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We measured the resonance spectra of edge magnetoplasmon (EMP) oscillations in a two-dimensional (2D) 
electron system located on a liquid-helium surface below 1.1 K. Systematic measurements of the resonance fre-
quency and the damping rate as a function of the lateral confinement electric field strength shows clear evidence 
of the oscillation mode transformation. A pronounced change corresponding to the mode transformation was ob-
served in the damping rate. When 2D electrons are confined in a strong lateral electric field, the damping is 
weak. As the lateral confinement electric field is reduced below a certain threshold value, an abrupt enhancement 
of the damping rate is observed. We hypothesize that the weak damping mode in the strong lateral confinement 
electric field is the compressive density oscillation of the electrons near the edge (conventional EMP) and the 
strong damping mode in the weak confinement field is the coupled mode of conventional EMP and the boundary 
displacement wave (BDW). The observation of the strong damping in the BDW–EMP coupled mode is a ma-
nifestation of the nearly incompressible feature of strongly interacting classical electrons, which agrees with ear-
lier theoretical predictions. 

PACS: 73.20.–r Electron states at surfaces and interfaces; 
73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density exci-
tations). 

Keywords: surface, liquid helium, magnetoplasmons. 

1. Introduction

In bound two-dimensional electron systems (2DESs) 
placed in a strong perpendicular magnetic field, electrons in 
the vicinity of the system edges play an important role in 
influencing the system's transport properties. For example, 
edge electronic states significantly contribute to the magne-
totransport of a degenerate 2DES in the quantum Hall re-
gime [1,2] where the entire current is carried by edge elec-
trons. An interesting application for spintronics devices 
proposes the use of edge electrons in graphene with zigzag 
edges, which support spin-dependent transport [3]. 

In this light, the important discovery of collective exci-
tation modes was made in a classical (non-degenerate) 
2DES formed on a liquid-helium surface [4,5]. The collec-

tive excitation is called an edge magnetoplasmons (EMPs), 
in which an oscillation of charge fluctuation localizes in a 
very narrow strip near the edge of a 2DES and the charge 
oscillation propagates along the perimeter. EMPs appear as 
the lower frequency branch of 2D magnetoplasmons, and 
the frequency decreases as the external perpendicular mag-
netic field is increased. Subsequently, EMPs were ob-
served in a wide variety of 2DESs including degenerate 
2DESs in semiconductor heterostructures [6], 2DESs in 
nanostructures [7], and in 2D ion systems trapped under a 
liquid-helium surface [8]. Taking advantage of the EMP 
property that the charge oscillation localizes near the edge, 
researchers have attempt to employ EMPs as sensitive 
probes to study the structure of edge electronic states and 
electronic transport along edge channels [9,10]. 
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In EMPs, a deviation from the equilibrium electron dis-
tribution causes accumulation of charge in a narrow strip 
near the edge due to the Lorentz force acting on the elec-
trons, and consequently, the EMP wave propagates along 
the perimeter [11,12]. The conventional EMP theory as-
sumes that the EMP is a compression wave of the electron 
density near the edge, while the boundary position is fixed. 
The conventional EMP theory fairly accurately describes 
the basic features of EMPs. It is understood that the EMP 
spectrum is gapless, and thus, an EMP is a candidate for 
the lowest energy excitation from the ground state. One of 
the specific characteristics of an EMP is that its frequency 
is inversely proportional to the applied magnetic field. 
Therefore, at a sufficiently large value of magnetic field, 
EMP resonance can be observed at frequencies of the order 
10 kHz or less. Thus far, several types of EMP modes have 
been studied theoretically and experimentally [13]. Among 
the types of modes, there is one that propagates along the 
edges of an incompressible 2DES, and it is particularly 
observed in 2DESs in the quantum Hall states. In principle, 
an incompressible 2DES does not support the compression 
density wave. In such a case, the charge strip is induced by 
the displacement of the boundary from the equilibrium 
position while the uniform density distribution is main-
tained [14]. We call this mode as the boundary displace-
ment wave (BDW). The 2DES formed on a liquid-helium 
surface is a classical non-degenerate 2DES, since the Fer-
mi temperature 10FT   mK corresponding to the typical 
areal electron density 1210n  m–2 is considerably lower 
than the working temperature of standard experimental 
conditions ( > 100T  mK). 

