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1. Introduction 

Significant step in the microscopic description of inte-

racting Bose systems was made by Bogoliubov in Ref. 1, 

where for the first time the method of approximate second 

quantization was used for dilute Bose gas at low tempera-

tures. It was the first correct theoretical description of Bose 

systems where usual perturbation theory is not applicable. 

Perhaps, the first attempts to build the theory of liquid 
4
He from the first principles were done by Feynman. In 

series of papers [2,3] the density matrix of interacting bo-

sons was written in terms of path integrals and the impor-

tance of the ―trajectories‖ of the particles that give the main 

contribution at -point and at low temperatures was dis-

cussed. It is in this Ref. 2 the effective mass of Bose par-

ticles was introduced for the first time in order to take par-

tially into account the effect of the interatomic interaction. 

The well-known formula that links excitation spectrum of 

Bose system with structure factor was written in Ref. 4. 

For the first time the collective variables approach was 

used to build ground-state wave-function of Bose system 

by Bogoliubov and Zubarev in Ref. 5. The results for the 

thermodynamic function of the model with condensate had 

been reproduced at weak-coupling limit. The one-particle 

density matrix calculated in Ref. 6 for the first time was 

written in an exponential form. As it turned out later this 

behavior of the one-particle density matrix is correct not 

only for three-dimensional systems. In particular, it repro-

duces correctly the density matrix of the exactly solvable 

one-dimensional model with -repulsion between particles. 
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Later, the method of collective variables in the theory of 

Bose systems was developed by Vakarchuk and Yukh-

novskii. In Ref. 7 the ground-state properties of the inte-

racting many-boson system were studied. The wave-

function of the first excited state and the equation for the 

excitation spectrum were built in Ref. 8. It was shown in 

the first order of perturbation theory that correction to the 

sound velocity and damping of the spectrum coincide with 

the results of field-theoretical approach [9]. The method of 

collective variables combined with field-theoretic ap-

proaches was used in Refs. 10–12 to describe the ground-

state properties of Bose systems. 

Notwithstanding a great number of papers concerned 

with the microscopic study of Bose system’s properties, a 

good description of the thermodynamic and structure func-

tions of liquid 
4
He in the whole temperature range has not 

yet been created. In Ref. 13 the density matrix formalism 

with the functional optimization of the Jastrow wave-

function parameters was used to describe the properties of 

liquid helium. The results for internal energy agree well 

with experimental data for the temperatures below the crit-

ical one. It was shown that by taking into account the dy-

namic two-particle correlations only one can obtain the 

value of the critical temperature 3.4 K. Thus for a good 

agreement with experiments one needs to take into account 

higher-order approximations, which are specifically related 

to the concept of effective mass of the helium atom in a 

liquid. In Refs. 14 and 15 the variational calculations were 

used to obtain the properties of Bose liquid at finite tem-

peratures. The density matrix was written as a product of 

two multipliers. The first one was chosen in exponential 

form and described the phonon contribution. The second 

multiplier was written in the form of a permanent and de-

scribed the one-particle contribution. 

Very interesting and as it seemed simple problem to be 

solved in the microscopic theory of liquid helium is a prob-

lem of the critical temperature calculation. Since London’s 

assumption [16] that the -transition in liquid 
4
He is the 

Bose condensation deformed by the interatomic interaction 

theorists did many attempts to calculate the critical temper-

ature of liquid 
4
He (see Refs. 17–19). In recent years much 

attention has been paid to the study of the atom’s effective 

mass in liquid helium. Various scholars were mostly con-

cerned with the value of the effective mass at 0.T  Isiha-

ra and Samulski [20] have used the value of * / = 1.71m m  

to agree the theoretically calculated sound branch of 

the excitation spectrum with the corresponding experimental 

data. In Ref. 21 the effective mass * / = 1.70m m  was ob-

tained on the basis of the liquid 
4
He structure factor mea-

surements. In Ref. 22 the interatomic potential was pre-

served as the input information, but in part the contribution 

of higher correlations was ―transferred‖ to the kinetic 

energy term. In this way the mass of particles was renor-

malized that is somehow in correlation with the approach 

of Ref. 2. As a result of such a renormalization the value of 

* / = 1.58m m  was obtained using Green’s function method. 

