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The quantum magnetic oscillations (QMO) in the layered and quasi-two-dimensional (2D) conductors deviate 
from the quasiclassical Lifshitz–Kosevich (LK) theory developed for 3D conventional metals. We discuss devia-
tions related to the broadening of the Landau levels into Landau bands by various mechanisms (layer-stacking, 
magnetic breakdown, incoherence, disorder, localization etc.). Each mechanism yields a specific factor modulat-
ing the QMO amplitudes depending on the density of states and electron velocities within the Landau bands. In 
contrast to the LK theory, these factors differ for the thermodynamic (de Haas–van Alphen (dHvA)) and kinetic 
(Shubnikov–de Haas (SdH)) oscillations. We calculated the magnetic breakdown damping factors for the SdH 
and dHvA oscillations in the 2D conductors and analyzed their difference as well as the analogy between the 
bandwidth and Weiss oscillations. In case of an isotropic 3D metals the kinetic factors become proportional to 
the thermodynamic ones as is assumed in the LK theory. 

PACS: 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor; 
72.15.Gd Galvanomagnetic and other magnetotransport effects; 
73.50.Jt Galvanomagnetic and other magnetotransport effects (including thermomagnetic effects). 

Keywords: quantum magnetic oscillations, quasi-two-dimensional conductors, magnetic breakdown, damping 
factors. 

 
1. Introduction 

The quantum magnetic oscillations (QMO), the de 
Haas–van Alphen (dHvA) and Shubnikov–de Haas (SdH) 
oscillations, are known as the most powerful experimental 
tools for studies of the Fermi surfaces (FS) in metals. A 
theoretical basis for these studies was laid down in a se-
minal Lifshitz–Kosevich (LK) paper [1]. Details of the 
method based on the LK theory can be found in the text-
books [2,3]. The important advantage of this method is that 
it permits to extract the values of effective electron masses, 
scattering times, gyromagnetic factors for different cross-
sections of the FS directly from the experimental data on 
the SdH and dHvA oscillations. 

The LK theory was developed to explain the QMO in 
conventional three-dimensional (3D) metals which put 
limits on its applicability to the new classes of quasi-two-
dimensional (Q2D) conductors like the layered organic 
conductors and superconductors, high-Tc cuprates, gra-

phite, graphen, GaAs- and Si-based heterostructures, artifi-
cial lateral superlattices etc. These conductors display both 
the SdH and dHvA oscillations but their shapes often can-
not be interpreted in terms of the LK theory. A typical ex-
amples are the so-called “forbidden frequencies” in the 
Fourier spectrum of the QMO and anomalies in the angular 
and amplitude dependencies of the harmonics in some 
Q2D conductors. Deviations from the LK behavior in Q2D 
conductors originate, in particular, from the effects due to 
the broadening of the sharp Landau levels of the ideal 2D 
electron gas into Landau bands as shown in Fig. 1. We will 
demonstrate below that there is a direct relation between 
the each specific mechanism of the Landau level broaden-
ing (or splitting) and the corresponding damping factor. 
The number of these factors in the Q2D conductors is larg-
er than in the 3D metals. In contrast to the standard LK 
theory they differ for the thermodynamic dHvA and kinetic 
SdH oscillations. 
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1.1. The magnetization oscillations in 3D LK theory 

To formulate the problem more precisely, consider first 
the basic points of the LK approach. The oscillating part of 
the magnetization in the LK theory can be written as fol-
lows: 

 3
3/2

=1
( ) = Im exp 2 ( ).LKD

p

M FM B ip R p
Bp

∞ ⎡ ⎤⎛ ⎞π − γ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (1) 

Here 3DM  is the amplitude of the magnetization oscilla-
tions. The frequency of the oscillations = ( ) / 2FF cS eε π  
is proportional to the area enclosed by the orbit in the mo-
mentum space at the Fermi energy ( ).FS ε  The parame-
ter γ  in the LK theory equals to 1/2, which is equivalent to 
the factor ( 1) p−  in Eq. (1), but in general, it can deviate 
from this value. The amplitudes of harmonics are given by 
the product of the Dingle, ( ),DR p  temperature ( )TR p , 
and the LK spin, ( ),LK

SR p  factors: 

 ( ) = ( ) ( ) ( ).LK
D T SR p R p R p R p  (2) 

These factors together with the Eq. (1) contain information 
on the FS shape, effective electron masses, scattering 
times, and g factors. 

(i) The period of the dHvA oscillations in the inverse 
magnetic field 1/ B  gives a value of the cross section of 
the FS, ( ),FS ε  by the plane perpendicular to the magnetic 
field. By changing the magnetic field orientation one can 
restore the shape of the FS. 

(ii) The scattering time, τ , is determined from the Din-
gle factor which in terms of the Dingle temperature 

= /D BT kτ  takes the form 

 ( ) = exp .D
D

e

p m T
R p

m B

∗⎛ ⎞α
−⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

The notations here are 2= 2 / = 14.9 T/K,e Bm k eα π  
Bk  is the Boltzmann constant, and em  is the electron 

mass. The effective mass of electron is determined by the 
FS cross-section derivative = (1/ 2 ) ( ) /m S∗ π ∂ ε ∂ε  and 
depends on the orientation of the magnetic field but not on 
its strength. The scattering time, therefore, can be obtained 
from the logarithmic Dingle plot of the pth harmonics 
amplitude. 

(iii) The temperature factor in Eq. (2) is given by 

 ( ) =
sinh ( )T

pR p
p

λ
λ

, (4) 

where the parameter 22 /B e ck Tm m∗λ ≡ π ω  is propor-
tional to the temperature. For the fixed value of the field 
B  the shape of the ( )TR p  depends only on the effective 
electron mass. Therefore, the effective mass in the LK 
theory is determined from the experimental curve for 
the temperature behavior of the amplitude ( )LKR p  since 
other terms in Eq. (1) are temperature-independent. 