In general, a classical 2DES is not incompressible and 
the BDW is not responsible for the collective edge mode; 
however, it is predicted that the classical 2DES at low 
temperature can be nearly incompressible when the elec-
tron–electron Coulomb interaction energy dominates over 
the thermal kinetic energy of the electrons [13,15]. In the 
present paper, we report our observation of a novel BDW 
mode in a classical 2DES formed on a liquid-helium sur-
face. We show that our novel BDW mode is an in-phase 
coupled oscillation of the conventional EMP and the BDW 
(BDW–EMP coupled mode, ),+ω  theoretically predicted 
by Monarkha [13,15]. Experimental observation of BDW–
EMP coupled mode has been reported as a small resonance 
peak whose frequency is slightly downshifted from the 
large resonance peak of a conventional EMP. The amount 
of the frequency shift in Ref. 16 was in reasonable agree-
ment with theoretical calculation, and thus, the observed 
mode was identified as the out-of-phase coupled mode of 
the BDW–EMP ( ).−ω  In order to confirm that the BDW–
EMP coupled mode reflects the nearly incompressible fea-
ture of a classical 2DES, it is crucial to measure the damp-
ing rate of the resonance. The energy dissipation of the 
electron motion is determined by electron collision with 
the quanta of the capillary wave (ripplon) in the superfluid-

helium surface. If the 2DES is nearly incompressible, elec-
trons located in the deep interiors from the edge are in mo-
tion, and ripplon scattering of these electrons contributes to 
the dissipation. On the other hand, in the case of the com-
pression wave of a conventional EMP, only the electrons 
within the narrow strip near the edge are responsible for 
the damping [13,15]. In the present work, we were able to 
transform the conventional EMP into the BDW–EMP 
coupled mode by lowering the strength of the electric field 
for lateral confinement. A pronounced increase was seen in 
the damping rate. We measured the enhanced damping 
rates of BDW–EMP coupled mode. Our results provide 
clear evidence of the nearly incompressible feature of the 
classical 2D Coulomb system. 

This paper is organized as follows: In Sec. 2, a quick 
overview of EMPs is provided. In Sec. 3, we present our 
experimental techniques of EMP resonance and signal 
analysis. In Sec. 4, the experimental results concerning the 
enhanced damping rate are presented. In Sec. 5, we present 
our hypothesis that the oscillation mode with the enhanced 
damping rate is the BDW–EMP coupled ω+  mode, and 
that the incompressible motion of the 2DES is responsible 
for the damping rate enhancement. 

2. Overview of edge excitation modes 

In this section, we provide a quick overview of EMPs. 
Owing to the characteristic properties listed below, EMPs 
have been extensively studied for various 2DESs both ex-
perimentally and theoretically. In the course of such stu-
dies several types of EMPs have been observed, such as 
the acoustic mode, boundary displacement wave (BDW), 
and the BDW–EMP coupled mode. These modes differ in 
their manner of charge oscillation; however, they have the 
following main characteristic properties in common: EMPs 
are gapless, i.e., ln | |,EMP q qω   where EMPω  denotes 
the frequency, and q  denotes the wave number. Hence, 
EMPs is considered as the lowest energy excitation from 
the ground state of the 2DES. The EMP frequency is pro-
portional to the 2DES density n  and inversely propor-
tional to the applied normal magnetic field B, i.e., 

/EMP n Bω ∝ . In contrast to the bulk 2D magnetoplas-
mons [5], the frequency of the EMPs decreases with in-
creasing magnetic field. For sufficiently large value of B, 

EMPω  is several orders of magnitude smaller than the cyc-
lotron frequency = / ,c eeB mω  where e  and em  denote the 
charge and the mass of an electron, respectively. The EMP 
wave propagates along the perimeter of a bounded 2DES 
in a single direction determined by the sign of the Hall 
conductivity .xyσ  Accordingly, a resonance occurs when 
the perimeter length P  is an integer multiple of the wa-
velength, i.e., = 2 /q m Pπ  ( = 1, 2, ...).m  These common 
properties can be understood within the conventional 
EMP model. 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 10 1087 



Shuji Yamanaka, Toshikazu Arai, Anju Sawada, Akira Fukuda, and Hideki Yayama 

2.1. Conventional EMP 

Let us suppose that a charge fluctuation occurs in a 
2DES. In applying a strong normal magnetic field, due to 
the Lorentz force, electrons move perpendicular to the 
electric field. In a bounded system, the charge fluctuation 
accumulates in a narrow strip near the edge and move only 
within the strip. A conventional EMP is a collective oscil-
lation of electron density that propagates along the edges 
of a 2DES [4,5]. The conventional EMP theories of Vol-
kov and Mikhailov [11,17] and Fetter [12,18,19] assume a 
fixed boundary position, and the charge fluctuation occurs 
as a density fluctuation. Therefore, the conventional EMP 
is a compression wave. Volkov and Mikhailov arrived at 
the expressions for the frequency EMPω  and the damping 
rate EMPγ  as below: 

 = 2 = [ln (| | ) ],
2

xy
EMP EMP f

q
f q b C

σ
ω π − +

πε
 (1) 

 
( )

1 .
4 ln | |

xx
EMP b q b

σ
γ −

πε
  (2) 

We denote the frequency of conventional EMP as EMPω  
hereafter. Here, ε  denotes the dielectric constant of the 
substrate; for the case of 2DES on liquid helium, 

0= 1.057ε ε  is the dielectric constant of liquid helium 0(ε  
is the permittivity of vacuum). The parameter b  denotes 
the characteristic length scale of the charge strip where the 
EMPs localize. The term xxσ  denotes the magnetocon-
ductivity, and 0= /xy n e Bσ  is the Hall conductivity of the 
2DES 0(n  is the electron density at the center of the sam-
ple). The parameter fC  denotes a geometrical constant. 