It was shown in Ref. 23 that the above-mentioned mass 

renormalization leads to the expressions obtained for the 

effective mass of the 
3
He impurity atom in liquid 

4
He but 

with the replacement of the ―pure‖ 
3
He atom mass by the 

4
He atom mass. 

In this article we did not intend to make a full review of 

works on the theory of liquid 
4
He. We reviewed only a 

small part related to the present studies. In the present pa-

per we will briefly summarize our results in the theory of 

liquid helium at finite temperatures. First of all we will 

discuss the possible way of the density matrix calculation 

taking into account the two-particle interatomic correla-

tions. The presence of off-diagonal long-range order of the 

one-particle density matrix, which can be calculated using 

the density matrix [24] is the indication of the phase transi-

tion in this approach. The order parameter of the theory is 

the value 1/2
0( / ) ,N N  where 0 /N N  is the relative number 

of Bose condensate [25]. Then we will compare calculated 

thermodynamic and structure functions of liquid 
4
He with 

experimental data. 

2. Density matrix 

Consider the N set of spinless Bose particles with the 

mass m moving in volume V. The Hamiltonian of the 

system is  

 ˆ ˆ ˆ= ,H K  (1) 

where the first term is the operator of the kinetic energy  

 
2

2

=1

ˆ = .
2

N

j
j

K
m

 (2a) 

The second term presents the potential energy of the two-

particle interaction between the particles with the coordi-

nates 1= ( ,..., )Nx r r  

 

1 <

ˆ = (| |).i j
i j N

r r  (2b) 

Let ( )n x  be taken for a system of eigenfunctions of 

the Hamiltonian Ĥ  and nE  are its eigenvalues. Let us 

consider such an equation for the statistical operator: 

 
ˆ

e ( ) = e ( ),
EH n

n nx x  (3) 

where = 1/ ,T  T is the temperature of the considered sys-

tem of particles. Let us introduce a certain arbitrary func-

tion = ( )x  and let us multiply the left-hand side of 

Eq. (3) by ( ).x  We will integrate it over all the coordi-

nates x:  

 
ˆ

( )e ( ) = e ( ) ( ) ,
EH n

n nx x dx x x dx  (4) 

where  

 1= .Ndx dr dr  (5) 
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We will impose the following condition for the function 

( ):x  

 ( ) ( ) 0.nx x dx  (6) 

Then making use of the self-conjugation of the operator 

Ĥ  we shall transfer it in Eq. (4) from the function ( )n x  

to ( )x  multiplying the l.h.s. side of this equation by 
* ( )n x  and summing it by all the indices of the n  states:  

 
ˆ* ( ) ( )e ( ) =H

n n
n

x x x dx   

 *= ( ) ( )e ( ) .
En

n n
n

x x x dx   

We make use of the completeness condition  

 * ( ) ( ) = ( ),n n
n

x x x x   

and also proceeding from the previous equation we will 

obtain the following equation with the permutation of the 

variables x  for x  and inversely: 

 
ˆ

e ( ) = ( ) ( | ) ,H
Nx x R x x dx  (7) 

where 

 *( | ) = ( )e ( )
En

N n n
n

R x x x x  (8) 

is the density matrix in the coordinate representation. 

In fact, Eq. (7) is self-evident and could have been writ-

ten out at once as a matrix presentation of the statistical 

operator action over any function ( ).x  In the Dirac nota-

tions this equation can be written as follows: 

 
ˆ ˆ

| e | = | e | | ,H Hx x x x dx  (9) 

 
ˆ

| e | = ( | ), | = ( ).H
Nx x R x x x x   

It is clear that formula (7) or (9) is applicable both to 

one-particle and two-particles problems. Notwithstanding 

the fact that it is obvious, this formula makes it possible to 

fully restore the density matrix (8). Here most significant 

heuristically is an arbitrary choice of the function ( )x  on 

condition that it is nonorthogonal to the eigenfunctions of 

the Ĥ  operator and the existence of integral (6). 