(iv) The spin-factor in the LK theory is given by 

 
*

( ) = cos .
2S

e

pgmR p
m

⎛ ⎞π
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5) 

The effective mass depends on the FS cross section 
which can be changed by the magnetic field rotation. For 
the closed orbit * 1/ cosm ∝ θ  where θ  is an angle be-
tween the magnetic field and the one of the FS symmetry 
axis. The spin-factor becomes zero at the angles which 
satisfy the condition *( ) / = 2 1,egm m nθ +  where n  is an 
integer. This is the spin-zero effect which makes possible 
to determine the g factor, provided that the effective mass 
is known from the temperature factor ( ).TR p  

(v) It is believed in the LK theory that the SdH magne-
toresistance oscillations are completely due to the Landau 
energy spectrum quantization and therefore a simple rela-
tion between the oscillation part of the conductivity and the 
magnetization oscillations holds: 2 / .B M Bσ∝ ∂ ∂  

The above scheme works nicely in conventional 3D 
metals under the conditions when the chemical potential μ  
is fixed at the Fermi energy Fε  which is the largest energy 
scale in the problem (i.e., much larger than the disorder 

Fig. 1. The Landau bands in 2D conductors originate from the
lifting up the degeneracy of the Landau orbits on a position by the
periodic or disordered potential. In case of a 2D periodic potential
the Landau levels split into fractals. 
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potential, density wave or any other periodic perturbation, 
temperature, cyclotron frequency etc., which is really the 
case in conventional 3D metals). 

Numerous deviations from the LK theory have been ob-
served in different quasi-two-dimensional (Q2D) conduc-
tors. They are caused by the chemical potential oscillations 
[4–22], magnetic breakdown [4–8,23–29], dispersive and 
incoherent transport of electrons across the layers [4–10, 
30–36], spin- (SDW) and charge-density-waves (CDW) 
[4–7]. The first observation of the QMO in layered super-
conductors in 1976 [37] was a surprise since magnetic field 
penetrates into the bulk of a superconductor in a form of 
the Abrikosov vortices and it was believed that the QMO 
are impossible in superconductors. Two decades later ex-
periments confirmed the QMO in the other conventional 
superconductors [38,39]. The additional damping of the 
QMO below the upper critical magnetic field in 2D super-
conductors was explained by the scattering of the quasipar-
ticles on the “vortex-matter” in the superconducting mixed 
state [39–47]. A review of the theoretical papers and rele-
vant experiments on the QMO in quasi-2D conventional 
superconductors was given in Ref. 8. It was revealed later 
that in layered organic superconductors which display the 
QMO under the conditions of incoherent electron hopping 
between the layers [33–35] the amplitudes of the SdH and 
dHvA oscillations enhance below the upper critical mag-
netic field as a result of the restoration of the coherence 
across the layers in the superconducting state [10]. After 
more than twenty years of intensive researches, a new sur-
prise was the discovery of the QMO in the high- cT  cup-
rates [48]. It gave a new impetus to the studies of a long 
standing puzzle of the cuprates which are non-Drude qua-
si-2D strongly correlated conductors with the pseudogap in 
the energy spectrum. The SdH and dHvA oscillations in 
cuprates deviate from the LK theory. The mechanisms of 
these deviations are in part the same as in layered organic 
superconductors which is not recognized yet in the QMO 
community. A typical mistake is an application of the 
thermodynamic set of the damping factors to the kinetic 
SdH oscillations. 

The purpose of this paper is to describe within a unified 
approach the effects related to the formation of the Landau 
dispersive and disordered bands on the QMO in layered 
conductors which are beyond the points (i)–(v) of the stan-
dard LK theory. We will focus a special attention on the 
SdH oscillations in periodic magnetic breakdown Fermi-
surface configurations and compare results with the dHvA 
and Weiss oscillations. 

This paper is devoted to Emanuil Aizikovich Kaner 
with whom we wrote two works on the oscillations in 2D 
coherent MB structures [26,27]. We have predicted in [27] 
a cascade of the magnetic-breakdown structural Pierls-like 
phase transitions which is similar to recent observations in 
graphite [7,49]. 

2. Quantum magnetic oscillations in quasi-2D 
conductors 

2.1. The origin of the Landau bands and the difference 
between the SdH, dHvA and Weiss oscillations 

The Landau levels in 2D electron gas are flat and dege-
nerated with respect to the Landau orbit center position. 
The degeneracy is large and equals to 0= /s Φ Φ , where 
Φ  is the flux through a 2D sample and 0 = /hc eΦ  is the 
flux quantum. Any spatial disorder or periodicity within 
the 2D plane lifts up the degeneracy and broaden Landau 
levels into the Landau bands which can be either disper-
sive, or disordered, or fractal, as illustrated in Fig. 1. The 
fractal splitting of the Landau levels occurs if external po-
tential has periodicity in two directions and the flux 
through a unit cell is an irrational number in flux units. A 
fine substructure of the energy levels within the Landau 
bands in that case is known as the Azbel–Hofstadter but-
terfly [50–57]. In case of 1D artificially produced periodic 
potential as well as for the periodic magnetic-breakdown 
trajectories in the momentum space shown in Fig. 2 the 
energy spectrum within the Nth Landau band is dispersive 
which means that electron energy is a periodic function of 
the quasi-momentum ( ) = ( / ),N NE p E p a+  where a  
stands for the spatial period of the trajectory. The width of 
the dispersive Landau bands is a periodic function of the 
inverse magnetic field which gives rise to the Weiss 
(bandwidth) oscillations [58–65]. These oscillations differ 
from the SdH or dHvA oscillations. They are less damped 
at low fields 0<<B B  and fade away at higher fields. 0(B  
is usually less than 0.1–0.5 T in lateral superlattices and 
amount to 10–30 T in layered organic conductors.) 

 

Magnetic breakdown points

Small orbits Large orbits

Open orbits

Fig. 2. The Fermi contours composed of a periodic chains of 
closed orbits connected by the magnetic-breakdown points typi-
cal for some quasi-2D organic conductors and artificial lateral 
superlattices. 
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In a regular layered conductors dispersive Landau 
bands appear due to the electron hopping between the lay-
ers. In case of an irregular layer-stacking, or if << /t τ , 
this hopping is incoherent which has a strong impact on the 
quantum magnetic oscillations of the conductivity across 
the layers ( t  is the interlayer hopping integral, τ  is the 
scattering time within the layers). The incoherence means 
that the hopping between the neighboring layers require a 
time / >>t τ  so that electrons scatter many times within 
the layers before successive hopping. The momentum in 
direction perpendicular to layers is no longer a good quan-
tum number and there is no 3D FS (in other terms, the cy-
linder warping t  is much less than the FS smearing by 
impurities / τ ). In such Q2D conductors the QMO are 
due to the Landau quantization within the planes 
[10,36,66]. 

