformed and deviates from an ellipse (see Fig.7). Thus for the used variables it is to easy to predict the
positions of the islands of stability and changes of the form of invariant curves in the neighborhood of
stationary points.

5. Conclusion

Thus, the introduction of phase space, where the entire trajectory segment is represented by a single
point, turns out to be convenient for the study of trajectories. For this phase space it is possible to obtain
analytically the dynamical map defining the motion of a particle in phase space. This, in its turn, allows
one to obtain the general properties of trajectories and phase portraits of such dynamical system. The ob-
tained results can be used for description of the ballistic conductance in the triangular cavities, quantum
dots and more complex periodic structures (see for example [8], [9]). For such systems the appearance of
chaotic regimes and their change leads to interesting effects.

6. Appendix A

Let’s show that the value h defined by the relation (1) is a directrix of a parabolic trajectory. We
write the equation of the trajectory in the form

y=(z—=0)tgp — (z —20)” + 90 (17)

203 cos? ¢

where vg- is the absolute value of initial velocity, - is the angle of inclination of the initial velocity to
the axis z, (xp,yo) - the initial coordinates of the particle. It is known that if the equation of a parabola
is given in the form y = Az? + Bz + C, then the focus of this parabola is equal
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B 1-D v3sin 2 vd cos 2¢
_— 7= o= 7 S A 18
where D = B2 — 4AC. And directrix value is
1+D 2
_—IA = ;}_; + yo = const (19)

From the properties of parabolas it follow that the expression (19) should be true for any point of
the trajectory, not only for the initial moment of time. Therefore, without the loss of generality we can
replace v2 — @ and yo — v, thus obtaining exactly the expression (1).
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