2.2. Acoustic modes 

In the theories of conventional EMPs, the equilibrium 
density profile near the edge is regarded as the step-
function-shaped. In actual systems, the electron density 
falls off from 0n  to 0 at the edge with a characteristic 
length .w  The step-function approximation holds as long 
as .b w  For the case of a 2DES on a liquid-helium sur-
face, standard experiments involve a pair of parallel metal-
plate pressing electrodes above and below the surface. The 
pressing electrodes screen the electric field that is generat-
ed in the 2DES. The screening length d  is approximately 
the same as the distance between the 2DES and the press-
ing electrode, typically 1  mm. Therefore, the oscillating 
EMP electric field does not penetrate deep within the 
2DES over the distance d  so that the length b  may be of 
the same order as d. Likewise, the length scale w  is of the 
same order as d. Hence, for a 2DES on a liquid-helium 
surface, .b w d   In such a situation, the step-function 
approximation becomes inaccurate and a more realistic 
equilibrium density profile is needed to account for the 
resulting profile. Nazin and Shikin [20] considered EMPs 
in a 2DES with a smooth equilibrium density profile near 
the edge, and they discovered a number of possible novel 

acoustic modes. In the acoustic mode, the charge density 
oscillates in the direction perpendicular to the edge, as well 
as in the direction along the edge. The spectrum of the 
acoustic mode changes according to the applied magnetic 
field. In weak magnetic fields, the frequency of the acous-
tic mode is calculated [20] to be proportional to ,B  and in 
strong magnetic fields, it is proportional to 1/B  as in the 
case of a conventional EMP [21]. The acoustic mode has 
been experimentally identified by Kirichek et al. [22]. 
Compared with the conventional EMP, a considerably 
smaller amplitude is expected to be observed in the acous-
tic mode, because of the screening effect by the alternating 
charge perpendicular to the edge [21]. 

2.3. Boundary-displacement-wave (BDW) modes 

In the theories of the conventional EMP and the acous-
tic modes, it is assumed that the 2DES is a compressible 
Coulomb liquid. But in fact, EMP waves have been expe-
rimentally observed in incompressible 2DESs under the 
conditions of the quantum Hall effect [23]. By nature, the 
electron liquids in the quantum Hall regime are incompres-
sible because of the presence of the excitation gap from the 
ground state. In the EMPs of incompressible 2DESs, 
charge fluctuation occurs as the boundary position dis-
placement instead of the charge density fluctuation [14]. 
Hence, the edge wave that propagates in this manner is 
termed the boundary displacement wave. Although the 
origin of the charge fluctuation is different in the BDW 
from the conventional EMP, the restoring force for both 
modes is the Lorentz force acting on the electrons. There-
fore, the BDW provides practically the same spectrum as 
the conventional EMP. Hence, from an experimental point 
of view, it is very difficult to distinguish a BDW from a 
conventional EMP by frequency measurement. 

Intuitively, since classical electron liquids are in prin-
ciple compressive, a BDW is not related in any way to the 
edge wave in a classical 2DES formed on a liquid-helium 
surface. However, it has been reported that the 2DES on 
liquid helium can be nearly incompressible at low tempera-
tures, and the occurrence of a type of EMP mode along 
with boundary position motion is possible [15,16,24]. The 
theory predicts that when the Coulomb interaction energy 
between electrons dominates over the thermal kinetic ener-
gy, the strong repulsion force keeps the electrons apart and 
the 2DES can be nearly incompressible. In such a case, 
since the frequency of a BDW is close to that of a conven-
tional EMP, these two modes can couple, thereby resulting 
in two novel modes: the in-phase and the out-of-phase 
BDW–EMP coupled modes, ω+  and –ω  modes, respec-
tively. The spectra of the BDW–EMP coupled modes are 
calculated as 
 = ,xyqω γ σ± ±  (3) 

where γ ±  denote dimensionless geometrical factors. The 
frequency ω+  ( )−ω  appears at a slightly higher (lower) 
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frequency value than that of the conventional EMP. In fact, 
the BDW–EMP coupled mode was experimentally identi-
fied by Kirichek et al. [16]. In the experiment, the authors of 
Ref. 16 observed small resonance peaks that were slightly 
downshifted to the lower frequency region apart from the 
main resonance peaks corresponding to conventional EMPs. 
The measured frequencies were in good agreement with the 
−ω  values given by Eq. (3). The resonance amplitude of the 

out-of-phase BDW–EMP coupled oscillation should be 
small compared with that of the conventional EMP for the 
same reason that the amplitude of the acoustic mode is small 
[24]. The small observed amplitude of −ω  also agrees with 
this qualitative picture. 