A potential disorder within the planes is especially cru-
cial for the quantum oscillations of the in-plane conductivi-
ty. A remarkable example is the 2D electron gas in which 
the low-field SdH oscillations of the diagonal conductivity 
increase their amplitudes with the increase of magnetic 
field and transform gradually into sharp peaks at higher 
fields when the integer quantum Hall effect regime sets in 
[67–69]. These peaks are centered exactly at the Landau 
levels where narrow stripes of the delocalized states are 
placed. The other states within the disorder-broaden Lan-
dau bands are localized. The localization, important for the 
conductivity oscillations, is not so crucial for the thermo-
dynamic dHvA oscillations. Therefore, in sharp contrast to 
the LK theory developed for the 3D conventional metals, 
there is a dramatic difference between the SdH and dHvA 
oscillations in quasi-2D conductors. In layered conductors 
the shape of the QMO is determined by the different damp-
ing factors, some of which oscillate in inverse magnetic 
field and have different shape for the SdH and dHvA oscil-
lations. In conventional 3D metals the chemical potential 
equals to the Fermi energy which is not the case in quasi-
2D conductors and the chemical potential oscillations is 
another source of deviations from the LK theory in these 
materials (see [11–21]) which we do not consider here. 

In what follows we derive damping factors which ap-
pear as a result of the broadening of the Landau levels into 
bands and show the difference between the SdH, dHvA 
and Weiss oscillations. We put a special emphases to cal-
culations of the magnetic-breakdown factors for the Fermi 
contours shown in Fig. 2 which are typical for different 
organic conductors and some artificial lateral superlattices. 

2.2. The quantum oscillations of magnetization in quasi-2D 
conductors 

The quasiclassical quantization rule of the closed 2D 
orbit encompassing an area ( )S E  in the momentum space 

 
2( ) = ( 1/ 2),eBS E n

c
π

+  (6) 

yields a periodic set of sharp Landau levels separated by 
the cyclotron energy cω , where the cyclotron frequency 

*= / .c eB m cω  In case the Landau bands are broaden into 
bands the energy spectrum takes the form 

 ( ) = ( 1/ 2) .n cE nξ ω + + ξ  (7) 

Here ξ  is the energy related to additional degree of free-
dom responsible for the broadening or splitting Landau 
levels. Let ( )g ξ  be the density of states (DOS) associated 
with this degree of freedom. If there are two independent 
such degrees of freedom described by the variables 1ξ  and 

2 ,ξ  then 1 2= ,ξ ξ + ξ  and the total DOS is given by a 
convolution of the two related densities of state 1 1( )g ξ  
and 2 2( ) :g ξ  

 1 2( ) = ( ) ( ).g d g gξ ω ξ −ω ω∫  (8) 

A generalization to the many degrees of freedom is 
straightforward. 

The density of states of the whole system with the ener-
gy spectrum ( )nE ξ  is given by 

 ( )
=0

( , ) = ( ) ( 1/ 2) .c
n

B s d g n
∞ ∞

−∞

ρ ε ξ ξ δ ε − ω + − ξ∑∫  (9) 

The quantity 0= /s Φ Φ  is the degeneracy of the Landau 
level. Using the Poisson summation formula 

 2

=0 =10 0
( 1/ 2) = ( ) 2 Re ( 1) ( )e ,p ipx

n p
f n f x dx f x dx

∞ ∞∞ ∞
π+ + −∑ ∑∫ ∫  

  (10) 

one can single out an oscillating part of the ( , ),Bρ ε  which 
yields 

 
=1

2( , ) = 2Re ( 1) exp ( ),p

c cp

s ipB I p
∞ ⎛ ⎞π ε

ρ ε − ⎜ ⎟ω ω⎝ ⎠
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where the factor ( )I p  is a Fourier transform of the DOS 
( )g ξ  

 2( ) = ( )exp .
c

ipI p d g
∞

−∞

⎛ ⎞π ξ
ξ ξ −⎜ ⎟ω⎝ ⎠

∫  (12) 

This universal factor is a generic for the thermodynamic 
QMO in a sense that all other damping factors of dynami-
cal origin (the Dingle and the spin factors, for example) 
can be obtained directly from it. (The temperature factor is 
not a dynamic factor because it comes from the tempera-
ture smearing of the Fermi function.) 

The magnetization oscillations in the Q2D layered con-
ductors with the DOS (11) is given by 

   0

=1
( ) = Im exp 2 ( ) ( ).T

p

M FM B ip R p I p
p B

∞ ⎡ ⎤⎛ ⎞π − γ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (13) 



The Landau band effects in the quantum magnetic oscillations 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, No. 11 1213 

The factor ( )I p  is a Fourier transform of the DOS within 
the Landau band ( ).g ξ  If a few mechanisms broad Landau 
levels into a band ξ  is a sum of the variables iξ  and ( )I p  
is a product of the factors ( )iI p  responsible for each me-
chanism because in this case the total DOS ( )g ξ  is a con-
volution of the functions ( ).ig ξ  

In the next sections we will demonstrate how the differ-
ent damping factors appear within this approach and will 
calculate the magnetic-breakdown factors for trajectories 
shown in Fig. 2. 

2.3. The spin factor and the Dingle factor 

Magnetic field split Landau levels of electrons since 
they have a spin. The DOS associated with the spin degree 
of electrons is given by 

 [ ]1( ) = ( ) ( )
2sg + −ξ δ ξ − ε + δ ξ − ε , (14) 

where the spin-split energy of the Landau levels is given 
by = ,Bg SB±ε μ  = / 2B ee m cμ  is the Bohr's magneton, 
and the spin eigenvalue is = 1/ 2.S ±  A substitution of this 
DOS into Eq. (12) gives the spin factor ( )SR p  of Eq. (5). 