Should the interparticle interaction be switched off, the 

density matrix will transfer into that of the ideal Bose sys-

tem of N  particles. That is why we will try to construct 

the density matrix of the system of N  interacting particles 

as a product of the density matrix of the ideal Bose gas 
0 ( | )NR x x  and the ( | )NP x x  factor taking into account the 

interparticle interaction: 

 0( | ) = ( | ) ( | ),N N NR x x R x x P x x  (10) 

where at temperature 0T  

 0 ( | ) =NR x x   

 

3 /2
* *

2

2 2
=1

1
= exp ( ) ,

! 2 2

N
N

j Qj
Q j

m m

N
r r   

  (11) 

the summation over Q  is at the same time the summation 

over all the permutation !N  numbering the particles coor-

dinates; at = 0,T  when all the particles have zero momen-

ta, the matrix 0 ( | ) =1/ .N
NR x x V  The mass of the particle 

in (11) is understood as a certain effective mass *m  which 

equals the initial mass m  unless the interaction takes place. 

Thus a part of the contribution from the interparticle interac-

tions is taken into account by renormalizing the particle 

mass, the remainder being left in the ( | )NP x x  factor. 

We would like to base our analysis on the precise 

Eq. (7) and suggest a consistent method for the calcula-

tions of the ( | )NP x x  function computing the latter expli-

citly accounting for the two-particle correlations. We will 

choose the ( | )NP x x  matrix which takes into account the 

interparticle correlations as follows: 

 ( | ) =NP x x   

0 1 2
0 0

1
= exp ( ) ( )[ ] ,

2
c c q c qq q q q q q

q q
 

  (12) 

where the Fourier coefficients of the particles density fluc-

tuations 

 
'

=1 =1

1 1
= e , = e ,

N Ni ij j

j jN N

qr qr

q q  (13) 

at 0.q  The components of the wave vector q  cover the 

integer values devisible by 
1/2 / DV  where D  is dimen-

tionality of the cubic box which contains the system of 

particles studied. We will determine the coefficient func-

tions 0 ,c  1( ),c q  2( )c q  from Eq. (7). 

We have confined ourselves to the consideration of two-

particle interparticle correlations in expression (12). Ac-

counting of the three-particle and higher correlations is ac-

complishable by adding the members with a product of three 

or more q  in the exponent in (12). In our work we will not 

take them into account explicitly, yet we will return to them 

when discussing the issue of the effective mass *.m  The 

exponent form of the ( | )NP x x  matrix is caused by the 

classical boundary of its diagonal elements when ( | )NP x x  

turns into the usual Boltzman factor exp( ),  where  

is the potential energy of the interparticle interaction thus 

equaling the second term in Hamiltonian (1). 

Finally, we must also choose an appropriate  function 

which is contained in Eq. (7) and meets requirement (6). In 

our case we will adjust it from the class of such functions: 
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0

( ) = exp ( ) ,x q q

q

 (14) 

where the arbitrary coefficient function ( )q  is a real 

function from the wave vector modulus = | |q q  with all 

the necessary properties. 

The detailed calculation of the density matrix of Bose 

system can be found in Ref. 26. The result is
____________________________________________________ 

2 2

*2
0

0 ( )2 2
0 0

*

tanh ( )
1 1 e2

( | ) = ( | ) exp ln ln
2 1 e

tanh
4

q

q m

N N E q

E q

R x x R x x E
q

m

q q

 

2 2

2 2*
0 0

*

1 1 1
exp coth[ ( )] coth ( ) ,

4 2 sinh[ ( )]2
sinh

2

q
q

q
E q

E qm q

m

q q q q q q

q q

 (15) 

_______________________________________________ 

where the ground-state energy in Bogoliubov’s approxima-

tion [1] is 

 
2 2

2
0 0

0

( 1)
= ( 1) ,

2 8
q

N N q
E

V m
q

 (16) 

and Bogoliubov’s elementary excitation spectrum [1] is 

 

2 2 2 22
( ) = , = 1 .

22
q q q

q N q
E q

V mm
 (17) 

Expression (15) for the density matrix are the starting 

formulae for the calculation of the thermodynamic and 

structure functions of the Bose liquid. Before we pass over 

to the calculation of these values we will make some pre-

liminary studies. 