A more significant difference between BDWs (includ-
ing the BDW–EMP coupled modes) and conventional 
EMPs is expected to be observed in terms of the damping 
rate than in the frequency [15,24]. The number of electrons 
involved in the oscillation motion is large in BDWs be-
cause the incompressible motion of electrons penetrates 
deep towards the interior from the edge over the distance 
where the electric field fluctuation penetrates (screening 
length). The penetration depth of the incompressible elec-
tron motion is 1,q−  in a similar manner to the fluid motion 
in gravity waves of water. On the other hand, in conven-
tional EMPs, the electrons in motion are confined to the 
narrow charge strip in the vicinity of the edge. Therefore, 
the energy dissipation via the electron–ripplon collision 
and consequently the damping rate must be enhanced. The 
damping rate enhancement arising from the incompressible 
motion of a 2DES has not thus far been observed. 

2.4. Discussion on incompressible motion 

Among the two BDW–EMP coupled modes, the ω+  
mode has not been experimentally identified. There is a 
suggestion that in the EMP resonance experiment of 2D 
4He+ ion pool trapped below a liquid-helium surface 
[25,26], the observed “extra satellites of unknown origin” 
may be the ω+  mode [24]. In this respect, there is an ar-
gument about whether or not the BDW–EMP coupled 
mode with incompressible motion exists in classical 2D 
Coulomb systems. The author of Ref. 24 suggests that the 
higher shifted frequency of the satellites from the conven-
tional EMP frequency may correspond to .+ω  Against this 
suggestion, an argument was presented [26,27] based on an 
analysis comparing the amplitudes of electric field pertur-
bation arising from boundary displacement and electron 
density compression. However, this analysis is questiona-
ble [24] in terms of the treatment of electron pressure. 

The origin of the satellite mode is unclear, and the con-
troversy over the incompressible motion is still unre-
solved. In order to clarify the nature of incompressible 
2DES motion in classical 2D Coulomb systems, mea-
surement of the enhanced damping rate in the BDW–EMP 
coupled mode is required. 

3. Experiment 

3.1. Sample cell 

In order to study the nearly incompressible feature of a 
classical 2DES formed on liquid helium arising from 
strong electron–electron interaction, we designed our expe-
riment in a manner that allows us to transform the conven-
tional EMP into the BDW–EMP coupled mode and meas-
ure the difference in the damping rate. 

Our sample cell is made of ordinary copper, and it is at-
tached to the mixing chamber of a dilution refrigerator. We 
ensured that the cell was perfectly horizontally mounted. 
High purity (>

 
99.99995 %) 4He gas is condensed in the 

sample cell. The liquid surface level in the sample cell is 
carefully aligned with the center of a 6 T superconducting 
solenoid. The sample gas is filled from a room-temperature 
gas cylinder through a 0.7-mm-inner-diameter Cu–Ni fill-
ing tube. During the filling process, the sample cell tem-
perature is maintained below 1 K, for which temperature 
the vapor pressure of 4He is sufficiently low, in order to 
avoid shift in the liquid level by residual gas condensation 
on further cooling. Figure 1 shows the structure of the 
sample cell. The liquid-helium depth in the sample cell is 
precisely measured from the capacitance between the top 
and bottom electrodes. The top and bottom electrodes are 
circular in shape, 25 mm in diameter, and 3 mm apart. All 
data presented in this paper were measured under the con-
dition that the depth d  from the bottom electrode was 
constant at 1.6 mm. 

The tungsten filament attached to the upper electrode is 
an electron source. The electrons emitted from the filament 
accumulate on the liquid-helium surface. The filament is 
made from a tiny light bulb from which the glass cover is 
removed. The typical operating condition to charge the 
surface is 0.6 V/10 mA with a duration of 1 s. To charge 
the surface, it is necessary to slow down the energetic 
thermoelectrons on the path from the filament to the sur-

Fig. 1. (Color online) Electrode arrangement of the sample cell: 
(a) piezo actuator, (b) top electrode, (c) guard ring, (d) electrons, 
(e) bottom electrode, (f) mechanical connection supporting (a) 
and (b), (g) tungsten filament, (h) liquid 4He. 
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face. Electrons possessing larger kinetic energy than the 
surface potential barrier (~ 1 eV) penetrate the liquid. Re-
peated collisions of electrons with cold helium vapor 
atoms during the flight can reduce the kinetic energy of 
electrons. To ensure repeated collision, we perform elec-
tron emission at a temperature close to 1.5 K, at which 
temperature helium vapor is abundant. 