Impurities broad Landau levels into disordered Landau 
bands. To calculate the appropriate DOS ( )ig ξ  within the 
Landau bands is not a simple problem. It is generally ac-
cepted and confirmed by numerous experiments that a 
good approximation for the DOS within the impurity-
broaden Landau bands ( )ig ξ  is the Lorentzian 

 2 2
1( ) = .ig Γ

ξ
π ξ + Γ

 (15) 

The factor Eq. (12) yields in this case a famous exponential 
Dingle factor ( ) = ( )i

DI p R p  in the form of Eq. (3). 
The function ( )ig ξ  in general deviates from the simple 

Lorentzian shape. That is, for example, in a 2D electron 
gas at high magnetic fields in the integer quantum Hall 
effect regime. In that regime the DOS within the Landau 
bands has a narrow stripe of delocalized states in the mid-
dle and localized states in the wings which have rather 
Gaussian than Lorentzian shape. We do not consider the 
quantum Hall effect here and limit our consideration to the 
QMO only. 

2.4. The layer-stacking factor 

The electron hopping across the layers broadens Landau 
levels into the bands. In case of a periodic layer stacking 
and under the condition of a nearest layer electron hopping 
the DOS associated with this degree of freedom is 

 2 2 1/21( ) = (4 ) .g t −ξ −ξ
π

 (16) 

This function has a square-root singularities at the band 
edges 0 = 2tε ±  which yields the following oscillating 
layer-stacking factor [29] 

 0
4( ) =

c

tpI p J
⎛ ⎞π
⎜ ⎟ω⎝ ⎠

, (17) 

where t  is the hopping integral between the layers and 0J  
is the Bessel function. In the case of a regular periodicity 
in layer stacking the electron hopping across the layers can 
be described in terms of the dispersion relation ( ).qε  The 
factor ( )I p  can be written in that case in the form 

 
/

/

2 ( )( ) = exp .
2

a

ca

dqa ip qI p
π

−π

⎛ ⎞π ε
−⎜ ⎟π ω⎝ ⎠

∫  (18) 

Here a  is the distance between the layers. For the nearest 
layer hopping the dispersion ( ) = 2 cos( )q t qaε  and 
Eq. (18) gives exactly the factor Eq. (17). A description in 
terms of the dispersion ( ),qε  in fact, is an equivalent to the 
standard approach with a 3D Fermi surface in the shape of 
a warped cylinder. The oscillations of the Bessel function 
in Eq. (17) modulate the dHvA oscillations exactly in the 
same fashion as the so-called “neck and belly” frequencies 
in the LK approach. 

The description of the electron hopping across the lay-
ers in terms of the DOS ( )g ξ  is more general. It does not 
imply a regularity in the layer stacking and can be applied 
even if there is no 3D FS and electron hopping across the 
layers is incoherent and cannot be described by a disper-
sion relation ( ).qε  The absence of the 3D FS (the interlay-
er incoherence) was established with the help of the QMO 
in some layered organic conductors [33–35] and recently 
in the high-Tc cuprates [48]. Long before that a model of 
the interlayer incoherence was considered in the context of 
intercalation defects and the corresponding layer-stacking 
factor (12) was calculated [29]. It was shown that if there 
is a small concentration 1c  of the stacking faults in a 
sample then ( )I p  contain exponential Dingle-like terms 
caused by the disorder in direction across the layers 
[29,47]. The stacking fault means that the local hopping 
integral, 0 ,t  for the hopping from the “defect layer” to the 
nearest-neighbor layers is less than t. The layer-stacking 
factor in that case is given by 

 0
4( ) = (1 ) ( )

c

tpI p c J c I p
⎛ ⎞π

− + δ⎜ ⎟ω⎝ ⎠
, (19) 

where 

 2 2 0
0

42( ) = exp cos .
c c

t ppI p t t
⎛ ⎞ ⎛ ⎞ππ

δ − −⎜ ⎟ ⎜ ⎟ω ω⎝ ⎠ ⎝ ⎠
 (20) 

The layer-stacking factor ( )I p  given by Eqs. (19) and (20) 
is an oscillating function of the inverse magnetic field 
which modulates the dHvA oscillations. The Dingle-like 
exponent in Eq. (20) can be written in a standard form 
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exp ( 2 / )c d− π ω τ  where the quantity 2 2
0= /d t tτ −  is 

the scattering time associated with the electron hopping 
across the irregularly stacked conducting planes. 

2.5. The dynamic localization and the tilted 
magnetic field effects 

The layer-stacking factors (17) and (19) oscillate as a 
function of the ratio / .ct ω  The frequency of these, and 
related dHvA, oscillations depend on the hopping integral 
value. We consider here two ways of effective changing t  
by external influence. 

In layered conductors with a large hopping integrals 
> /t τ  the electron transport across the layers is coherent 

and the 3D FS has a shape of the warped cylinder. If exter-
nal magnetic field deviates from the cylinder axis at the an-
gle Θ , the hopping integral between the layers is effectively 
renormalized by the angle-dependent Yamaji factor [30] 

 eff 0( ) = ( tan ),Ft tJ k aΘ Θ  (21) 

where 0 ( )J x  is the Bessel function, and Fk  stands for the 
Fermi wave number. A substitution of the eff ( )t Θ  into the 
layer-stacking factor (17) makes it an oscillating functions 
of the angle .Θ  

Another opportunity is with the dynamic localization 
which is an effective modulation of t  by the resonance 
between the Bloch–Stark oscillations of the frequency 

/eEa  with the external electromagnetic wave of the fre-
quency ω  polarized perpendicular to the layers with the 
electric field E  along this direction. As a result, the effec-
tive hopping integral takes the form [31,32] 

 eff 0= .eEat tJ ⎛ ⎞
⎜ ⎟ω⎝ ⎠

 (22) 

Therefore, by tilting the magnetic field and by applying 
polarized laser irradiation to layered conductor one can 
effectively change the hopping integral value and thereby 
the shape of the dHvA oscillations. 