Let us pass to the discussion of the obtained expressions 

for the partition function and the density matrix. It is ap-

parent that when we switch off the interparticle interaction 

with = 0,q  i. e., = 1q  we will obtain from (15) that 

for any temperature 

 0( | ) = ( | ).N NR x x R x x   

Notwithstanding the naturalness of this condition it will 

not be met, for instance, by the well-known Penrose for-

mula for the N-particles density matrix. This formula was 

also obtained by Feenberg [27]. Applying the method of 

coherent states it was also found in [28]. With the help of 

wave functions of the many-boson Bogoliubov–Zubarev 

system [5] it was calculated in [29,30]. Using our notations 

it looks as follows:

____________________________________________________ 

 ( )/0

0 00

( ) 1
( | ) = tanh exp ln (1 e ) ( )

2 4

E q T
N q

EE q
R x x

T T
q q q q

q qq

  

 

0

1 ( )
( )cosh ( ) .

4 sinh[ ( )/ ]

q E q

E q T T
q q q q q q q q

q

 (18) 

This expression holds true only for 0.T  If = 1,q  then from (18) we obtain an expression for the ideal gas density 

matrix 

 
2 2 2 20 /2

0 00

1
( | ) = tanh exp ln 1 e ( )

4 4

q mT
N

q
R x x

mT
q q q q

q qq

  

 
2 2

2 2
0

1 1
( )cosh ( ) ,

4 2sinh( /2 )

q

mTq mT
q q q q q q q q

q

 (19) 

which does not coincide with the precise expression (11) for * = .m m  
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It is curious that Eqs. (18) and (19) prompt to us how 

one can formally obtain our result for the density matrix. 

Thus we have the equation 

 
0

0

( | )(from (18))
( | ) = ( | ) .

( | )(from (19))

N
N N

N

R x x
R x x R x x

R x x
 (20) 

If we use Eqs. (18) and (19) in the right-hand part of 

this equation for the density matrices relation, we will im-

mediately arrive at Eq. (15) with * = .m m  This trick also 

hints at a possibility of calculating the effective mass *.m  

Thus, should we find the following approximation for the 

density matrix (18), for instance by solving Bloch’s equa-

tion directly, as suggested in [30], the result will be the 

following. Firstly, we will obtain in the (18) exponent the 

1 2 3q q q  members from 3 1 2= ,q q q  viz., a con-

tribution from the three-particle correlations and also a 

share of the contribution from the four-particle correlations 

1 1 2 2q q q q  (appropriately systematized as regards 

the primed and the nonprimed variables (13)). Besides, 

there also arise corrections 

0

( )/N

q

 to the zeroth ap-

proximation coefficient functions around q q  in (18) 

(again systematized as regards the primed and the non-

primed variables). A part of these corrections can be ―hid-

den‖ quite naturally by renormalizing the particle mass m. 

After this fixing of the renormalized mass *m  we suggest 

that 1q  and find the ideal gas density matrix 

0 ( | )NR x x  in which instead of m  we will have *.m  Then 

we will address Eq. (20) and by the same reasoning we 

arrive at (15) with the known value of *.m  Now from 

Eq. (20) we can also answer the question why Eq. (15) 

holds true for any mass *.m  The matter is that we multiply 

and divide by the same value 0 ( | )NR x x  ―finding‖ the de-

nominator for all the orders of the perturbation theory by 

the number of summations over the wave vector. 

In the approach suggested here the effective mass also 

arises in the natural fashion if we take into consideration 

the contribution of the many particle correlations in 

Eq. (12) and if we renormalize the mass by the contribu-

tions to be factorized (possibly with the dependence upon 

the wave vector q). We will not discuss here higher ap-

proximations and the discussion of the issue of *m  will be 

returned to in Sec. 5. 

If we direct the temperature towards zero, i. e.,  

then from (15) with the consideration of the fact that the 

density matrix of the ideal Bose gas, which in this case is 

fully degenerate, equals 1/ ,NV  we will obtain in com-

pliance with designation (8) the following expression: 

 0
0 0( | ) = e ( ) ( ),

E
NR x x x x   

where the normalized wave function of the ground state of 

the interacting Bose particles system 

 0
00

1 1
( ) = exp ( 1)

4
q q

N
x

V
q q

qq

  

  (21) 

coincides with that discovered for the first time by Bogoli-

ubov and Zubarev [5]. 

Finally we will consider the classical limit 0  of 

the density matrix diagonal elements (15) when = .q q  

The energy 0E  from (16) in this limit transforms into 

 0 0
0

( 1)
= .