The bottom electrode is biased by a positive dc source 
dcV  = 10–200 V, while the top electrode is always gro-

unded. The generated vertical electric field presses elec-
trons onto the helium surface. The top electrode is mechan-
ically connected to a piezo actuator. The application of an 
ac voltage to the piezo actuator causes vertical vibration of 
the top electrode. The estimated amplitude of vibration of 
~10–5 m is small compared with the distance between the 
top electrode and the surface (~10–3 m). Combined with 
the positively biased lower electrode, this assembly serves 
as a vibrating capacitor electrometer (VCE), which meas-
ures the total charge on the surface [28]. 

The electric field created by the guard ring electrode 
(26 mm inner diameter) surrounding the 2DES laterally 
confines the 2DES. By varying the applied potential ,GV  
which is normally negative, the strength of the lateral con-
finement electric field is controlled. A large negative value 
of GV  corresponds to strong confinement. The value of 

GV  changes the electron density distribution near the edge. 
The curves shown in Fig. 2 are the numerically calculated 
electron density distributions ( ),n r  where r  denotes the 
radial coordinate, for our sample cell geometry and applied 
electrode potentials. The electron density distribution is 
uniform in the interior and falls off near the edge. We de-
fine eR  as the 2DES radius at which ( )n r  drops to zero. 
The density distribution curves are calculated under the 
boundary conditions of realistic experimental parameters: 

= 10GV −  V (small radius) and 0 V (large radius), respec-
tively, for a given dcV  = 74 V, and the total number of 

electrons eN  = 91.16 10 ,⋅  and these are conditions corres-
ponding to the resonance spectra shown in Fig. 4. As the 
lateral confinement field is decreased, the 2DES expands, 
and, therefore, eR  increases and the central density 0n  
becomes small. For a given surface electron density ,n  
Gauss’s law determines the potential eV  of the 2DES. In 
this work, all measurements were carried out under unsatu-
rated electron densities, i.e., > 0eV V. The electrons are 
confined without loss as long as > .e GV V  

3.2. EMP resonance technique 

We employed the standard frequency sweep conti-
nuous-wave EMP resonance technique in our experiment 
[29]. The EMP signals are measured via the capacitive 
coupling between the 2DES and the bottom electrode [30]. 
The bottom electrode is divided into five segments by us-
ing 0.1 mm spacings, as illustrated in Fig. 3. The electrode 
array was photo-etched on a glass-epoxy printed circuit 
board. The area of the central disk E is half of that of the 
entire disk, as are the areas of the segments A–D. As shown 
in Fig. 3, all the segments of the bottom electrode are equal-
ly biased by dcV  through identical resistors of = 10R  MΩ. 
The input ac voltage to the segment A drives charge oscilla-
tions near the edge. The charge oscillations propagate as 
EMP waves along the 2DES perimeter and are detected as 
an ac current in segment C. The inserted blocking capacitor 

BC  isolates the ac signals from .dcV  The time constant 
= 1BRC  s is sufficiently large compared with the period of 

ac signals (< 10–4 s), thereby making the signal current lea-
kage in the circuit of dcV  negligible. We measured the sig-
nal current amplitude as a function of the excitation frequen-
cy .f  Resonance occurs when the 2DES perimeter is an 
integer multiple of the EMP wavelength. Too high a driving 
voltage sets off a nonlinear transport of 2DES, as reported 
by Monarkha et al. [31]. We varied the driving voltage and 
determined a value such that the EMP signals behaved well 
in the linear transport regime. 

 

Fig. 2. (Color online) Calculated electron density profiles in the 
(1) — strong (red) and (2) — weak (green) confinement regimes 
for the immersed-guard-ring case. Inset: enlarged view at the edge. 

Fig. 3. (Color online) Schematic explanation of the edge magne-
toplasmon (EMP) resonance experiment electronics and the di-
vided bottom electrode. 
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We systematically investigated the influence of the GV  
variation on the EMP spectra. As mentioned previously, 

GV  determines the strength of the lateral confinement 
electric field. When comparing a conventional EMP and a 
BDW (or the BDW–EMP coupled mode), it is easy to as-
sume that the BDW is favored in weak lateral confinement 
conditions because the energy cost for the boundary dis-
placement against the confining electric field can be low. 
During a series of measurements, we carefully maintained 
constant the values of ,T  ,B  and the total number of elec-
trons .eN  Since maintaining eN  constant is of prime im-
portance in this work, we carefully checked the reproduci-
bility of the spectra. 

