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We review the recent activity in the theoretical description of spin-polarized atomic hydrogen and its isotopes 
at very low temperatures. Spin-polarized hydrogen is the only system in nature that remains stable in the gas 
phase even in the zero temperature limit due to its small mass and weak interatomic interaction. Hydrogen and 
its heavier isotope tritium are bosons, the heavier mass of tritium producing a self-bound (liquid) system at zero 
temperature. The other isotope, deuterium, is a fermion with nuclear spin one making possible the study of three 
different quantum systems depending on the population of the three degenerate spin states. From the theoretical 
point of view, spin-polarized hydrogen is specially appealing because its interatomic potential is very accurately 
known making possible its precise quantum many-body study. The experimental study of atomic hydrogen has 
been very difficult due to its high recombination rate, but it finally led to its Bose–Einstein condensate state in 
1998. Degeneracy has also been observed in thin films of hydrogen adsorbed on the 4He surface allowing for the
possibility of observing the Berezinskii–Kosterlitz–Thouless superfluid transition. 

PACS: 64.60.Bd General theory of phase transitions; 
67.63.Gh Atomic hydrogen and isotopes; 
67.85.Jk Other Bose-Einstein condensation phenomena. 
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Spin-polarized hydrogen and its isotopes: a rich class of quantum phases 

1. Introduction 

In the limit of temperatures close to the absolute zero 
some systems show macroscopic quantum phenomena 
such as superfluidity and superconductivity. The physics of 
liquid helium (4He and 3He) has been investigated for a 
long time, and it was shown that relevant properties of the 
system are direct manifestations of its extreme quantum 
nature and, in particular, quantum statistics. The surprising 
findings of the novel phenomena, such as superfluidity and 
superconductivity, as well as supersolidity, enforced fur-
ther theoretical and experimental effort in the field of 
strongly correlated quantum many-body systems. 

Even though electron-spin-polarized hydrogen (H )↓  can 
not be found in nature, it can be produced experimentally. 
For a very long time, this system puzzled the theoretical 
community and much theoretical effort was invested in 
calculations of the accurate interaction potential for two 
H↓  atoms in the triplet 3

ub +Σ  state. Finally, in 1965 Kolos 
and Wolniewicz [1] provided results for a very precise 
H –H↓ ↓  interaction potential. Their result revealed that 
the interaction between H↓  atoms is even weaker than the 
helium–helium one. It was clear already from the first 
theoretical investigations that electron-spin-polarized hy-
drogen could be the only system in nature possessing the 
unique property of remaining in the gaseous state at zero 
temperature [2,3]. Having in mind the very light mass of H 
atoms and its very shallow interaction potential, and using 
the quantum parameter 2 2= /( )mη εσ  as a measure of the 
quantum character of a system, Stwalley and Nosanow [4] 
concluded that spin-polarized atomic hydrogen could exhi-
bit even more extreme quantum behavior than helium does. 
In fact, they proposed gas H↓  as an ideal candidate for 
achieving a Bose–Einstein condensate (BEC). That predic-
tion led the future interest of both, the theoretical and expe-
rimental communities. 

From the experimental point of view, the extensive H↓  
study started in Amsterdam in 1980 when Silvera and Wa-
lraven managed to stabilize a very dilute gas of spin-
polarized hydrogen for the first time [5]. A long experi-
mental journey preceded the final realization of a BEC 
state in H↓ . At last in 1998 Fried et al. [6] used successful-
ly a wall-free confinement and evaporative cooling, en-
forced with a radio-frequency ejection technique, to 
achieve the necessary conditions for BEC. In their experi-
ment, a gas of atomic hydrogen was confined in a cylindri-
cally symmetric magnetic trap, and cooled to 120 µK by 
evaporation, i.e., by allowing some of the atoms escape by 
lowering the confining potential at one end of the trap 
[6,7]. For temperatures below about 120 µK this kind of 
cooling appeared to be not satisfactory enough since the 
high-energy atoms near the centre of the trap could loose 
their energy by collisions before escaping from the trap. 
Thus, the evaporation was not effective for atoms with 
high energy because the escape time of those atoms was 

very long when the temperature was reduced. The gain of 
evaporation efficiency was achieved using a radio-fre-
quency magnetic field that flipped the spins of atoms in the 
trap, wherever the resonance condition was fulfilled for the 
trapping magnetic field. The atoms with reversed spins 
were not confined any more, and they were allowed to 
leave the trap and to enforce in that way the prerequisite 
conditions for a BEC realization. A radio-frequency ejec-
tion technique enabled cooling enhancement and when the 
atoms were cooled below 50 µK the indication of a BEC in 
H↓  appeared. 

Another very important experimental achievement was 
also accomplished in 1998 by Safonov et al. [8] when they 
realized a quasi-condensate of nearly two-dimensional H↓  
adsorbed on the surface of superfluid 4He. Their result 
provided the best example of formation of a stable nearly 
two-dimensional quantum Bose gas. Further experimental 
investigations in this area have been addressed to the ob-
servation of the Berezinskii–Kosterlitz–Thouless (BKT) 
superfluid transition. The superfluid transition in a two-
dimensional quantum Bose gas is predicted to appear when 
the quantum degeneracy parameter 2 4σΛ   [9], where σ  
is the surface density and Λ  is the thermal de Broglie 
wave-length. In order to reach quantum degeneracy in two-
dimensional H↓  gas two methods of local compression 
have been used: magnetic and thermal compressions [10]. 
The first one enables the highest value of the quantum de-
generacy parameter ( 2 9σΛ  ), but has the disadvantage of 
not being able to ensure the direct study of the compressed 
surface gas because of the large field gradients. The second 
one allows direct observation of the surface gas, but pro-
vides a relatively small value of the quantum degeneracy 
parameter ( 2 1.5σΛ  ), leaving thus the scientific commu-
nity still without experimental evidence of the BKT super-
fluid transition in hydrogen. 

Recently, spin-polarized deuterium has been trapped for 
the first time using 24-stage Zeeman decelerator [11] at a 
temperature of 100 mK, representing a first step towards 
reaching quantum degeneracy. The same technique has 
been used to trap hydrogen as well [12] and could also be 
used to trap tritium. 

From the theoretical point of view, the development of 
the theoretical methods in the last decades was genuinely 
motivated by the successful experimental measurements. 
In addition to the early theoretical work dedicated to H↓  
[2,3,13–15], that was done using different interatomic po-
tentials and different variational methods, there was a res-
pectable amount of theoretical work dedicated to investi-
gation of its isotopes, spin-polarized deuterium (D )↓  
[3,16–20] and spin-polarized tritium (T↓) [3]. Within the 
Born–Oppenheimer approximation, electron-spin-polarized 
hydrogen atoms behave as effective bosons, as well as T↓, 
whereas D↓  has Fermi symmetry [21]. A rich class of 
quantum phases exist in D↓, depending on how D↓ atoms 
are distributed with respect to the available nuclear spin 
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states. However, the most theoretically studied D↓ systems 
are those that are defined with equal occupation of the nuc-
lear spin states ( 1D↓ , 2D↓ , 3D↓ ). 

Quantum Monte Carlo (QMC) methods are standard in-
vestigation tools for studying correlated quantum systems, 
probably the most accurate ones from the quantitative 
point of view. Recent theoretical activity in the study of 
spin-polarized atomic hydrogen and its isotopes has ap-
peared after Jamieson et al. [22] recalculated and extended 
to larger interparticle distances the triplet pair potential 

3
ub +Σ . The ground-state properties of H↓ , D↓  and T↓ 

have been investigated using the newest triplet pair poten-
tial 3

ub +Σ  and the diffusion Monte Carlo (DMC) method 
[23–25]. Since previously obtained results used variational 
methods, the recent use of the DMC method in the study of 
spin-polarized atomic hydrogen and its isotopes brought up 
theoretical descriptions of those systems to an improved 
level. The gas phase of H↓  was investigated from the very 
dilute regime up to the density above which the system 
crystallizes [23,26]. In order to determine the density and 
the pressure at which the system experiences a gas–solid 
transition at T = 0, the solid phase of H↓  was also investi-
gated up to higher pressure. A theoretical investigation of 
H↓  using QMC methods has been completed with a study 
of a thin layer of adsorbed on top of the surface of super-
fluid 4He [27]. The investigations were further extended to 
the study of spin-polarized tritium. Its liquid and solid 
phase were studied, and the conditions under which a liq-
uid–solid phase transition occurs in the limit of zero tem-
perature were determined [24]. The large T↓ clusters were 
also studied and from their ground-state properties several 
liquid T↓ ground-state properties were extrapolated [28]. 
As the only representative with the Fermi statistics, spin-
polarized deuterium was recently investigated. The ground-
state properties of D↓  at zero temperature were obtained 
within the fixed-node approximation, and the influence of 
the backflow correlations on the ground-state energy of the 
systems was explored. The liquid phases of 3D↓  and 2D↓  
were characterized, while the liquid–gas coexistence re-
gion of 1D↓  was also determined [25,29]. 