2.6. The thermodynamic magnetic-breakdown factor 

In some organic layered compounds the Fermi counters 
are composed of periodic set of closed orbits coupled by 
the magnetic breakdown (MB) as shown in Fig. 2. Consid-
er first a chain in the upper side of this picture. The Landau 
bands for that chain are dispersive and the energy spectrum 
within the Landau band is given by [25–27] 

 ( )( ) = arcsin cos .cq W qL
ω

ε
π

 (23) 

Here W  is the probability of the magnetic breakdown, 

 0= exp .
B

W
B

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (24) 

The quantity 0B  is the magnetic-breakdown field, and 
L  is the spatial period of the “magnetic-breakdown chain” 
(periodic trajectory in the momentum space composed of 
the closed orbits with the period of the Brillouin cell size). 
Substituting the dispersion relation Eq. (23) into Eq. (18) 
we arrive at the following expression for the magnetic-
breakdown factor ( ) ( )MBI p R p≡  

 
/2

0

2( ) = cos 2 arcsin ( cos ) .MBR p dy p W y
π

⎡ ⎤
⎣ ⎦π ∫  (25) 

Completing the integration, we have 

 
1

2 2 2
2

=1 =0

( 1)( ) = 1 ( ).
( !)

p k k
MB k

k l
R p W p l

k

−−
+ −∑ ∏  (26) 

The MB factor as a function of the 0 1W≤ ≤  is a poly-
nomial with the fixed values at the boundaries: 

( ) = 1MBR p  for = 0W  and ( ) = 0MBR p  for = 1.W  For 
the first three harmonics = 0,1, 2, ...p , these polynomials 
are 

2 4(0) = 1, (1) = 1 , (2) = 1 4 3 .MB MB MBR R W R W W− − +  
  (27) 

The plot of the ( )MBR p  is also shown in Fig. 3. The 
breakdown field, 0B  in layered organic conductors vary 
from the few Tesla to few tenth of Tesla. It can be signifi-
cantly decreased by applying the external pressure or by 
the suppression of the density waves, in case they are re-
sponsible for the opening the MB gap at 2D the FS [4–10]. 

An important examples of the Fermi contours with the 
MB are shown in Fig. 2. Consider first the upper chain in this 
figure and let us assume that the small circles in a chain are 
small α  orbits with the area inside ( ) ( )S Sα ε ε . In that 
case the effective MB probability through small orbits, eff ,W  
oscillates in the inverse magnetic field with the amplitude of 
the order of unity for 1.W  The effW  is given by (see 
[24–26] for details) 

Fig. 3. The magnetic-breakdown factors ( )MBR p  as a function 
of the MB probability W for the p =1, 2, 3, 4, 5. Note that the 
harmonics integer p  exactly equals to the number of zeroth in 
the polynomial function ( ).MBR p  
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2

eff 2 2
= .

4(1 ) sin

WW
W W α+ − ϕ

 (28) 

This quantity oscillates with the frequency of the closed 
orbit = /F Bα αϕ π  which is proportional to the cross-
section area of the α  orbit in the momentum space at the 
Fermi energy ( )FSα ε : 

 
( )

= .
2

FcS
F

e
α

α
ε

π
 (29) 

The parameter γ  also should be replaced by the effective 
quantity effγ  which is an oscillating function of the αϕ : 

 
2

eff 2
1 1= arctan tan .

1
α α

⎡ ⎤⎛ ⎞+ τ
γ − ϕ −ϕ⎢ ⎥⎜ ⎟⎜ ⎟π − τ⎢ ⎥⎝ ⎠⎣ ⎦

 (30) 

The effγ  determines the Landau-band center position 
which therefore oscillates with the frequency of the closed 
orbit Fα . The Landau bandwidth also oscillate with this 
frequency 

 eff
2

= arcsin ( ).c W
ω

Δε
π

 (31) 

These oscillations of the Landau-band spectrum explain 
naturally the appearance of the so-called forbidden fre-
quencies observed in quantum oscillations in the MB re-
gime of some layered organic conductors. These forbidden 
frequencies in the Fourier spectrum of the magnetic oscil-
lations imply that electrons change abruptly the sense of 
rotation in a magnetic field on some sections of the Fermi 
contour. This paradox is naturally resolved in our approach 
by the oscillations of the MB factor. More details on the 
problem of the forbidden frequencies can be found in the 
papers [4–6,19–22]. The forbidden frequencies also have 
been observed in the 2D electron systems with the artifi-
cially modulation or lateral superlattices which display the 
MB Fermi contours like the ones in Fig. 2 but at lower 
energy scale [62,63]. The MB field 0B  in the 2D artificial 
structures is much less than in layered organic ET salts. 

3. The band conductivity of a 2D system 
in perpendicular magnetic field 

The conductivity of a 2D conductor in perpendicular 
magnetic field can be written in the following form [66]: 

 2
0

=
= Re e ( ) ( ) ,i p

p
p

fN p dEA E
E

∞
π γ

−∞

∂⎛ ⎞σ σ −⎜ ⎟∂⎝ ⎠
∑ ∫  (32) 

where 2
0 0= / ( )ce Vσ Φ Φ ω  (V  is the volume of a sample). 

The other quantities in Eq. (32) are 

 2 2( ) = ( ) ( ) exp ,
c

ipN p d g v
⎛ ⎞π ε

ε ε ε ⎜ ⎟ω⎝ ⎠
∫  (33) 

   
22 ( )( ) = exp 1 ( , ).p D

c c

pipE EA E R p E
⎛ π ⎞⎛ ⎞π τ
+⎜ ⎟⎜ ⎟ω ω τ⎝ ⎠ ⎝ ⎠

 (34) 

The generalized Dingle factor here is written in terms of 
the scattering time ( , ) = exp ( 2 | | / )D cR p E p− π ω τ  which 
is defined through a self energy / ( ) = Im ( )E Eτ Σ  and 
therefore depends on the energy .E  

The important difference of the SdH series (32) from 
the dHvA oscillations (13) in 2D conductors is a new 
damping factor ( )N p  which differs from the thermody-
namic factor ( )I p  by the velocity squared 2 ( )v ε  under the 
integral. 