3.3. Signal analysis 

Figure 4 shows our resonance spectra for = 10GV −  
and 0 V, measured at = 0.58T  K and = 3.2B  T. The re-
sonance condition for the mth harmonic is given as 
2 = ,eR mπ λ  where λ  denotes the wavelength. Clear re-
sonances of the first few harmonics are visible for both 
values of .GV  

We assume simple damped harmonic oscillations for 
the EMP resonance and fit the first two resonance peaks 
( = 1, 2)m  to the following function ( ):F ω  

 1 2
2 2

( ) ( )
( ) =

( 1/ )

A AF
R L C

ω + ω
ω

+ ω − ω
 (4) 

with 2 2 2 2 2( ) = / ( ) ,m m m mA aω ω −ω + γ ω  = 2 fω π  denotes 
the driving angular frequency, mω  denotes the resonant an-
gular frequency, mγ  denotes the damping rate, ma  denotes 
the amplitude parameter, and ,R  ,L  and C  represent the 

external circuit resistance, inductance, and capacitance, re-
spectively. Since the quantity being measured is the electric 
current, it is necessary to divide the voltage 1 2( ) ( )A Aω ω+  
by the external circuit impedance. We adjusted the values of 

,mω  ,mγ  and ma  as fitting parameters, while ,R  ,L  and 
C  were fixed. As shown by the solid curves in Fig. 4, the 
fitting results reproduce the spectra well. 

A frequency shift to the lower side is observed in the 
weak confinement spectrum (green squares in Fig. 4). This 
shift can be intuitively understood as the consequence of 
the enlarged 2DES edge perimeter, corresponding to an 
increase in the wavelength in the weak lateral confinement 
electric field. The resonance peak amplitudes of the weak 
confinement spectrum in Fig. 4 appear to be suppressed 
compared with those of the strong confinement spectrum. 
However, this suppression is due to the external circuit 
impedance factor in Eq. (4). The impedance increases with 
increasing ω  within our frequency range of interest. It 
should be emphasized that there is no significant difference 
in the intrinsic amplitude of the numerator of Eq. (4), re-
gardless of variation in the values of GV . 

4. Results and analysis 

Figure 5 shows the GV  dependence of (a) the resonance 
frequency, (b) the damping rate ,γ  and (c) the Q-value 

Fig. 4. (Color online) EMP spectra for strong ( =GV  –10 V, red 
circles) and weak ( =GV  0 V, green squares) lateral confine-
ments. The black solid lines indicate the fitting results of ( ).F ω  
The conditions for acquiring the spectra are following: T = 0.55 K, 

= 3.2B  T, 9= 1.16 10 ,eN ⋅  and the distance from the bottom elec-
trode and the liquid surface = 1.6d  mm. The guard ring is im-
mersed in the liquid helium. Electrons are emitted at =dcV  70 V 
and the measurements are performed at = 74dcV  V. 
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1 1( / )f γ  for the first resonance peaks. Since the behavior of 
the second peak is essentially the same as that of the first 
peak, only the first-peak results are shown. 

The most striking behavior is observed in the damping 
rate shown in Fig. 5(b). In the course of decreasing | |,GV  
the damping rate reaches a minimum value near =GV  –6 V, 
and it increases in the intermediate region II while finally 
reaching the limiting value at = 4GV −  V (region III). In a 
similar manner, the Q-value changes from about 10 in re-
gion I to 6 in region III. The behavior of the damping rate 
as well as the Q-value apparently indicates that the damp-
ing mechanisms for region I and III are different. The re-
sonance frequency monotonically reduces with decreasing 
| |,GV  but a kink is observed at around = 4GV −  V. 

We define the region boundaries as the point at which 
the damping rate is minimum (I–II boundary) and the point 
at which the frequency curve shows the kink (II–III boun-
dary). We hypothesize that an oscillation mode transforma-
tion occurs from region I to III across the intermediate re-
gion II. Decrease in the lateral confinement electric field 
results in an expansion of the 2DES and thus, the 2DES 
edge approaches the guard ring electrode. If the top of the 
guard ring electrode is positioned upright, as shown in 
Fig. 1, above the surface, the influence of the surface de-
formation of the meniscus will also need to be considered. In 
order to examine the influence of the surface deformation, 
we compared the EMP spectra using two types of guard 
ring: one was upright (half-immersed in the liquid) and the 
other was completely immersed in the liquid helium, thereby 
ensuring the liquid surface was flat. The oscillation mode 
transformation was observed in both configurations, and 
therefore, the meniscus is not a factor in our experiment. 