2 2
q

N N N
E

V V
q

 (22) 

Then, the first logarithm under the sum over q  in the ex-

ponent in (15) (together with the factor 1/2) is reduced at 

0  to ln q  and the second one to ln(1/ );q  they 

cancel each other, the factor at q q  equaling 

 
2 2

*

*
= tanh ( ) tanh ,

2 4
q q

q
E q

m
  

 * = , 0.q q
N

V
 (23) 

We have made use of the fact that at high temperatures 
* .m m  In the 0 ( | )NR x x  matrix from (11) at 0  

only an identical permutation survives 

 

3 /2

0

2

1
( | ) = .

! 2

N

N
m

R x x
N

  

Consequently, bringing everything together we have the 

exact classical solution for the density matrix 

 

3 /2

2

1
( | ) = e ,

! 2

N

N
m

R x x
N

  

where the potential energy  is given by Eq. (2b). 

Thus from Eq. (15) for the density matrix we have re-

ceived all the known limiting cases both in the essentially 

quantum and classical regions. For that matter we can ex-

pect these expressions to give good results also in the in-

termediate temperature region, in particular in the vicinity 

of the -transition point. 

3. Structure functions 

The density matrix of many-boson system allows to ob-

tain thermodynamic properties and to calculate the struc-

ture functions of the system. In particular, the structure 

factors which are averaged products of Fourier transforms 

of particle fluctuation contain very important information 

about the system. Nowadays only pair structure factor is 

the quantity which may be measured precisely in x-ray, 

electron or neutron scattering experiments [31,32]. 
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3.1. Partition function and pair structure factor 

Let us write down the partition function of the interact-

ing bosons in coordinate representation  

 1 1 1= ( , , | , , ).N N N N NZ d d Rr r r r r r  (24) 

Using representation (10) for the density matrix let us 

rewrite Eq. (24) as an average value over the states of ideal 

Bose gas  

 
0 0

0
0

1
= e exp ,

2

c
N N qZ Z q q

q

 (25) 

where  

 
1

0
0= 1 e q

NZ z

q

  

is partition function, 0z  is fugacity of ideal Bose gas,  

* 2 2
*

*
= tanh tanh , = .

2 2 2

q q
q q q

E q

m
 (26) 

Let us write down the quantity in the brackets 0  in 

terms of functional integral  

 

0

1
exp =

2
q q q

q

  

 

0 0

1
= ( )exp ,

2
qd q q q q

q q

 (27) 

here 

 

0

( ) ,

c sd d
d

q q

q

  

 = , = , = .c s c c s siq q q q q q q   

We have to take into account variables q  only from 

half space of possible wave-vector q values due to symme-

try * = .q q  The prime near product signifies this fact. 

Now, the partition function takes the form  

 0 0= e ,
c

N NZ Z I  (28) 

where functional integral I  is  

 

0

1
= ( )exp 

2
I d q q

q

  

1
1 0=1

1
exp ( , , ) ,

!

n

q n ni i
n i i

M
n

q

q

q q  (29) 

here 1( , , )n nM q q  are irreducible averages [33] of the 

products 
1

.
nq q  The first two are 

 0 0 0= 0, = ( ).S qq q q  (30) 

The problem of the partition function calculation is re-

duced to calculation of the functional integral (29). 

Let us pass to the calculation of average value of a 

product 
1 nq q

____________________________________________________ 

 
0

1 1 11 1
0

1 1
= ( , , | , , ) exp

2
N N N N qn n

N

d d R
Z

q q q q q q

q

r r r r r r

  

 
0

0

0 0=1
0

e 1 1
= ( )exp exp .

2

c n

N q
N qi ii

Z d
Z

q q q q
qq q

 (31) 

Here we formed average over the density matrix of ideal Bose gas and then used the representation (27) for the exponent 

term. Next, carrying out integration n  times by parts over q  and then ―extend‖ exponential function in the right hand 

side of the formula through derivatives. Finally taking into account Eq. (29) averages (31) read  

1 1
11

1
= ,

n n
q q nn

q q q q
q q

 (32) 

where line denotes following averaging  

 

1
0 1 0=1

1
0 1 0=1

1 1
( )exp exp ( , , ) ( )

2 !

( ) = .

1 1
( )exp exp ( , , )

2 !

n

q n ni i
n i i

n

q n ni i
n i i

d M
n

d M
n

q q q

q q

q q q

q q

q q

q q

 (33) 

Now the problem of calculation of averages 
1 nq q  is reduced to the calculation of functional integral I. 