In the LK theory the electron velocity at the 3D FS is 
assumed to be a constant 2 2( ) (0) .v vε ≈  In this approxima-
tion the kinetic factor is proportional to the thermodynamic 
one 2( ) = (0) ( )N p v I p  and because of that the SdH oscil-
lations are reduce to the dHvA oscillations in the LK 
theory. This is not the case in 2D and layered conductors. 
We will illustrate that difference in the next sections. 

3.1. The SdH oscillations in layered conductors 

Consider first the SdH oscillations in a layered conduc-
tor with the electron dispersion across the layers 

( ) = cos ( / )q t qaε . In terms of dispersion ( )qε  the kinet-
ic layer-stacking factor takes the following form 

 
/

2

/

2 ( )( ) = ( )exp ,
2

a

zz z
ca

dqa ip qN p v q
π

−π

⎛ ⎞π ε
−⎜ ⎟π ω⎝ ⎠

∫  (35) 

where ( ) = ( ) /zv q q q∂ε ∂  is the electron velocity across the 
layers. A calculation of the integral yields 

 
2

1
2( ) = .

2
c

zz
c

a t ptN p J
p

⎛ ⎞ω π
⎜ ⎟π ω⎝ ⎠

 (36) 

The difference with the thermodynamic layer-stacking 
factor 0( ) = (2 / )cI p J ptπ ω  is evident. An important 
point is that for a regular stacking both layer-stacking fac-
tors oscillate in inverse magnetic field due to the warping 
of the Fermi surface. 

Fig. 4. The oscillations of the effective MB probability given by
Eq. (28). 
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In the “tau-approximation” the scattering time does not 
depend on energy, ( ) =Eτ τ . In that approximation with 
the help of equation 

     
0

22exp ( )exp F
T

ipf ipEdE R p
E

∞ π ε∂ π ⎛ ⎞⎛ ⎞ ⎛ ⎞− ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ Ω Ω⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫  (37) 

one can rewrite the conductivity in a form more similar to 
the LK expression 

 02
( ) =B

σ τ
σ ×   

=

2
( ) 1 cos 2 ( ) ( ).T D

cp

p FN p p R p R p
B

∞

−∞

⎛ π ⎞ ⎡ ⎤⎛ ⎞× + π − γ⎜ ⎟ ⎜ ⎟⎢ ⎥ω τ ⎝ ⎠⎣ ⎦⎝ ⎠
∑  (38) 

Putting here ( )zzN p  one can calculate the conductivity 
across the layers zzσ . If temperature and Dingle factors 
are small ( ) ( ) 1T DR p R p  then only first few harmonics 
are important in the series (38). That case was studied in 
[71,72]. With the factor ( )zzN p  (36) one can to perform a 
summation in Eq. (38) only numerically. Fortunately, an 
analytic consideration is possible in the case of a quantum 
Hall effect. In that case all states are localized within the 
Landau band ( )g ε  except a narrow stripe in the middle 
which means that 2 ( ) = 0v ε  for all energies except those 
within the stripe at the center of band ( = 0).ε  Therefore, 
only a narrow stripe of delocalized states contribute to the 
factor ( )N p  which does not depend on the p  in that case 

2( ) ( ) ( ).N p d g v≈ ∫ ε ε ε  Because of that a sum in Eq. (38) 
can be completed analytically for the arbitrary shape of the 
function ( )g ε . The two terms in the sum (38) determine 
the Boltzmann and the “quantum” conductivities. The 
“quantum term” is proportional to the 2 / .cpπ ω τ  It is 
very important in the quantum Hall regime in which both 
the Botzmann and the “quantum” conductivities are sharp-
ly peaked, but nearly cancel each other between the peaks. 
More details can be found in the papers [66,73]. 

3.2. Coherence versus incoherence in a hopping 
between the layers 

Of special interest is the case of small t  since it means 
a weak coupling between the layers which was really es-
tablished in some organic conductors. In case of a small 

/t τ  a hopping between the layers is incoherent even 
if a stacking is regular and the layered conductor has no 3D 
FS, but within the layers a 2D FS survive and the Landau 
quantization of the 2D electron orbits makes an overall 
oscillation picture more complex than in a pure 2D case. 

That difference is especially important in layered super-
conductors with the incoherent electron hopping between 
the layers in a normal state [10]. The coherence restores in 
a superconducting state because the hopping integrals are 
effectively renormalized 2 2

eff / /t t t t t t→ ≈ + Δ ≈ Δ  
by the order parameter Δ  [74]. The hopping between the 

layers take less time eff/ t  and electrons spend less time 
within the layers. Correspondingly they less scatter on im-
purities within the planes which enhances both the kinetic 

( )zzN p  and thermodynamic ( )I p  layer-stacking factors 
[10]. If this enhancement is larger than the damping due to 
the scattering on a “vortex matter” within the layers, than 
the SdH and dHvA amplitudes enhance at fields just below 
the upper critical one. At first glance that is counter intui-
tive because the superconductivity is an antagonist of the 
magnetization and suppresses the QMO in quasi-2D super-
conductors. This suppression in 2D case was considered 
theoretically in a number of papers reviewed in [8] but all 
these theories ignored the hopping between the layers 
which is incorrect in general and, as we see, can changes 
things notably. 

To illustrate this, consider a limiting case of a strong in-
coherence /t τ  resulting in a localization of electrons 
in direction perpendicular to layers which means 

( ) = 0zzN p . A restoration of the coherence in direction 
perpendicular to the layers makes the factor ( )zzN p  and 
the conductivity zzσ  nonzero. Therefore, the interlayer 
incoherence /t τ  is crucial for the anomalous en-
hancement of the quantum magnetic oscillations of the 
conductivity zzσ  in the superconducting state. This effect 
has been observed in a layered organic conductor ′′β  in 
which an incoherent electron transport in the normal state 
is due to the very small hopping integral between the lay-
ers and 3D Fermi surface is absent [10]. 

The dynamic localization and deviation of external 
magnetic field from the axis of a 3D cylinder FS, as was 
discussed above, also renormalize the hopping integrals. 
The corresponding effective hopping integrals are given by 
Eqs. (21) and (22). In both cases, because of the oscilla-
tions of the Bessel function, the effective hopping integrals 
become zero when either tanFk a Θ  or /eEa ω  are equal 
to one of the zeros of the 0 ( ) = 0lJ x . Nearby these values 

efft  is small and electron hopping becomes incoherent if 
eff /t τ . 