The rest of the paper is organized as follows: in Sec. 2 
the QMC methods and the trial wave functions used for 
importance sampling are briefly described, and in Sec. 3 
the interatomic potential is reviewed. The results are pre-
sented in the Secs. 4, 5 and 6. Sec. 4 is dedicated to H↓ , 
where subsections cover the results concerning the 3D 
study, the 2D study and the study of H↓  adsorption on the 
surface of liquid 4He. In Sec. 5 the ground-state properties 
of three D↓  species are presented, and T↓ ground-state 
properties are reported in Sec. 6. The main conclusions of 
this review are summarized in the last section. 

2. Method 

In this section the Monte Carlo methods which are 
commonly used for zero temperature calculations are brief-

ly discussed. Most theoretical studies using Monte Carlo 
methods begin with the application of the variational 
Monte Carlo (VMC) methodology. As it is well know from 
the variational principle of Quantum Mechanics, the ener-
gy calculated using an approximate wave function TΨ  (not 
orthogonal to the ground-state wave function) is always an 
upper bound to the exact ground-state energy 0E , i.e., 

0VMCE E≥ . A homogeneous system of atoms interacting 
via a central interatomic potential ( )ijV r  is described with 
Hamiltonian 

 
2

2

=1 <
= ( ).

2

N N

i ij
i i j

H V r
m

− ∇ +∑ ∑  (1) 

The Hamiltonian of a thin layer of adsorbed H↓  on top of 
the surface of superfluid 4He is given by 

 
2 2He HeH2 2

He He
He H=1 =1 1= <

= ( )
2 2

N NN

I i IJ
I i I J

H V r
m m −− ∇ − ∇ + +∑ ∑ ∑    

 
,He HH

H H He H
1= < 1= ,

( ) ( ),
N NN

ij Ii
i j I i

V r V r− −+ +∑ ∑  (2) 

where normal and capital indices stand for 4He and H↓  
atoms, respectively. 

In accordance with the VMC methodology, system con-
figurations 1( , , )N≡R r r , which are called walkers, are 
being generated according to the probability density func-
tion 2| ( ) |TΨ R  and the energy VMCE  is obtained as the 
mean value of the local energy ( ) ( ) / ( ).L T TE H≡ Ψ ΨR R R  
The optimization of the TΨ  variational parameters im-
proves the quality of the upper-bound of the ground-state 
energy of the system. The system configurations obtained 
with the VMC method, as well as the optimal TΨ  varia-
tional parameters, are used as input for the next phase of 
the investigations, i.e., in the diffusion Monte Carlo calcu-
lations. 

The trial wave function used in simulations of gas H↓ , 
liquid T↓  and T↓  clusters is of the Jastrow form 

 
<

( ) = ( ) = ( ) ,
N

T J
i j

f rψ ψ ∏R R  (3) 

where the two-body correlation functions that describe the 
dynamical correlations are given in Table 1. The solid 
phases are studied using the Nosanow–Jastrow model [30] 

 ( ) = ( ) = ( ) ( ) ,
N

T NJ J iI
i

h rψ ψ ψ ∏R R R  (4) 

where a localization function that links every particle i to 
a fixed lattice point I is taken in a Gaussian form 

2( ) = exp ( /2)h r r−α . 
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Table 1. Two-body correlation functions ( )f r  used to de-
scribes the dynamical correlations between particles 

Particle f(r) 

H↓ , T↓  1 2exp [ exp( )]b b r− −  

D↓  
51exp

2
b
r

   −     
 

(T )N↓  
5

exp b sr
r

   − −    
,  20 60N≤ ≤  

 
5

2exp b sr
r

   − −    
,  80 320N≤ ≤  

H↓  on 4He 1 2exp [ exp ( )]b b r− − ,  H –H↓ ↓  

 
51exp

2
b
r

   −     
,4He–4He,4He–H↓  

In the case of bulk D↓ , the antisymmetric wave func-
tion ( )Aψ R  which introduces the Fermi statistics has to be 
introduced in ( )Tψ R , and thus the trial wave function has 
the form 

 
<

( ) = ( ) ( ) = ( ) ( ) .
N

T A J A
i j

f rψ ψ ψ ψ ∏R R R R  (5) 

The two-body correlation function ( )f r  used in bulk 
D↓  is reported in Table 1, and ( )Aψ R  is modelled with a 
Slater determinant for 1D↓ , and the product of two and 
three Slater determinants in the case of 2D↓  and 3D↓ , 
respectively. In all cases the Slater determinants were con-
structed using a single-particle plane-wave orbitals that 
correspond to the exact wave function of the Fermi sea, 

( ) = exp ( )j ji i
iα αϕ r k r . In addition, the trial wave func-

tion was improved by introducing momentum-dependent 
correlations in the antisymmetric wave function. The back-
flow correlations were modelled in a similar way as in the 
work by Panoff and Clark [19], but omitting the long-range 
term ( 3/B r′λ ), i.e., in the following way: 

 
2

= exp ( ),jk B
j j B j k

Bk j

r r

≠

 −  + λ − −   ω  
∑r r r r  (6) 

where Bλ , Br  and Bω  are variational parameters. 
The study of a thin layer of adsorbed H↓  on top of the 

surface of superfluid 4He is carried out using the trial wave 
function 
 ( ) = ( ) ( ) =T Jψ ψ ΦR R R   

 
,He He HH

He H He H
1= < 1= < 1= ,

= ( ) ( ) ( ) ( ).
N N NN

IJ ij Ii
I J i j I i

f r f r f r− Φ∏ ∏ ∏ R  (7) 

The given ansatz (7) includes products of ( )f r  for differ-
ent pairs of particles (Table 1), and the function ( )Φ R  is 
defined with the products of the one-body correlations that 
describe the slab geometry confinement in the system 

 
He H

He H
=1 =1

( ) = ( ) ( ) .
N N

I i
I i

h z h zΦ ∏ ∏R  (8) 

The diffusion Monte Carlo method is used to solve sto-
chastically the Schrödinger equation written in imaginary 
time, 

 
( , ) = ( ) ( , ) ,r

t H E t
t

∂Ψ
− − Ψ

∂
R R  (9) 

in which constant rE  acts as a reference energy. In order 
to introduce the importance sampling, the Schrödinger 
equation has to be rewritten in terms of the mixed distribu-
tion ( , ) ( )TtΨ ψR R . The diffusion process is governed 
with the auxiliary wave function ( )Tψ R  which acts as a 
guiding wave function towards the ground state. In the 
limit t →∞  only the lowest energy eigenfunction survives 
(not orthogonal to ( )ψ R ), and then the sampling of the 
ground state for a N-body bosonic system is effectively 
achieved. In addition, for Fermi systems one has to deal 
with the sign problem, and that is usually circumvented by 
working within the fixed-node approximation. The fixed-
node approximation is based on the idea of imposing com-
mon ( , )tΨ R  and ( )ψ R  nodes, i.e., it is assumed that 
those functions change the sign together. Since the trial 
wave function ( )ψ R  determines the nodes, the obtained 
results depend on the accuracy of the ( )ψ R  nodes, with 
respect to the real ones. In the way, the obtained fixed-
node energies are upper bounds to the exact ground-state 
energy. 

In order to avoid the dependence of the results on the 
possible systematic errors, a careful analysis was carried 
out. Statistical uncertainty was reduced by using the re-
quired number of walkers for which the DMC results did 
not depend on the particular number employed in the simu-
lations. The DMC method, accurate to the second order in 
the time step t∆ , was implemented in the codes [31], to 
minimize the dependence on the finite time steps that were 
used during the time evolution of the system. The forward 
walking strategy was used to ensure the pure estimation of 
the observables [32], and to reduce any bias coming from 
the choice of the guiding function ( )Tψ R . Finally, simu-
lations of bulk systems with a finite number of particles 
require of a size-dependence analysis. To this end, tail cor-
rections were properly included, as well as Fermi correc-
tions in case of Fermi systems [25,29,33,34]. 