5. Discussion 

Let us consider the oscillation mode in region I. Since the 
electrons are strongly confined in the lateral direction, it is 
reasonable to assume the occurrence of a conventional EMP. 
The curves in Figs. 5(a) and (b) indicate the calculated val-
ues of the conventional EMP. We used the Eqs. (1) and (2) 
for our calculations. We see that the Volkov and Mikhailov 
[11,17] equations well reproduce the experimental results 
for region I. In the calculation, we arbitrarily assumed b  as 
the distance from eR  to the radius where ( )n r  rises up to 
50% of the central density 0.n  This assumption is justified 
for the following reason: The top and bottom pressing elec-
trodes screen the oscillating electric field of the charge strip 
with a screening length ,d  which is the distance between 
the 2DES and the bottom electrode, and the width of the 
charge strip b  is estimated to be of the same order as .d  
The characteristic length scale of the ( )n r  change near 
the edge is also of the order of .d  The fC  and xxσ  values 
were adjusted to fit the data. For the purpose of confir-
mation, the obtained xxσ  values were compared with 

the result of an earlier experiment [31] measured at 
11

0 = 3.15 10n ⋅  m–2 and = 1.84B  T. We measured the 
xxσ  values of Fig. 6 under conditions of 12

0 = 2.5 10n ⋅  m2 
and = 3.19B  T. In order to compare the xxσ  data ob-
tained for different values of 0n  and ,B  we assume the 
result of Drude model of magnetoconductivity in the limit 
of strong magnetic field, 2

0 / .xx n Bσ ∝  According to the 
Drude model, the xxσ  values of Ref. 31 are required to be 
scaled by multiplying a factor of 2.4. As shown in Fig. 6, 
the behavior of our obtained xxσ  curve is in good agree-
ment with the result of an earlier experiment [31]. There-
fore, the oscillation mode of region I can be regarded as 
corresponding to the conventional EMP. We note that the 

xxσ  of 2DES on liquid helium at low temperatures is 
known to be not fully described within the simple Drude 
model and it requires more sophisticated theory [31]. Tak-
ing that into account, the coincidence of the scaling factor 
of 2.4 could be accidental. 

The oscillation mode of the weak-lateral-confinement 
region III is expected to be the BDW. The enhanced damp-
ing rate agrees with the qualitative prediction in the study 
by Monarkha [13], in which it is pointed out that the in-
compressible electron motion of the BDW penetrates deep 
within the interior of the 2DES beyond the screening 
length where electric field perturbation is absent; this pene-
tration results in a strong damping, while the electron mo-
tion in the conventional EMP is confined within the 
screening length. Since the 2DES on helium in practice 
remains compressible, the BDW couples with the conven-
tional EMP in strong magnetic fields [15,16]. The wave 
that we considered as the BDW would consequently cor-
respond to the BDW–EMP coupled mode. 

Fig. 6. (Color online) Comparison of our results (red circles) with 
the results in Ref. 31 (blue pluses) as regards the relation between 
temperature and .xxσ  In order to compare the xxσ  values ob-
tained for different electron density and magnetic field, we as-
sumed Drude model of magnetoconductivity and the xxσ  data of 
Ref. 31 inelastic are multiplied by a factor of 2.4. 
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The BDW–EMP coupled mode was first observed by 
Kirichek et al. [16]. Upon comparison of our results with 
the resonance signals obtained in Ref. 16, there are both 
similarities and differences. The appearance of the BDW–
EMP coupled mode in Ref. 16 is characterized by separate 
small resonance peaks in the lower frequency domain 
away from the conventional EMP main peaks. The fre-
quency is proportional to 1/ ,B  in the same manner as that 
of the conventional EMP. The coupled mode was observed 
only at < 0.9T  K, where the damping is sufficiently 
small; however, the damping rate was not measured quan-
titatively. The above-mentioned observations were suc-
cessfully explained by the out-of-phase BDW–EMP coupl-
ing (the −ω  mode) [15,16]. Similarly, our resonance 
frequency in region III varies as 1/B  (Fig. 7(a)) and the 
oscillation mode transformation is clear at < 0.9T  K 
(Fig. 8). At higher temperatures, it becomes difficult to 
recognize the change in the damping rate. 

Our resonances in region III shows some differences. 
We observed the BDW as a single resonance peak, in con-
trast to the separate peaks observed in Ref. 16. This indi-

cates that the oscillation mode in our case transforms from 
the conventional EMP of region I into the BDW–EMP 
coupled mode of region III depending on the lateral confin-
ing electric field. When compared with the conventional 
EMP, in our case, the frequency is higher and the ampli-
tude is of the same order. The comparison of our results 
and the reported behavior of −ω  [16] is summarized in 
Table 1. 