Therefore, by tilting the magnetic field towards the 
planes and by applying polarized laser irradiation to 
layered conductor one can effectively change the hopping 
integral value and thereby switch coherent hopping to the 
incoherent regime. All this makes a picture of oscillations 
very complex and require a separate analysis. 

3.3. The magnetic breakdown factor in the SdH 
oscillations 

In this section we calculate the factor ( )N p  in the case 
when the dispersive Landau bands appear as a result of 
coherent magnetic breakdown in 2D conductor. 

A typical examples are shown in Fig. 2. Consider first a 
chain of closed orbits in the top of this picture. The energy 
spectrum within the Landau band in this case is given by 
Eq. (23). The corresponding kinetic factor takes the form 
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2

( ) = ( , )c L
N p M W p

ω⎛ ⎞
⎜ ⎟π⎝ ⎠

, (39) 

where 

 
/2 2 2

2 2
0

2 sin( , ) = cos [2 arcsin ( cos )] .
1 cos

W xM W p dx p W x
W x

π

π −∫   

  (40) 

After the integration, we have 

2 2( ,1) = 1 1 ,M W W W− + + −  

4 2( ,2) = 1 1 ,M W W W− − −  

2 4 6 2( ,3) = 1 2 2 1 ,M W W W W W− + − + + −  

4 6 8 2( , 4) = 1 4 8 5 1 ,M W W W W W− + − − −  

( ,5)M W =

 2 4 6 8 10 21 6 22 30 14 1 .W W W W W W= − + − + − + + −   
  (41) 

Note that (0, ) = (1, ) = 0M p M p  for any harmonics 
number p . This means that the band SdH conductivity os-
cillations vanishes in cases of a flat and wide Landau bands, 
i.e., when the band velocity is zero or if there are no gaps 
between the Landau bands. The factor ( , )M W p  for the first 
five harmonics is shown in Fig. 5. As a function of the MB 
probability W  the function ( , )M W p  is a sum of the poly-

nomial of the degree 2 p  and the term 1 2( 1) 1p W+− − . 
The polynomials oscillate within the interval 0 1W≤ ≤ . 
Because of these oscillations amplitudes of the higher har-
monics at some intervals of magnetic field exceed the ampli-
tudes with the lower p. Such unusual behavior of the QMO 
have been observed in the Fourier spectra of many quasi-2D 
organic compounds [4–6]. 

A generalization of the above results to the Fermi-
contour shown in the lower side of the Fig. 2 is 
straightforward. Denoting small and large orbits corres-
pondingly by the indices α  and β  one can write the quan-

tization rules for the corresponding two Landau bands in 
the form 

2 ( 1)= ( 1/ 2) arcsin ( cos ) ,
neBS n W qL

cα α
⎡ ⎤π −

+ +⎢ ⎥
π⎢ ⎥⎣ ⎦

 (42) 

eff
2 ( 1)= ( ) arcsin ( cos ) .

neBS n W qL
cβ β

⎡ ⎤π −
+ γ +⎢ ⎥

π⎢ ⎥⎣ ⎦
 (43) 

Here ( )S Eα  and ( )S Eβ  are the cross-section areas en-
closed by the α  and β  orbits in the momentum space. The 
quantum amplitude 1/2

eff= (1 )W Wβ −  is responsible for 
the resonant MB tunnelling between the β  orbits through 
small α  orbits and where = .W Wα  

The quantization rules for the α  and β  orbits relate the 
energy E  with the quantum number n  and quasi-wave-
vector q , describing the electron dispersion within the Lan-
dau bands. To simplify calculations we assume that both 
orbits are circles in shape with the areas inside correspon-
dingly equal to ( ) = 2S E m Eα απ  and ( ) = 2S E m Eβ βπ . 
Then the Landau spectrum can be written in the form of 
Eq. (23) with the dispersion relations of electrons within the 
α  and β  Landau bands given by 

 
( )

( ) ( )( ) = arcsin ( cos ).cq W qL
α β

α β α β
ω

ε
π

 (44) 

The cyclotron frequencies differs for two Landau bands 
because of the difference in the effective masses 

( )
( )= /c eB m cα β

α βω . The coefficient effγ  determines the 
Landau bands position oscillations which are important for 
the SdH and dHvA oscillations but not for the Weiss oscil-
lations stemming from the Landau bandwidth oscillations 

 
2( )

( )
( )( ) = ( , )c L

N p M W p
α β

α β
α β

⎛ ⎞ω
⎜ ⎟⎜ ⎟π⎝ ⎠

. (45) 

The total conductivity is a sum = .α βσ σ + σ  The con-
ductivities here ( )α βσ  are given by the series of Eq. (38). 
The QMO of the total conductivity is a mixture of oscilla-
tions with the α  and β  frequencies some of which are 
“forbidden” in the quasiclassical LK theory because they 
do not correspond to any of possible classical pathways. 

3.4. The bandwidth oscillations and the Weiss oscillations 

Another distinction from the LK theory is that the β  
bandwidth and corresponding electron velocity oscillate 
periodically in the inverse magnetic field together with the 
effective probability eff .W  These bandwidth oscillations 
hold even for the = 0p  (zero harmonic). The bandwidth 
conductivity is given by the = 0p  term in a series (38) 

 0( = 0) = ( ,0) .p M Wβ β
σ τ

σ  (46) Fig. 5. The damping factor ( , )M W n  for = 1, 2, 3, 4, 5n  (from
top to bottom). 
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The amplitude of the bandwidth conductivity oscillation is 
not dumped by the Dingle or temperature factors. It is de-
termined only by the factor 

 ( ,0) = 1 1 ,M W W Wβ β β− + −  (47) 

which oscillates in the inverse magnetic field together with 
the effective probability (28) shown in Fig. 4 because 

1/2
eff= (1 ) .W Wβ −  For high fields, exceeding the magnetic 

breakdown field 0 ,B B  the eff 1W →  and does not os-
cillate which means that the magnetic breakdown restores 
the large β  orbits completely and small α  orbits do not 
contribute into the QMO. The bandwidth oscillations also 
vanish if 0.W →  