3. Interaction potential 

Spin-polarized hydrogen atoms interact via the triplet 
potential 3 ub +Σ , calculated with high precision by Kolos 
and Wolniewicz (KW) in 1965 [1]. The simplicity of the H 
atom makes possible to calculate this potential in an essen-
tially exact way. More recently, it has been recalculated up 
to larger interatomic distances by Jamieson, Dalgarno and 
Wolniewicz (JDW) [22]. The differences between the KW 
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and JDW potentials, in the range where they can be com-
pared, are rather small, as shown in Fig. 1. The addition of 
mass-dependent adiabatic corrections, which have been 
calculated by Kolos and Rychlewski [35], to the JDW po-
tential can not be discerned in Fig. 1, and we can say that 
the interaction potential between all possible hydrogen 
isotopes is essentially the same. 

From 60ties to the beginning of this century, only the 
KW potential was used in the study of gas H↓ . Usually, an 
analytic form was assumed and then the free parameters of 
the model were fitted to reproduce the KW data. In this 
way, Etters et al. [3] used a Morse potential whereas Silve-
ra and Goldman [36] proposed a form which is similar to 
the ones used for He–He potentials. The results of these 
models are also plotted in Fig. 1. In the last years, in most 
studies of spin-polarized hydrogen and its isotopes the 
JDW interaction has been used [23–29,37–41], which is 
plotted as a solid line in Fig. 1. The JDW data are smooth-
ly connected with the long-range behavior of the H H↓ − ↓ 
potential as calculated by Yan et al. [42]. The JDW poten-
tial is slightly deeper than KW with a minimum 

= 6.49 Kε −  at a distance = 4.14mr  Å, and a core diameter 
of 3.67 Å. 

The influence of the potential on the energy of the gas 
at small densities was studied in Ref. 23. The comparison 
was done using VMC calculations and the KW and JDW 
potentials. From Fig. 2, it is clear that the JDW energies 
are below the KW ones in all the density range, reflecting 
the slightly deeper well of the JDW potential. In the calcu-
lation with the Morse potential adjusted by Etters et al. [3] 
to the KW data the VMC energies are significantly worse 
than the KW ones. This manifests the difficulties in fitting 
a functional form to the ab initio KW data; the Morse po-
tential is a bit more repulsive than KW and therefore the 
energies are higher. As a matter of comparison, results 
from previous calculations are shown in Fig. 2. The results 
from Etters et al. [3] using the Morse potential are in nice 
agreement with the VMC results using the same potential. 

The variational results of Miller and Nosanow [13] used 
the KW data and are in close agreement with the VMC 
results using the same interaction. Finally, results of Lantto 
and Nieminen [14] are also reported; they used the KW 
potential and performed an Euler–Lagrange–HNC calcula-
tion. Their results, restricted to very low densities, are 
slightly better than the VMC results due to their use of an 
optimized Jastrow factor. All these variational results, are 
compared in the same figure with the DMC results using 
the JDW interaction. As expected, the DMC results are 
below the VMC ones in all the density range with a differ-
ence that increases with ρ, a predictable feature arising 
from the fact that the Jastrow factor in the trial wave func-
tion (3) corresponds to an analytical form which approx-
imates the wave function solution of the two-body problem. 

In the theoretical study of H↓  adsorbed on the surface 
of liquid helium two other interaction potentials are 
needed, 4He–4He and H↓–4He. For the 4He–4He interac-
tions one of the most used models, which was shown to 
accurately predict experimental bulk helium data is the 
Aziz HFD-B(He) interaction potential [43]. Several models 
are available for H↓–4He interactions; the recent work on 

Fig. 1. (Color online) H H↓ − ↓  interatomic potentials. 
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H↓  adsorbed on liquid helium [27] used the model by Das 
et al. [44], which we compare in Fig. 3 with HFD and 
JDW potentials. Of all the interaction potentials, the 
H H↓ − ↓  one has the largest core and the most attractive 
long-range part. 

4. Spin-polarized hydrogen 

4.1. H↓  in 3D 

The gas phase of spin-polarized H at very low densities 
has been in the focus of research for many years due to the 
expected and later realized Bose–Einstein condensation at 
low temperatures. From the theoretical perspective, H↓  is 
even more appealing than alkali gases because the intera-
tomic interaction between H↓  atoms is very well known, 
as we have commented in the previous subsection. The 
equation of state of a bosonic gas becomes universal at 
sufficiently low densities, when expressed in terms of the 
gas parameter 3=x aρ , with a the s-wave scattering 
length. It is given by 

 1/2128= 4 1 ,
15

E x x
N

   π +   π   
 (10) 

where the first term is the mean-field result [45], and the 
second is the Lee–Huang–Yang correction [46]; the energy 
per particle is written in units of 2 2/ (2 )ma . 

The recent DMC study of hydrogen at T = 0 from 
Ref. 23 confirmed the agreement with the universal equa-
tion of state at low densities. The energy per particle of gas 
H↓  was compared to the universal equation of phase (10) 
and to the DMC results for a hard-sphere (HS) gas from 
Ref. 47. For that purpose, the s-wave scattering length of 
the JDW potential was determined to be = 0.697a  Å in 
agreement with previous calculations [37,48]. The results, 
presented in Fig. 4, show that the equation of state of gas 
H↓  coincides with both the analytic law (10) and the HS 
results up to 410x −

 , in agreement with the range of un-

iversality determined in Ref. 47. Beyond this value, the 
energies of bulk H↓  clearly separate from Eq. (10), in-
creasing with x faster than for the HS gas. 

Recently, hydrogen gas at low densities was also studi-
ed by Joudeh et al. using the Brueckner–Bethe–Goldstone 
theory [38]. Due to the approximate nature of the method, 
their results lie slightly below the universal equation of 
state. 

At very low densities, a universal behavior in terms of 
the gas parameter x is also known for the condensate frac-
tion 0n , i.e., the fraction of particles occupying the zero-
momentum state. In Fig. 5, results for the condensate frac-
tion of gas H↓  (Ref. 23) are compared with the Bogoliu-
bov formula [45] 

 1/2
0

8= 1
3

n x−
π

 (11) 

and DMC results [47] for 0n  in the HS system. In the 
DMC simulations the condensate fraction is obtained from 
the long-range behavior of the one-body density matrix 

( )rρ , 0 = ( )limrn r→∞ ρ . As one can see, the three results 
are coincident up to 410x −

 , the same value observed for 
the energy in Fig. 4. Both HS and H↓  show a faster de-
crease with x than the law (11), the departure from it being 
significantly larger for hydrogen, in agreement with the 
same feature observed in Fig. 4 for the energy. The con-
densate fraction was determined for the whole range of 
densities, up to freezing. The obtained set of data is well 
reproduced using the functional form 

 3 1/2 3 3 2 3 5/2
0 1 2 3

8( ) = 1 ( ) ( ) ( ) .
3

n a b a b a b aρ − ρ − ρ − ρ − ρ
π

  

  (12) 

The values of the parameters in Eq. (12) are 1 = 504(5)b , 
5

2 = 1.254(49)·10b − , 5
3 = 8.54(55)·10b , and a is the scat-

tering length. 

Fig. 4. (Color online) Equation of state of gas H↓  as a function 
of the gas parameter 3aρ  in units of 2 2/ (2 )ma  (solid points). 
The triangles correspond to a HS gas [47] and the line to Eq. (10). 
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The gas equation of state was also obtained for the 
whole range of densities up to freezing. Results are well 
parameterized by a polynomial form ( /e E N≡ ) 

 2 3 4
1 2 3 4( ) =e e e e eρ ρ+ ρ + ρ + ρ  (13) 

shown as a solid line on top of the DMC results in Fig. 6. 
The best set of parameters is: 1 = 217.0(1.9)e  K·Å, 

4
2 = 7.76(9)·10e  K·Å2, 6

3 = 8.23(12)·10e  K·Å3, and 
7

4 = 5.1(5)·10e  K·Å4, the figures in parenthesis being the 
statistical uncertainties. 

Knowledge of the equation of state enables calculation 
of the pressure and the speed of sound using their thermo-
dynamic definition 

 2( ) = ,eP  ∂
ρ ρ  ∂ρ 

 (14) 

and 

 2 1( ) = .Pc
m
 ∂

ρ  ∂ρ 
 (15) 

Results obtained in Ref. 23 are presented in Fig. 6. 
Relevant structural quantities were determined using 

DMC simulations as well [23], the two-body radial distri-
bution function ( )g r  and its Fourier transform, the static 
structure function ( )S k . The evolution of ( )g r  with den-
sity for the gas H↓  is shown in Fig. 7. At the smallest den-
sity reported, ( )g r  is a monotonic function with the cor-
responding hole consequence of the repulsive core of the 
interatomic interaction. When ρ  increases ( )g r  gains 
structure, with the main peak that shifts to shorter distances 
and increases its strength. 