The partition and structure functions are calculated in detail in Ref. 34. 
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3.2. Calculation of functional integral I 

We restrict our consideration of Eq. (29) to the so-cal-

led pair-particle correlation approximation  

 0 0
0

1
= exp ln 1 ( ) ,

2
qI S q

q

  

then partition function (28) and two-particle structure fac-

tor ( )S q  (32) of Bose liquid in the pair-particle correlation 

approximation are  

 0
0 0

0

1
= exp ln 1 ( ) ,

2
N N qZ Z c S q

q

 

 0

0

( )
( ) = .

1 ( )q

S q
S q

S q
 (34) 

Note that partition function and pair structure factor of Bose 

liquid in the approximation of pair-particle correlation coin-

cide with the corresponding formulas obtained in Ref. 26. 

4. Energy 

4.1. Initial equations 

The quantum-statistical approach based on the density 

matrix of Bose liquid will be used in this section for the 

calculation of the internal energy of the system  

 ˆ ˆ= .E K   

Using density matrix (10) let us write down the kinetic 

energy term (2a) in the following way:  

1ˆ =
N

K
Z

 

 1 1 1 = , , =1 1
ˆ ( , , | , , ) | .N N N N N N

d d KR r r r rr r r r r r  

The kinetic energy term in the pair-particle correlation 

approximation is calculated in details in Ref. 35 

 
2 2

0

*
010 0

0

( )1 1ˆ =
2 2 1 ( )

e 1

q

qq

S qq
K

m S q
zq q

  

2 2 2 2
2

*
0 0

1 1 1
( ) .

4 2 2 2 sinh[ ( )] sinh[ ]

q
q

q

q q
S q

m m E q
q q

 

  (35) 

The derivative of the fugacity 0z  of the ideal Bose gas 

with respect to parameter  should be carried out in the 

formula for 0( ).S q  

Let us use -representation for the potential energy op-

erator ˆ  (2b): 

 0
0

( 1)ˆ = ( 1).
2 2

q
N N N

V V
q q

q

 (36) 

For the average value of the potential energy we have 

 0
0

( 1)ˆ = [ ( ) 1].
2 2

q
N N N

S q
V V

q

 (37) 

Let us write down the quantity q  using Eq. (17) and ex-

perimentally measured structure factor of the system at 

0.T  The quantity 0  should be eliminated through 

sound velocity c  at zero temperature [35]. 

Thus, the average value of the potential energy in the 

pair-particle correlation approximation reads  

 

2
2 2 2

0

1 1 1ˆ =
2 16 2

q
q q

mc q
N

m
q

  

 
2 2

2

0

1
( 1)[ ( ) 1].

4 2
q

q
S q

m
q

 (38) 

4.2. Internal energy 

Taking into account Eqs. (35) and (38) for the internal 

energy we have
____________________________________________________ 
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  (39) 

_______________________________________________

Obviously, if the interaction between particles is turned 

off ( = 1)q  Eq. (39) reduces to the internal energy of 

ideal Bose gas. The ground-state energy of many-boson 

system is  

 

3
2 2 2

2
0

0

1 1 3 1
= 1 ,

2 4 2 4 4
q q

q

mc q
E N

m
q

  

  (40) 

where kinetic and potential energy terms are 
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22 2

=0
0

( 1)1ˆ | = ,
4 2

q
T

q

q
K

m
q

 (41a) 
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2
T

mc
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2

2
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( 1)1 1 1
( 1) 4 .

16 2

q
q

q qq
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Kinetic energy term (41a) and potential energy term (41b) 

of the ground-state energy of many-boson system in the 

pair-particle correlation approximation coincide with the 

corresponding expressions found in Ref. 36. 

Let us analyze the Eq. (39) for internal energy at the 

low-temperature limit. In this region the internal energy 

coincides with the corresponding formula of Ref. 26. At 

0T  the internal energy is  

 0 ( )
0

( )
= .

e 1E q

E q
E E

q

 (42) 

To carry out integration at the low-temperature limit it is 

enough to take into account only long-wavelength behavior 

of the excitation spectrum ( ) = .E q cq  The result is (Ste-

fan–Boltzmann law)  

 4
0 2 3

= .
2 ( )

V
E E T

c
  

Thus, the heat capacity has a correct low-temperature be-

havior 3.VC T  

5. Effective mass of the liquid 
4
He 

An effective mass of particles is the free parameter 

present in the theory. Obviously our next task is to propose 

the scheme of the effective mass calculation. In order to 

find effective mass of particles we have to determine the 

one-particle spectrum of the interacting Bose system in 

normal state. The fact that leading-order term of the quasi-

particle dispersion relation is quadratic in the wave vector  

p allows us to associate the coefficient of the spectrum 

near 2p  with the effective mass of particles. 