In 1D periodically modulated 2D electron gas a Fermi 
surface becomes periodic and consisting of the small α  and 
large β  orbits shown in Fig. 2 [62,63]. The difference with 
the organic layered compounds is a much larger spatial pe-
riod of the artificial lateral superlattices resulting in a lower 
Fermi energies and lower magnetic-breakdown fields. The 
corresponding bandwidth oscillations in 1D lateral superlat-
tices are known as the Weiss oscillations which hold at low 
fields (usually less than 0.5 T) and vanish at higher fields 
because the breakdown field 0B  for the artificial lateral 
superlattices is usually very small 0.1–0.5 T. The amplitude 
of the Weiss oscillations is proportional to the eff( ,0)M W  
(47) in which effective probability is given by Eq. (28) (see 
[64,65] for more details). In layered organic conductors 0B  
is much higher (of the order 10–30 T) and the observation of 
the MB effect require much stronger magnetic fields. 

4. Conclusions 

In conclusion we will sum up the main results of this 
paper and discuss briefly another sources of the deviations 
of the QMO in Q2D conductors from the predictions of the 
LK theory which have not been touched in the above con-
sideration. 

(i) The main conclusion is that the broadening of the 
sharp and degenerated Landau levels into dispersive or 
disordered bands results in a specific dumping factors 

( )I p  (12) and ( )N p  (33) different for the thermodynamic 
dHvA and kinetic SdH oscillations. That difference is be-
cause the factor ( )I p  depends only on the DOS within the 
Landau band ( )g ε  while the factor ( )N p  depends yet on 
the electron velocity squared 2( )v ε  which equals zero for 
the localized states. The dependence of the kinetic factor 
on the electron velocity is especially important in layered 
and quasi-2D conductors in which electron hopping be-
tween the layers is incoherent and there is no 3D Fermi 
surface. Another example is the quantum Hall effect in 
which electrons are partially localized within the disor-
dered Landau bands. 

(ii) In isotropic 3D conventional metals the electron ve-
locity can be approximated by a constant 2 2( ) (0)v vε ≈  

and the kinetic factor is proportional to the thermodynamic 
one 2( ) = (0) ( ).N p v I p  In that case, as in LK theory, the 
dHvA and SdH oscillations have the same damping factors 
which can be obtained from the thermodynamic factor 

( )I p  as explained in the Introduction. 
(iii) The layer-stacking factors related to the (coherent or 

incoherent) electron hopping between the layers are absent 
in the LK theory. For a simple cosine dispersion in direction 
perpendicular to the layers they can be expressed in terms of 
the Bessel functions (see Eqs. (17) and (36)) oscillating in 
perpendicular magnetic field. The layer-stacking factors 

( )I p  and ( )N p  depend on the hopping integrals which can 
be effectively changed by the tilting magnetic field towards 
the layers (see Eq. (21)) or due to the dynamic localization 
in the polarized high-frequency electromagnetic radiation 
(see Eq. (22)). These effective hopping integrals are also 
oscillating functions of their arguments and because of that 
electron hopping becomes incoherent, if eff /t τ , even 
in a case of periodic stacking. 

(iv) Another example illustrating importance of the 
layer-factors is the anomalous enhancement of the QMO 
below the upper critical magnetic field which holds in 
layered conductors with small 0t →  and incoherent hop-
ping between the layers. A restoration of the interlayer 
coherence in the superconducting state results in an ano-
malous enhancement of the SdH and dHvA oscillations 
due to the effective renormalization of the hopping inte-
grals in the superconducting state. In some organic conduc-
tors this enhancement exceeds the damping of the QMO by 
the vortices. This effect is absent in superconductors with a 
coherent transport of electrons across the layers in the 
normal state. 

(v) In case of coherent magnetic breakdown the ther-
modynamic factor ( )I p  is a polynomial of the degree p  
with respect to the MB probability W  described by 
Eqs. (25)–(27) and shown in Fig. 3. At fields 0<B B  the 
effective probability through a small orbit effW  oscillate 
between 0 and 1 with the frequency determined by the 
small α  orbit as shown in Fig. 4. 

(vi) The kinetic factor ( , )M W p , responsible for the 
SdH amplitudes, as a function of W  (and effW ) also oscil-
lates having the 1p −  zeros within the interval 0 < < 1W  
as one can see in Fig. 5 and from Eqs. (25)–(27). 

(vii) The bandwidth oscillations and the Weiss oscilla-
tions are special types of quantum oscillations which va-
nish at high fields 0.B B  They contribute into the con-
ductivity oscillations beginning from the “zero term” 
( = 0p ) given by Eq. (46). The difference between the 
Weiss and the bandwidth oscillations is as follows. In case 
of the Weiss oscillations the low-scale Fermi surface origi-
nates from the 1D artificial lateral modulation and has a 
small MB field 0B  (usually 0.1–0.5 T). In case of layered 
organic conductors the Fermi energy is much larger and 
the MB field is about 10–30 T. 
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(viii) We do not considered in this article the chemical 
potential oscillations which is yet another source of devia-
tions from the LK theory in which the chemical potential is 
fixed at the Fermi energy of 3D metals. This problem is 
beyond the scope of the present paper. The chemical po-
tential oscillations are thermodynamic in nature. They have 
the same shape as the magnetization oscillations given by 
Eq. (13) and depend on the Landau bandwidth through the 
factor ( )I p  which was studied above. More details can be 
found in [11–22] and references therein. 

(ix) There is yet another effect responsible for the oscil-
lations of the magnetization and conductivity with the pe-
riod of the QMO. This effect was predicted in our paper 
with E. Kaner which we called the magnetic-breakdown 
Pierls transition [27]. It occurs periodically in inverse 
magnetic field as a structural phase transition in a half-
filled dispersive Landau band [28]. The critical tempera-
ture increases proportionally to the MB probability ( )W B  
together with the bandwidth 0exp ( / ).cT B B∝ −  The 
structural phase transitions with such typical for the MB 
exponential form of the ( )cT B  has been observed recently 
in graphite [7,49]. 
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