There is no experimental measurement on solid H↓  at 
low pressures and nothing is known experimentally about 
the form of its solid lattice at low temperatures. Theoreti-
cally, the solid phase of spin-polarized H (Ref. 23) was 

studied using as importance sampling trial wave function 
given by Eq. (4). The geometry of the lattice is defined by 
a proper selection of the lattice sites Ir  around which the 
atoms are organized according to a commensurate solid. 
Calculations were carried out at some densities using the 
fcc, hcp, and bcc lattices. Near the melting density the bcc 
phase was slightly preferred and, at higher densities, the 
differences between fcc, hcp, and bcc phases were not dis-
tinguishable within the statistical noise. Therefore, bcc 
phase was assumed in the study of solid H↓  properties. It 
is worth noticing that the same lattice was used in the past 
by Pierleoni et al. [49] in the study of solid H at very high 
pressure. 

The full set of results for the energy of the solid phase 
is shown in Fig. 8. The solid line on top of the DMC re-

Fig. 6. (Color online) Left: Energy per particle of gas H↓  (solid 
circles) as a function of the density ρ. The solid line corresponds 
to the fit to the DMC energies using Eq. (13). The error bars of 
the DMC energies are smaller than the size of the symbols. Right: 
Pressure and speed of sound of gas H↓  as a function of the den-
sity. Left (right) scale corresponds to pressure (speed of sound). 
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Fig. 7. (Color online) Two-body radial distribution functions of 
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the results correspond to densities 0.002, 0.0067, 0.01, 0.0125, 
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Fig. 8. (Color online) Left: Energy per particle of solid H↓  (solid 
circles) as a function of the density ρ. The solid line corresponds to 
the fit to the DMC energies using Eq. (16). The error bars of the 
DMC energies are smaller than the size of the symbols. Right: 
Pressure and speed of sound of solid H↓  as a function of the den-
sity. Left (right) scale corresponds to pressure (speed of sound). 
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sults for the energy corresponds to a numerical fit obtained 
using the function 

 3
1 3( ) = .e s sρ ρ+ ρ  (16) 

The optimal values in Eq. (16) are 1 = 1147(6)s  K·Å and 
6

3 = 9.57(2)·10s  K·Å3. On the same figure, at the right 
side are presented the results of the pressure and the speed 
of sound derived from the equation of state, using the same 
expressions as in the gas calculations. 

Knowledge of the equations of state of the gas and solid 
phases of H↓  enabled the prediction of the location of 
the gas–solid phase transition, using the double-tangent 
Maxwell construction, as shown in Fig. 9. From the com-
mon tangent to both phases the freezing ( fρ ) and melting 
( )mρ  densities were obtained, = 0.01328fρ  Å–3 and 

= 0.01379mρ  Å–3, which correspond to a common pres-
sure at the transition of = 173(15)P  bar. The melting 
pressure proved to be quite independent of the lattice used 
in the simulation since using fcc and hcp 175 and 176 bar 
were obtained, respectively. 

This value is significantly higher than previous estima-
tions: 50 bar, obtained by using the quantum theory of cor-
responding states [4], and 81 bar, from a VMC estimation 
by Danilowicz et al. [50]. It is worth noticing that the tran-
sition point depends dramatically on the accuracy of the 
theoretical method used for its calculation: estimation from 
the Ref. 23 using the VMC method is = 113(17)P  bar, 
a value significantly smaller than the DMC result. 

Other relevant quantities at the transition were de-
termined as well. The Lindemann ratio, defined as 

2= ( ) /I Laγ 〈 − 〉r r , where La  is the lattice constant has 
almost the same value, = 0.25γ  as in liquid 4He 
( = 0.26).γ  It was possible to determine the discontinuity 
in the kinetic energy at the transition and it amounts to 
7.5 K approximately (in the gas side at freezing 

/ = 44.0(5)T N  K and in the solid side at melting 
/ = 51.5(6)T N  K). At the crystallization, the condensate 

fraction is small but not zero, 0 = 0.04.n  Other structural 
quantities, in particular ( )g r  and ( )S k  were determined at 
the transition as well. Here, in Fig. 10, we present the 
comparison of ( )S k  for both phases at densities fρ  (gas) 
and mρ  (solid). High intensity peaks located at the reci-
procal lattice sites are a clear signature of the solid order; 
they are obviously absent in the ( )S k  of the gas. 

Hydrogen at finite temperature has recently been stu-
died at very low densities using an approximate method, 
the static fluctuation approximation [51]. The condensate 
fraction, transition temperature and specific heat per par-
ticle have been determined. In accordance with the results 
of the dilute bosonic systems, it has been shown that the 
transition temperature is greater than that for the noninte-
racting gas. 

4.2. H↓  in 2D 

Spin-polarized hydrogen in 2D is an example of a Bose 
system with reduced dimensionality, with an additional 
interest of well known interaction between particles. Part 
of the interest in its properties comes from the fact that it 
can be considered as a possible model for hydrogen ad-
sorbed on the surface of liquid helium, where a quasicon-
densate has been observed. Recently, H↓  in 2D has been 
studied at T = 0 by the DMC method [26]. Similarly to the 
situation in 3D, at very low densities both the energy and 
the condensate fraction of gas H↓  show universal behavior 
in terms of the gas parameter 2aσ . This can be seen in 
Fig. 11 from the comparison of the H↓  results [26] with 
the hard disk energies per particle in 2D calculated by Pila-
ti et al. [52] and the mean-field results given by 

 
2

2
2 1=

ln (1/ )
MFE
N m a

π

σ



. (17) 

Fig. 9. (Color online) Maxwell construction based on plotting 
the energy per particle, /E N  as a function of 1 / ρ. The densities 
at which the first-order transition occurs are identified by finding 
the common tangent (solid line) to both the solid (dotted line) and 
gas curve (dashed line).  
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As previously observed in a 3D gas, the energies per par-
ticle of H↓  start to deviate from the mean-field results 
sooner than in the case of hard spheres. In addition, the 
corrections to the mean-field results in 2D can not be well 
fitted with the functional form appropriate for the hard 
sphere gas [52]. 

Similar behavior is observed for the condensate fraction, 
where for higher densities the Bogoliubov formula [53] 

 0
2

1= 1
ln ( )

N
N a

+
σ

, (18) 

overestimates the condensate fraction, which was previously 
observed also for the hard disks [52]. In comparison with 
the 3D H↓  gas condensate depletion is larger in a 2D gas. 

At higher densities a phase transition to a triangular sol-
id phase occurs. The equation of state, as well as the pres-
sure and the speed of sound derived from it are presented 
in Fig. 12. From the equations of state of gas and solid, 

using double-tangent Maxwell construction it was pre-
dicted that gas–solid phase transition occurs at the freezing 

=fσ  0.0407 Å–2 and melting =mσ  0.0417 Å–2 density. 
They correspond to a common pressure at the transition of 

= 1.84P  K/Å2. 
Recently, the static fluctuation approximation was used 

to study finite 2D H↓  in a very low-density regime at fi-
nite temperature [54]. The results on the condensate frac-
tion and specific heat capacity show that the BEC occurs in 
the system. 

4.3. Spin-polarized hydrogen adsorbed on the surface 
of liquid helium 

The experimental realization of a thin layer of spin-
polarized hydrogen H↓  adsorbed on top of the surface of 
superfluid 4He provides one of the best examples of a sta-
ble nearly two-dimensional quantum Bose gas [8]. Theo-
retically, in a pioneering work, Mantz and Edwards [55] 
used the variational Feynman–Lekner approximation to cal-
culate the effective potential felt by a hydrogen atom on 
the 4He surface. Solving the Schrödinger equation for the 
atom in this effective potential they concluded that H↓ , 
D↓ , and T↓ have a single bound state and calculated the 
respective binding energies. The main drawback of this 
treatment is that the adsorbent is substituted by an effective 
field representing a static and undisturbed surface. In fact, 
a quantitatively accurate approach to this problem requires 
of a good model for the 4He surface. Recently, the system 
was studied using accurate interparticle potentials and 
quantum Monte Carlo methods in the zero-temperature 
limit [27]. In order to guarantee an accurate model for the 
free surface of 4He, a slab geometry was used, based on 
experience in the previous study of the free 4He surface 
[56]. The resulting density profile of the system under 
study is presented in Fig. 13. H↓  layer has an approximate 
width of 8 Å and virtually floats on the helium surface: the 
center of the H↓  layer is located out of the surface, where 
the 4He density is extremely small. Similar picture was ob-
tained by Mantz and Edwards [55] in a variational descrip-
tion of the adsorption of a single H↓  atom. It also resemb-

Fig. 11. (Color online) Left: Equation of state of the gas H↓  as 
a function of the gas parameter 2aσ  in units 2 2/ (2 )ma  (solid 
circles and full line). The empty circles correspond to the HS gas 
[52] and the line to the mean-field results (Eq. 17). Right: Con-
densate fraction as a function of the gas parameter (circles). 
Dashed line is the result from the Bogoliubov theory. 