Table 1. Comparison of other EMP modes observed in our 
study and Ref. 16 

Parameter This work Ref. 16 
Appearance  single peak  separate peak  
Amplitude  identical  considerably smaller  
Temperature  0.9T   K  0.9T   K  
Frequency  0 /n B∝   0 /n B∝   
Damping  strong  no data  
Identification  ω+   −ω   

 

Upon evaluating these observations together, along with 
the enhanced damping rate, we conclude that the oscilla-
tion mode in region III is consistent with the in-phase 
BDW–EMP coupled mode (the ω+  mode) [15]. Our iden-
tification of the ω+  mode is further confirmed from the 
dependence of the frequency on the magnetic field 
(Fig. 7(a)), central density (Fig. 7(b)), and temperature 
(Fig. 7(c)). All our observations from Fig. 7 are consistent 
with the behavior expressed by Eq. (3); ω+  is proportional 
to 0 /n B  and independent of temperature. The observation 
of the ω+  mode has not yet been confirmed. There has 
been a speculation that the “satellite mode” in Ref. 15 ob-
served in a 2D ion pool trapped below a liquid-helium sur-
face may be the ω+  mode [13,15]; however, the specula-
tion is still controversial [26,27] and the origin of the 
satellite mode is still unclear. 

Our observation of the enhanced damping rate supports 
the hypothesis by Monarkha [13,15]. The electron correla-
tion of classical electron liquids becomes strong for high 
densities, in contrast to quantum electron liquids that tend 

Fig. 7. (Color online) Measured first-peak frequencies vs 1/ ,B  the central electron density, and temperature in the weak confinement 
regime ( = 0GV  V). The blue solid lines indicate the values obtained using the least mean square method. The guard ring is im-
mersed ( = 1.6d  mm) and = 74dcV  V. The other conditions are (a): = 0.55T  K and 9= 1.16 10eN ⋅ , (b): = 3.2B  T and = 0.55T  K, 
(c): = 3.2B  T and 9= 1.16 10 .eN ⋅  
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to behave as an ideal Fermi gas in the high density limit. 
To examine the relationship between the incompressibility 
and electron correlation, we measured the region bounda-
ries of the oscillation modes at various electron densities. 
From the GV  values for the measured region boundaries, 
we calculated the central electron density 0n  and the aver-
age lateral confining electric field GE  at the outer proximi-
ty of the 2DES for the equilibrium conditions. 

The field GE  was calculated as follows [32]. For a giv-
en GV  value, we solved the electrostatic equation for the 
potential ( )rφ  of the helium surface level under appropri-
ate boundary conditions. For a small distance r∆  outside 
the edge, we define GE  as the average gradient of ( ):rφ  

 
( ) ( )

= .e e
G

R r R
E

r
φ + ∆ −φ

−
∆

 (5) 

We assumed = 20r∆  µm for the sake of numerical preci-
sion. At equilibrium, the expanding force of Coulomb re-
pulsion within the 2DES and the confining force caused by 
the guard electrode field acting on the electrons at the edge 
are balanced so that = 0GE  for 0r∆ →  [13]. The GE  
value obtained for a finite r∆  value provides a measure of 
the strength of lateral confinement. 

Figure 9 shows the GE  values at the mode transforma-
tions as a function of 0.n  The filled circles and triangles 
represent the experimentally obtained boundaries of re-
gions I–II and II–III, respectively, and the lines show the 
linear fit of these values. These values were measured us-
ing the half-immersed guard ring configuration. The results 
for the I–II boundary region for the completely immersed 
guard ring configuration are also plotted (open circles). It 
can be observed that the lines dividing the oscillation-
mode regions are independent of the sample cell geometry, 
thereby indicating that the curves in Fig. 9 indicate the 

universality of the oscillation mode for given values of 0n  
and .GE  The appearance of the BDW in the strong con-
finement regime at high densities suggests that the strong 
electron correlation gives rise to the incompressibility of 
the classical 2DES. 

Our results can be explained by the following simple 
analysis. The compressibility κ  is related to the density n  
and the chemical potential ( )nµ  by the relation 

 1 2= .dn
dn

− µ
κ  (6) 

Using Seitz’s theorem, ( ) = ( / )G Gn n d dnµ ε + ε  and the 
ground-state energy [33] 1/2 ,G nε −  we have 3/2n−κ − . 
Therefore, the compressibility would be small for large 
values of .n  

6. Conclusion 

In summary, we obtained clear evidence of an oscilla-
tion mode transformation from the conventional EMP into 
the BDW–EMP coupled mode in a classical 2DES formed 
on the surface of liquid helium. The latter mode appears 
when the strength of the lateral confinement electric field 
is weak. The behavior the BDW–EMP coupled mode is 
consistent with the theoretical prediction of the in-phase 
coupled mode ( +ω  mode) [15]. The coupling of the EMP 
with the BDW enhances the damping of the oscillation, 
thereby indicating the incompressibility arising from the 
strong correlation in the classical Coulomb liquid. 
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