The thermodynamic potential in random phase approx-

imation (RPA) is  

 0 1= ,  (43) 

where the ideal gas contribution 

2 2

0 = ln (1 e ), = e , =
2

p
p

p
T z z

m
p

 (44) 

(  is chemical potential) and well-known RPA-part of the 

grand canonical potential 

2

1
0

1
= (0) ( ) ln 1 ( ) ( ) ,

2 2 2
q

N N
k k q

V V
k

 (45) 

where = ( , )nq k  and = 2 ( = 0; 1; 2; )n nT n  is 

the Matsubara frequency and  

 

0

= .

q n k

  

The polarization operator  

 
1

( ) = ( , ) = .n
n

n n
q

V i

k k k

k k kk

k  (46) 

RPA is a very natural starting point in the theory of liquid 
4
He because it describes correctly both low- and high-

temperature behavior of the system. 

5.1. Renormalization of the one-particle spectrum 

Let us calculate the correction to the one-particle spec-

trum in the following way 1= / .p pn  The 

result is 

| |

1 ( ) 1 1
= ,

1 ( ) ( )
p

p n k nq

k

V k q i ik–p

 

  (47) 

and the correction to the chemical potential is 

 

2 2
0

1 1 ( )
= (0) ( ) .

2 1 ( ) ( )

k

q k n

N k
k

V V V k q
k

  (48) 

These Eqs. (47), (48) coincide with the result of Ref. 37 

where temperature Green’s function technique was used. 

Finally, the renormalized quasi-particle spectrum of the 

interacting Bose system is  

 * *= , = .p p p  (49) 

For self-consistency of our calculations, especially near the 

critical point, the chemical potential  should be changed 

by *  in the right-hand side of Eqs. (47), (48) (the critical 

point is determined by the equation * = 0,  respectively). 

Admittedly, the ideal gas dispersion relation should be re-

placed by the exact one-particle spectrum, but further analy-

sis will not be influenced by this replacement qualitatively. 

The long-wavelength asymptote of the spectrum reads  

 
2 2

*

*
= ,

2

u
p p

p

m
 (50) 

where zero frequency contribution of Eq. (47) is 

 

2
0

0

(2 ) 1
= ln 1 ,

1 (2 ) (0,2 ) 2 1

u
p

k xp x x
p dx

xp xp x
 

  (51) 

and the effective mass may be written in the following way 

[38] 

 */ =1 ( ),m m T  (52) 
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where the quantity  

2 2

2
0 0

( 1) 31 2 1
( ) = ( )

3 ( 1) 3 1

k k
k

k k kk

T n
N Nk k

  

 

2

2

3 1 1
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( 1)

k
k

kk k

n   

 
1

2 ( )[1 ( )] .k k k
k

n n  (53) 

It is argued in Ref. 38 that for the realistic potentials of 

two-particle interaction zero frequency contribution of 

quasi-particle spectrum (51) is 
2( )u

p o p  for > cT T  

and 
2 lnu

p p p  at = .cT T  So we conclude that non-

universal physics is not influenced by .u
p  

The effective mass in the low-temperature region is al-

ways larger than its ―bare‖ one which means that the renor-

malized temperature of the Bose condensation of interacting 

particles is always lower than the critical temperature of the 

ideal gas. This is the most important result of Eqs. (52) and 

(53). At high temperatures carefully calculating the limit of 

0  it is easy to ascertain that the effective mass tends to 

the mass of particles. It is important that the temperature-

independent part of Eq. (53) coincides with the effective 

mass of impurity atom in liquid 
4
He [23]. 