Fig. 12. (Color online) Left: Energy per particle of solid H↓  as 
a function of the density. Right: Pressure and speed of sound 
of solid H↓  as a function of the density. Left-(right-) hand scale 
corresponds to pressure (speed of sound). 
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Fig. 13. (Color online) Density profile of the 4He slab (dashed 
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les the case of 3He adsorbed on the 4He surface [57], how-
ever in that case 3He distribution is centered not so far 
from the bulk. 

The obtained energies per particle at different coverages 
were compared with the 2D simulation in order to establish 
the degree of two-dimensionality of the adsorbed gas. The 
comparison presented in Fig. 14 shows the agreement be-
tween the strictly 2D gas and the film is good for densities 

35·10−σ ≤  Å–2. At higher densities, the additional degree 
of freedom in the z direction results in nearly linear growth 
of the energy with the surface density in the layer up to the 
shown density, in contrast with the significant quadratic 
increase observed in the 2D gas ( 2<< DC C ). The lines on 
top of the data represent polynomial fits to the DMC ener-
gies of the gas. For H↓  adsorbed on the surface of 4He, 

 2/ ( ) = ,E N B Cσ σ+ σ  (19) 

with optimal parameters = 48(2)B  K·Å2 and 
2= 5.6(9)·10C  K·Å4, the figures in parenthesis being 

the statistical uncertainties. Before performing the fit, the 
energy of a single H↓  atom, or in other words, the energy 
in the infinite dilution limit 0σ→ , was subtracted from 
the computed energies enabling thus better visualization of 
the results and comparison to 2D calculation. The results 
obtained for the energy per particle of the 2D gas are well 
reproduced by a polynomial low 

 2
2 2/ ( ) = ,D DE N B Cσ σ+ σ  (20) 

with 2 = 35(3)DB  K·Å2 and 4
2 = 6.4(1)·10DC  K·Å4. 

Since the energy of the layer departs from the two-
dimensional behavior with the increase of the density, it 
was investigated if the existence of a nearly 3D gas is poss-
ible. Using several estimates for the width of the layer and 

comparing the results with the energy of the 3D gas it was 
shown that the energies of adsorbed H↓  are not well de-
scribed by a 3D equation of state at any density within the 
regime studied. Structural quantities of interest were deter-
mined as well and compared with 2D distributions. The di-
stribution functions of H↓  atoms in the layer were studied 
by doing slices of small width ( = 1z∆  Å) and, within a 
given slice, as a function of the radial distance in the plane 

2 2=r x y+ . Results of the two-body radial distribution 
function ( , )g z r  where z is the distance to the center of the 
4He slab at a coverage = 0.0215σ  Å–2 are presented in 
Fig. 15. Around the center of the H↓  density profile, ( )g r  
is nearly independent of z with a main peak of a height 
smaller than 1.2. In the wings of H ( )zρ , where the local 
density is smaller, ( )g r  shows less structure and the noise 
of the DMC data also increases due to low statistics. 

Other particularly relevant magnitude is the one-body 
distribution function 1( )rρ  since it furnishes evidence of 
the presence of off-diagonal long-range order in the sys-
tem. It was studied in the same way as the two-body radial 
distribution function. 

In order to study the dimensionality of the off-diagonal 
long-range order in the adsorbed gas the comparison was 
made between 1( )rρ  for a 2D gas and for a slice in the 
centre of the adsorbed layer at the same density. Addition-
ally, from the asymptotic behavior of the one-body density 
matrix in the central part of the density profile the conden-
sate fraction 0n  was determined. The results presented in 
Fig. 16 show that the behavior of H↓  in the layer is signif-
icantly different from the one observed in strictly 2D. The 
difference is larger than the one observed at the same den-
sity for ( )g r , with values for the condensate fraction, that 
differ in a 30  %. Larger value of the condensate fraction 
in the layer occurs because atoms have the transverse de-
gree of freedom z that translates into an effective surface 
density smaller than the one of the 2D layer. 

The comparison of the condensate fractions in the layer 
and in 2D as a function of coverage is show in Fig. 17. As 
expected, the condensate fraction in the layer is nearly 1 at 
very low densities and then decreases when σ  increases. 

Fig. 14. (Color online) Comparison between the energy per par-
ticle of H↓  adsorbed on the 4He slab (full circles) and the energy 
of purely two-dimensional H↓  (open squares). The solid line 
is the polynomial fit (19) and the dashed line is a fit on the 2D 
energies (20). 

 0.5

 1.0

 1.5

 2.0

 0  0.005  0.01  0.015

E
N/

, K

σ, Å
–2

Fig. 15. (Color online) Two-body distribution function ( , )g z r  of 
H↓  adsorbed on 4He, with 2 2=r x y+ , at surface density 

= 0.0215σ  Å–2. 
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However, the decrease is quite slow in such a way that 
even at densities as large as = 0.02σ  Å–2 the condensate 
fraction is still 0 0.6n  . At the same density, the conden-
sate fraction of the 2D gas is half this value, 0 0.3n  . The 
dependence of 0n  with the density for the 2D geometry, is 
significantly stronger with a larger depletion of the con-
densate fraction for all densities. 

5. Spin-polarized deuterium 

Quantum Monte Carlo methods were employed recent-
ly in the study of the three spin-polarized deuterium spe-
cies, 1D↓ , 2D↓  and 3D↓  at zero temperature [25,29]. In 
Fig. 18, the DMC energies per particle calculated with a guid-
ing wave function including backflow correlations, are plott-

ed as a function of the density for 1D↓ , 2D↓  and 3D↓ . 
The lines reported in the same figure are the equations of 
state obtained with a numerical fit to the DMC data using a 
polynomial form (21). The DMC results were fitted in the 
density range from 0.00282  to 0.00634  Å–3 and the best 
set of fitting parameters are reported in Table 2. As it was 
expected due to the degeneracy, the precise numerical val-
ues from Table 2 indicate that the energy ordering for the 
three D↓  species, close to the equilibrium densities, is 

1 2 3
( / ) > ( / ) > ( / )D D DE N E N E N↓ ↓ ↓ . It is also obvious that 
with the increase of degeneracy, the equilibrium density 

0ρ  shifts to slightly smaller values. 
The obtained negative energy per particle at zero pres-

sure, i.e., at minimum of the equation of state of 2D↓  and 
3D↓ , confirms their liquid ground state (Table 2). A small 

positive energy per particle at zero pressure, i.e., minimum 
in the equation of state of 1D↓ , does not allow to qualify 
its ground state as a liquid (Table 2). In fact, due to this 
peculiarity in the 1D↓  equation of state, it was pointed out 
in Ref. 58 that 1D↓  could be the case of most experimental 
interest. Namely, the authors concluded that 1D↓  may re-
main in the gaseous state down to absolute zero, leaving 
open the possibility that 1D↓  could liquefy under a very 
slight pressure. The liquid–gas coexistence region in 1D↓  
was also predicted in previous variational calculations [19]. 

Table 2. Parameters of the equation of state (21) of 1D ,↓  2D↓  
and 3D↓  

Parameter 1D↓  2D↓  3D↓  

0e , K 0.1086(8) –0.043(2) –0.181(2) 

B, K  1.31(2) 0.96(2) 0.87(4) 

C, K  0.8(1) 0.56(6) 0.52(7) 

0ρ , Å–3 0.00420(3) 0.00381(5) 0.00372(2) 

Fig. 16. (Color online) Comparison between the one-body distri-
bution function in the centre of the slab, corresponding to a density 

–2= 0.0095 Åσ  (solid line) with the one corresponding to a purely 
2D H↓  gas at the same surface density (dotted line). 
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Fig. 17. (Color online) Condensate fraction as a function of the 
surface density σ . Solid circles correspond to H↓  on 4He and 
open squares to a 2D gas. The lines on top of the DMC data are 
fits to guide the eye. 
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2D↓  (circles) and 3D↓  (triangles) as a function of the density ρ, 
with backflow correlations included in the model. The lines cor-
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–0.3

 0.3

 0.6

 0.9

 0

 0

 0.002  0.004  0.006

E
N

, 
/

K

ρ, Å
–3

1114 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 10 



Spin-polarized hydrogen and its isotopes: a rich class of quantum phases 

In order to resolve the theoretical puzzle concerning the 
liquid–gas coexistence region in 1D↓ , a double-tangent 
Maxwell construction was used. The method required 
the use of the universal expansion of the equation of state 
of a Fermi gas in the region of very small densities [59]. 
VMC results predicted a first order gas–liquid transition 
at the gas density 5 –3= 5.4 10 Å−ρ ⋅  (liquid density =ρ
= 0.00398(1) Å–3) and pressure 48·10p −

  bar. Accord-
ing to the DMC results, a first order gas–liquid transition 
occurs even at a smaller gas density, 5 –3= 1.48 10 Å−ρ ⋅  
(liquid density = 0.00421(1)ρ  Å–3), and at lower pres-
sure, 59·10 bar.p −

  It that way, both results confirm 
the previous theoretical prediction reported in Ref. 19. 

The implementation of the best nowadays available tool 
for microscopic studies of Fermi systems, the diffusion 
Monte Carlo method within the fixed-node approximation, 
resulted with the most accurate description of the macros-
copic character of the three D↓  species. The obtained 

1D ,↓  2D↓  and 3D↓  equations of state allowed for deter-
mination of the pressure and the speed of sound as a func-
tion of the density of the system (Eqs. (14) and (15)). For a 
weakly self-bound liquids 2D↓  and 3D↓  the functions 

( )P ρ  and ( )c ρ  are reported in Fig. 19, and from the pre-
sented results it is clear that the pressure and the speed of 
sound in 2D↓  and 3D↓  liquids assume similar values. In 
addition, the densities at which those liquids become unst-
able with respect to density fluctuations were localized. 
The results show that in liquid 2D↓  the speed of sound 
becomes zero at the density = 0.002813sρ  Å–3, and at a 
very small negative pressure = 0.11(1)sP −  bar. As it is 
shown in Fig. 19, in liquid 3D↓  the speed of sound be-
comes zero at slightly higher density, = 0.002903sρ  Å–3, 
while the spinodal pressure = 0.12(1)sP −  bar is similar to 
liquid 2D↓  spinodal pressure. 

Since 3D↓  is a three-component degenerate Fermi li-
quid it does not posses its helium analogue, but 2D↓  with 

degeneracy two has its helium analogue in unpolarized 
liquid 3He. It is useful to compare the representative quan-
tities of 2D↓  and 3He liquids in units of σ , and in order to 
that we summarized in Table 3 the main relevant properties 
of those liquids. One can notice a significant difference 
between the parameters that describe the nature of the 
ground states of 2D↓  and 3He liquids. As in the compari-
son of T↓  and 4He liquids, a part of the difference can be 
due to the mass difference and the difference between the 
interaction potentials, but in the comparison between 2D↓  
and 3He there is another additional source that is causing a 
difference, and that is their Fermi nature. An effective way 
to emphasize this difference even more is to observe the 
spatial structure of the ground state of both liquids. To do 
that, we plotted in Fig. 20 the two-body radial distribution 
functions ( )g r  at the equilibrium densities of 3He and 

2D↓  liquids, expressing r  in terms of corresponding σ . 
The stronger interaction between 3He atoms can be recog-
nized through a higher main peak and through an evident 
formation of the second peak. 

The description of the three D↓  species from the struc-
tural point of view can be realized by analyzing the pro-
files of the two-body radial distribution function ( )g r  and 
static structure function ( )S k . Since the general behavior 
of those functions is similar for all three D↓ species, we 

Fig. 20. (Color online) Two-body radial distribution functions of 
3He (r in Heσ ) and 2D↓  (r in Hσ ) liquids at the equilibrium 
densities. 
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Parameter 2D↓  3He 

0ρ , 3−σ  0.188 0.274 

0e , K –0.043 –2.464 

sρ , 3−σ  0.139 0.202 

sP , bar –0.11 –3.09 

 

Fig. 19. (Color online) Pressure and speed of sound of 2D↓  (so-
lid lines) and 3D↓  (dashed lines) as a function of the density. 
Left (right) scale corresponds to pressure (speed of sound). 
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present it using the example of liquid 3D↓  because this 
three-component Fermi liquid does not have its helium 
analogue, and in that sense represents completely novel 
system. For three different densities the DMC results for 

( )g r  and ( )S k  are plotted in Figs. 21 and 22, obtained 
using the method of pure estimators [32]. As it is shown in 
Fig. 21, a very well known behavior for ( )g r  is also 
present in the three-component Fermi liquid 3D↓ . The 
shift of the main peak to shorter distances is clearly ob-
served when the density increases, as well as the growth of 
its strength. The increase of the density enforces the forma-
tion of the more pronounced structure in the system, that 
can be recognized through the appearance of the secondary 
peaks. The reported results for ( )S k  in Fig. 22 are the 
Fourier transforms of the ( )g r  functions, except in the re-
gion of very small k  where the results are obtained direct-
ly from the DMC calculations. As can be seen, a familiar 

behavior for ( )S k  in liquid is shown, i.e., the strength of 
the main peak increases and moves to higher moment with 
the increase of the density. 

In addition to the previously reported results for the to-
tal ( )g r  of 3D↓ , the two-body radial distribution function 
for atoms having the same spin orientation in 1D↓ , 2D↓  
and 3D↓  were also studied, and the two-body radial distri-
bution function for atoms having different spin orientation 
in 2D↓  and 3D↓ . Again, we decided to use liquid 3D↓  to 
describe one property which is direct consequence of the 
Fermi nature of the system. By comparing the results pre-
sented in Fig. 23, for atoms having the same and different 
spin orientation one can notice different behaviors. In 
Fig. 23(a), the formation of the main peak is practically 
visible just at the highest density shown = 0.00634ρ  Å–3, 
while in Fig. 23(b) the main peak is clearly visible at all 
included densities. In addition, the main peak at the density 

= 0.00634ρ  Å–3 in Fig. 23(b) is significantly higher 
( ( ) 1.36)mg r   than any value of ( )g r  at the same density 
in Fig. 23(a), where ( ) < 1.05g r . The difference between 
the spin dependent two-body radial distribution profiles 
can be explained with Pauli principle. Namely, in the case 

Fig. 21. (Color online) Two-body radial distribution function of 

3D↓ . From bottom to top in the height of the main peak, the results 
correspond to densities 0.00352 Å–3 (solid line), 0.00493 Å–3 
(dashed line), and 0.00634 Å–3 (dotted line). 
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Fig. 22. (Color online) Static structure function of 3D↓ . From 
bottom to top in the height of the main peak, the results corres-
pond to densities 0.00352 Å–3 (solid line), 0.00493 Å–3 (dashed 
line), and 0.00634 Å–3 (dotted line). 

Fig. 23. (Color online) Two-body radial distribution functions of 
liquid 3D↓  for atoms having the same (a) and different (b) spin 
orientations. From bottom to top in the height of the main peak, 
the results correspond to densities 0.00352 Å–3 (solid line), 
0.00493 Å–3 (dashed line), and 0.00634 Å–3 (dotted line). 
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of atoms having the same spin orientation the repulsion is 
more effective and because of that atoms prefer to reside at 
larger interparticle distances. As a consequence, the forma-
tion of the main peak at small r  is practically absent in 
Fig. 23(a) at smaller densities, and at the highest shown 
density = 0.00634ρ  Å–3 the secondary peak is more pro-
nounced than the first peak. Contrarily, due to the effective 
attraction between atoms having different spin orientations, 
the atoms prefer to reside at smaller interparticle distances, 
and because of that the main peak is clearly observed at all 
densities in Fig. 23(b). 

We present the spin dependent ( )g r  at the density 
0.00493 Å–3 in Figs. 24 and 25 to display correlations be-
tween the spin dependent ( )g r  and the level of the dege-
neracy. It is interesting to notice that in case of ( )g r  of 
atoms having the same spin orientation reported in Fig. 24, 
the increase of the degeneration produces the effect that 
can be addressed as the “density reduction”. Obviously, the 

product of the Slater determinants in 2D↓  and 3D↓  allows 
for the atoms having the same spin orientation to reside at 
larger interparticle distances, in the way reducing effec-
tively the repulsion between them. This effect is not 
present in case of ( )g r  of atoms having different spin 
orientation, as it is shown in Fig. 25. One can see that the 
heights of the reported peaks are almost the same, as well 
as the distances at which the main peaks occur in 2D↓  and 

3D↓  for atoms having different spin orientation. This can 
be taken as a proof that the increase of the degeneration 
does not effect the interparticle distances of the atoms hav-
ing different spin orientations. Having this in mind, we 
conclude that a reduction of the repulsion between the 
atoms having the same spin orientation is important in lo-
wering of the equilibrium energy per particle 0e  in 2D↓  
and 3D↓  liquids, as well as for the shift of the equilibrium 
density 0ρ  to a slightly smaller value (Table 2). 

6. Spin-polarized tritium 

6.1. T↓  in 3D 

The ground-state properties of spin-polarized tritium 
T↓  were investigated recently with quadratic DMC and 
the very precise triplet pair potential 3

ub +Σ  [24,28]. The 
liquid phase was studied in the density interval between the 
spinodal and freezing densities. In Fig. 26, the DMC ener-
gies per particle are plotted as a function of the density. 
The line shown in the same figure corresponds to the nu-
merical fit to the DMC data using a polynomial function 

 
2 3

0 0
0

0 0
( ) = .e e B C

   ρ −ρ ρ−ρ
ρ + +   ρ ρ   

 (21) 

In the given expression (21) the energy per particle is de-
noted as ( )e ρ , the equilibrium density as 0ρ , and the ener-
gy per particle at equilibrium density as 0e . The best re-

Fig. 24. (Color online) Two-body radial distribution function for 

1D↓ , 2D↓  and 3D↓  at the density 0.00493 Å–3 for atoms hav-
ing the same spin orientations. 

Fig. 25. (Color online) Two-body radial distribution function for 

2D↓  and 3D↓  at the density 0.00493 Å–3 for atoms having dif-
ferent spin orientation. 

Fig. 26. (Color online) Energy per particle of liquid T↓  (solid 
circles) as a function of the density ρ. The dashed line corresponds 
to the fit to the DMC energies using Eq. (21). The error bars of the 
DMC energies are smaller than the size of the symbols. 
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sulting fitting parameters were: 0 = 3.656(4)  K,e −  
= 6.86(7)  K,B  = 4.70(5)C  K, and –3

0 = 0.007466(7) Å ,ρ  
where the figures in parenthesis are the statistical uncer-
tainties. The inset shown in Fig. 26 gives better insight in 
to the minimum of the equation of state of the liquid phase, 
i.e., to the results in the vicinity of 0ρ . 

Since both, spin-polarized tritium atoms as well as 4He 
atoms obey the Bose statistics, it is useful to compare the 
main properties of liquids T↓ and 4He, and in order to that 
we report in Table 4 relevant properties for both liquids. 
For liquid T↓, the equilibrium density expressed in units of 
σ  is 3

0 = 0.369 −ρ σ  ( H = 3.67σ  Å), and is very similar to 
the one of liquid 4He given in Ref. 33, 3

0 = 0.365 −ρ σ  
He( = 2.556σ  Å). The comparison of the equilibrium 

energy per particle of those two liquids, reported in Ta-
ble 4, revels that liquid 4He is a more strongly self-bound 
liquid than liquid T↓. As it is expected, a smaller 0e  in 
case of liquid T↓ is due to the smaller mass of T↓ atoms 
and to the shallower T↓–T↓ interatomic potential. 

Table 4. Comparison of the main relevant properties of liquids 
T↓ and 4He. The corresponding σ ( H = 3.67σ  Å and He = 2.556 Å)σ  
are used for each liquid. The results for 4He are taken from Ref. 33 

Parameter T↓  4He 

0ρ , 3−σ  0.369 0.365 

0e , K –3.656 –7.277 

sρ , 3−σ  0.277 0.264 

sP , bar –1.48 –9.30 

Knowing the equation of state ( )e ρ  allows for the cal-
culation of the pressure and the speed of sound (Eqs. (14) 
and (15)). Using those equations it is possible to determine 
the spinodal density sρ , i.e., the density at which the speed 
of sound becomes zero. The determination of the spinodal 
density is very important when quantum liquids are under 
investigation since at the spinodal pressure sP  quantum 
liquids become macroscopically unstable with respect to 
density fluctuations. The instability of liquid T↓ is defined 
by a small negative pressure, = 1.48(2)sP −  bar, at density 

= 0.0056sρ  Å 3= 0.277−  3−σ . If we compare those val-
ues with the values that define instability of liquid 4He, 
given in Ref. 33 ( = 0.264sρ  3−σ , = 9.30(15)sP −  bar), 
we can say that spinodal densities of those two liquids are 
very similar in σ  units, while the spinodal pressure is 
slightly more negative in the case of liquid 4He. It is also 
worth mentioning that a previous approximate prediction 
of the liquid T↓ equilibrium density ( 0 0.0050ρ   Å–3) 
given in Ref. 3, obtained with the VMC method and the 
Morse interaction potential, lies below the spinodal density 
obtained with the DMC method and the JDW interaction 
potential. The pressure and the speed of sound are plotted 
in Fig. 27 for liquid (dashed lines) and solid (solid lines) 
T↓. The results for the liquid phase include the density 

region from the spinodal density = 0.0056sρ  Å–3 up to 
= 0.02ρ  Å–3. 
In addition to the energy profile of liquid T↓, the DMC 

method allows for determination of other ground-state 
quantities that describe the structural profile of the investi-
gated liquid, such as the two-body radial distribution func-
tion ( )g r  and the static structure factor ( )S k . To avoid 
bias coming from the trial wave function used in the simu-
lations the obtained ( )g r  and ( )S k  are calculated using 
pure estimators [32]. The two-body radial distribution 
function is given in Fig. 28 for several densities of liquid 
T↓. As it is expected, the strength of the main peaks in-
creases with the density, and at the same time the main 

Fig. 27. (Color online) Pressure and speed of sound of liquid T↓  
(dashed lines) and solid T↓  (solid lines) as a function of the 
density. Left (right) scale corresponds to pressure (speed of 
sound). 
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peaks start to be localized at smaller interparticle distances. 
It is also evident that the increase of the density is accom-
panied with the appearance of secondary peaks at larger 
interparticle distances. The first appearance of a more pro-
nounced second peak and the formation of a third peak can 
be seen at the density ρ  = 0.01 Å–3, which is very close to 
the freezing density. In the case of the highest density, ρ  = 
= 0.02 Å–3, a pronounced structure is present. Since this 
density is above the freezing point, where the crystalline 
phase is more favorable, three visible peaks reflect the ten-
dency towards spatial order in the system. 

Three crystalline lattices, bcc, fcc and hcp, were used to 
investigate the solid phase of T↓. The obtained DMC re-
sults for the energy per particle at the different densities 
are shown in Fig. 29 for the selected densities in the range 
from 0.008  to 0.024  Å–3. As can be seen from the figure, 
the energies per particle for all three lattices and for almost 
the whole region of the investigated densities, are practi-
cally the same within the statistical error. A slight differ-
ence between the results is present only when the system is 
very dense. Since the results obtained with the hcp lattice 
are slightly below the ones obtained with the bcc and fcc 
lattices, the hcp lattice was chosen as the one energetically 
preferred. Hereafter, we will refer to hcp lattice as the solid 
phase of T↓. In accordance with that, the line shown on the 
top of the data in Fig. 29 is the equation of state of the sol-
id hcp lattice, obtained by numerical fit to the DMC results 
using the analytical function 

 2 3 4
2 3 4( ) = .e s s sρ ρ + ρ + ρ  (22) 

The best set of parameters that fit the DMC data is: 
4

2 = 10.47(11)·10s −  K·Å2, 6
3 = 7.13(15)·10s  K·Å3, and 

7
4 = 7.3(5)·10s  K·Å4. From the obtained equation of state 

the pressure and the speed of sound (Eqs. (14) and (15)) 

were derived and plotted with solid lines in Fig. 27 for 
solid T↓. The results include the density region used in the 
fitting of the solid phase equation of state, i.e., from the 
density = 0.008ρ  Å–3 up to = 0.024ρ  Å–3. The differ-
ence between the liquid and the solid phase properties of 
the system is also demonstrated through the different den-
sity dependence of ( )c ρ  and ( )P ρ  in both phases. 

Results for ( )g r  of the solid phase are reported in 
Fig. 30 for several selected densities. For all the shown 
densities pronounced structural profiles reflect the spatial 
ordering of the crystalline structure. The formation of the 
second and third peaks is clearly present in all cases, and 
the main peaks are higher than in the case of ( )g r  of the 
liquid phase (Fig. 28). For example, if one compares re-
sults for the two-body radial distribution functions of the 
liquid phase (Fig. 28) and the solid phase (Fig. 30) at the 
density ρ  = 0.02 Å–3, one can note that the main peak is 
significantly higher in the case of the solid phase 
( ( ) 2.23mg r  ) than in the case of liquid ( ( ) 1.92mg r  ). 
The overall tendency of the main peak shifting to smaller 
interparticle distances when the density increases, as well 
as the growth of its height, is observed for ( )g r  of solid 
phase as well. 

From the DMC results on the liquid and solid equations 
of state of T↓ one can study the liquid–solid phase transi-
tion. In order to localize the transition, the double-tangent 
Maxwell construction is used; the common tangent to both 
the liquid and solid equations of state is shown in Fig. 31. 
The intersections of the common tangent with the equa-
tions of state define the freezing ( fρ ) and melting ( mρ ) 
densities, marked with arrows in Fig. 31. The extracted 
numerical values, corresponding to a common pressure of 
the phase transition of = 9(1)P  bar, are –3= 0.00964 Åfρ =  

3= 0.477 −σ  and = 0.01069mρ  Å–3 = 0.528  3−σ . The iso-
topic difference in masses between T↓ and H↓  atoms 

Fig. 29. (Color online) Energy per particle of solid T↓  as a func-
tion of the density ρ  for the hcp (boxes), fcc (triangles) and bcc 
(circles) lattices. The dashed line corresponds to the fit to the 
DMC energies using Eq. (22). The error bars of the DMC ener-
gies are smaller than the size of the symbols. 

Fig. 30. (Color online) Two-body radial distribution functions of 
solid T↓. From bottom to top in the height of the main peak, the 
results correspond to densities 0.01 Å–3 (solid line), 0.011 Å–3 
(short-dashed line), 0.015 Å–3 (dotted line), 0.026 Å–3 (long-
dashed line), and 0.024 Å–3 (dashed-dotted line). 
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causes the occurrence of the gas–solid phase transition in 
bulk H↓  at higher densities, –3 3= 0.01328  Å = 0.656f

−ρ σ  
and –3 3= 0.01379 Å 0.682m

−ρ = σ , and considerable high-
er pressure = 173(15)P  bar. Since in liquid 4He the liq-
uid–solid phase transition occurs at densities 

3= 0.430f
−ρ σ  and 3= 0.468m

−ρ σ , and a common pres-
sure of 25.3 bar [60], it can be noticed that the transition 
densities in liquid T↓ are closer to the liquid–solid transi-
tion densities in liquid 4He (in σ  units) than to the gas–
solid transition densities in gas H↓ . 

Although the notable difference in ( )g r  is observed at 
transition densities fρ  and mρ , we decided to plot in 
Fig. 32 the DMC results of the static structure factor ( )S k  
at transition densities, as a clear example of the difference 
between the two phases. Namely, the emergence of strong 
peaks at reciprocal-lattice sites characterizes ( )S k  of the 
solid phase, while no peaks are observed in the case of the 
liquid phase. 

6.2. T↓  clusters 

Some ground-state liquid T↓  properties can been 
extrapolated from the results of the ground-state properties 
of (T )N↓  clusters, where N  is the number of atoms in the 
cluster. The same procedure was successfully applied for 
4He and 3He clusters, and the obtained equilibrium liquid 
ground-state properties were in good agreement with the 
experimental results [61,62]. An analytical expression of 
the liquid-drop formula 

 2( ) / = ,v s cE N N E xE x E+ +  (23) 

reproduces well the energy per particle ( ) /E N N  of quan-
tum liquid clusters if the variable x is defined as 

1/3= .x N −  The coefficients vE , sE  and cE  are the vo-
lume, surface and curvature terms, respectively. 

To examine whether the liquid-drop formula can be ap-
plied to (T )N↓  clusters, the DMC results for the energy 
per particle for clusters having from 20 to 320 atoms were 
fitted in to the liquid-drop model (23) (Ref. 28). The op-
timal fitting parameters are vE  = –3.66(3) K, sE  = 
= 10.2(2) K and cE  = –6.1(4) K, and they were obtained 
without including in the fit the equilibrium liquid T↓ ener-
gy per particle 0e . It was also checked that the parameters 
remain the same when the fitting is performed with 0e  in-
cluded. In Fig. 33, the DMC results for the energy per par-
ticle in clusters (T )N↓ , = 20–320N , as well as the solid 
line representing the numerical fit using the liquid-drop 
formula (23), are shown. The dashed line in Fig. 33 stands 
for the value 0e  obtained in bulk liquid T↓ (Ref. 24). Hav-
ing in mind that the parameter vE  represents the energy per 
particle of liquid T↓ at equilibrium density, it is evident 
that the obtained value vE  = –3.66(3) K is in a very good 
agreement with the result 0 = 3.656(4)e −  K obtained in 
bulk liquid T↓ calculations. 

Another quantity that can be compared with the one that 
came out from liquid T↓ study is the equilibrium density. 

Fig. 31. (Color online) Maxwell construction based on plotting 
the energy per particle /E N  as a function of 1 / ρ  in T↓ . The 
densities at which the first-order transition occurs are identified 
by finding the common tangent (solid line) to both the solid 
(dashed line) and liquid curve (dotted line). 

Fig. 32. (Color online) Static structure factor at the liquid–solid 
phase transition in T↓ . The results correspond to the liquid at 

fρ  (solid line) and to the solid at mρ  (dashed line). 
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Fig. 33. (Color online) Energy per particle of (T )N↓  clusters for 
N = 20–320. Abscissa is N, on an 1/3N−  scale. The value of the 
energy per particle obtained in bulk liquid T↓  study (Ref. 24) is 
plotted with a dashed line. 
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As we pointed out in the subsection concerning the liquid 
phase of bulk T↓, the obtained equilibrium density is 

0 = 0.007466(7)ρ  Å–3. In the limit N →∞ , the central 
density of cluster (T )N↓  should approach the value 0ρ . In 
order to examine this assumption, the density profiles for 
several T↓ clusters are reported in Fig. 34. The plotted 
density profiles are obtained using pure estimators to ex-
clude any bias coming from the trial wave function em-
ployed in simulations. Although the central densities have 
a huge noise at small distances, for the largest clusters they 
are very similar to the liquid equilibrium density 0ρ . 

7. Conclusions 

We have reviewed the theoretical research on spin-
polarized atomic hydrogen and its isotopes in the last dec-
ade. The use of quantum Monte Carlo methods, nowadays 
one of the best possible approaches for correlated quantum 
many-body systems, and the knowledge of a very precise 
interatomic interaction potential enabled improvement in 
the theoretical description of these systems. The extreme 
quantum nature of spin-polarized hydrogen and its iso-
topes, in which Bose and Fermi statistics play an important 
role, leads to a rich class of quantum phases. Spin-polariz-
ed hydrogen, the only system which remains in the gas 
phase at zero temperature, displays universal behavior at 
very low densities. By increasing the density H↓  solidifies 
at a pressure of   170 bar. Universal behavior is also ob-
served in low density two-dimensional H↓ . Upon increase 
of the density, two-dimensional H↓  freezes in a triangular 
solid. Adsorbed on the surface of liquid 4He, H↓  forms 
a stable nearly two-dimensional quantum gas. However, 
a purely two-dimensional model for the layer is appropri-

ate only for very low coverages. In particular, the conden-
sate fraction of the layer is appreciably higher than in 2D. 

The study of spin-polarized deuterium revealed differ-
ent possibilities of its ground-state phases, depending on 
how D↓  atoms are distributed with respect to the available 
nuclear spin states. At zero pressure, 3D↓  and 2D↓  are 
quantum liquids, while 1D↓  shows the peculiar property of 
a gas–liquid zero-temperature phase transition. Spin-po-
larized tritium was studied in its ground state and the con-
ditions under which it undergoes a liquid–solid phase tran-
sition were determined. It was proven that its liquid phase 
is less self-bound than liquid 4He because of its shallower 
interaction. 

The description of H↓  and its isotopes at finite temper-
ature is still not complete, as only approximate calculations 
of H↓  at very low densities were done so far. Excitations 
have not been studied either and interesting questions re-
garding the universality of excitations at low temperatures, 
which are also relevant for the community of cold Bose 
gases, remain to be analyzed. 

From the experimental point of view, trapping of spin-
polarized hydrogen and reaching quantum degeneracy lim-
its has been a great challenge. The new technique of trap-
ping hydrogen and its isotopes, using Zeeman deceleration 
[11,12], might in future enable observation of the theoreti-
cally predicted phases as well as the larger interplay be-
tween theory and experiment. 
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