5.2. Numerical results 

In order to provide numerical calculations of the found 

quantities for liquid 
4
He let us use as an output information 

experimentally measured structure factor exp ( )S q  of the 

system at 0T  instead of Fourier transform of two-

particle interaction .q  

The structure factor of ideal Bose gas at the limit 

0T  tends to unity 0 ( )  1.S q  Therefore the quantity 

( )S q  in Eq. (34) should be changed by experimentally 

measured structure factor exp ( )S q  and taking into account 

Eq. (26) the quantity 1.q q  Then using Eq. (34) at 

low-temperature limit we get  

 
exp

1
= .

( )
q

S q
 (54) 

This equation determines the unknown quantity .q  All 

thermodynamic and structure functions can be rewritten 

via .q  

Our numerical calculations are carried out at the equili-

brium density of liquid helium = 0.02185  Å
–3

, mass of 

particles m = 4.0026 a.m.u., sound velocity c = 238.2 m/s 

in the limit of 0T  [32], and at the critical temperature 

of the ideal gas = 3.138cT  K. The liquid structure factor 

extrapolated to = 0T  was taken from Ref. 39. 

In order to study thermodynamic and structure function 

of liquid 
4
He we have to calculate effective mass of par-

ticles. In Fig. 1 the dependence of a dimensionless value of 

the effective mass * /m m  as a function of temperature is 

presented. Formally we extrapolated a curve of the effec-

tive mass in the condensate region where obviously it be-

comes a parameter of the theory. 

The first three terms of a low-temperature expansion 

are 2( ,T mc  2 2/3 / )T m  

 3/2 5/2
0 1 3/2( 0) = ( ),T T T O T  (55) 

 ( in Kelvins)T
 

 

where -coefficients are 

 

2

0
0

( 1)1
= = 0.41,

3 ( 1)

k

k kN
k

  

 

2

1 2
0

12
= = 0.31,

3

k

k k
N

k

  

 

3/2

3/2 2

4
= (3/2) / = 0.24.

3 2

m
  

Then the effective mass equals approximately 

 3/2* = /(0.59 0.31 0.24 ).m m T T  (56) 

This formula reproduces the curve in Fig. 1 quite well up 

to the critical temperature. 

Now we are in position to calculate the renormalized 

temperature of the Bose condensation. We can find cT  us-

ing condition * =pn N
p

 at the zero value of the renorma-

lized chemical potential *.  A simple calculation gives 

=1.94cT  K that agrees quite well with experimental mea-

surements of the temperature of the -transition 
exp = 2.17cT  K despite the simplicity of the approximations. 

The comparison of experimentally measured and calcu-

lated (34) structure factors at different temperatures is pre-

sented on Fig. 2. The experimental data is taken from 

Ref. 31. As it is seen from the Fig. 2 the consistence of the 

curves is good at low temperatures, but with increasing 

temperature the long-wavelength asymptote of the calcu-

Fig. 1. Temperature dependence of the fraction */ .m m  
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lated curve does not coincide with experimental one. The 

possible reason of this inconsistency is that we do not take 

into account higher-order approximations. 

The results of numerically calculated internal energy 

(40), kinetic energy (41a) and potential energy (41b) at 

zero temperature are presented in Table 1. For comparison 

the experimental data and theoretical predictions of another 

authors are also brought into the table. 

As it is seen from Table 1 the value of the kinetic ener-

gy and potential energy obtained in [36] differ from the 

values obtained in this paper although the formulas coin-

cide. For the numerical calculations provided in Ref. 36 

author used experimentally measured structure factor 

extrapolated to = 0T  only for small q. For other values 

the structure factor at = 0.79T  K [50] was used. In the 

present numerical calculations we used the experimentally 

measured structure factor extrapolated to = 0T  [39] for all 

values of q. 

The comparison of the theoretically calculated internal 

energy and experimental measurements for liquid 
4
He is 

presented on Fig. 3. 

We calculate heat capacity using the difference method 

and build the plot of its temperature dependence / .cT T  For 

capacity we use the Eq. (39) for total energy and expres-

sion (56) for effective mass. 

A comparison of different heat capacity curves is de-

picted in Fig. 4. As is seen from the comparison of the cal-

culated curve 1 with the experimental one the agreement is 

quite good at low temperatures (0 < / <1)cT T . At the 

temperatures / > 1cT T  the inconsistency occurs: the beha-

vior of the calculated heat capacity is very similar to the 

behavior of the experimental curve, but shifted upward 

almost in a parallel way. This inconsistency is related to 

the fact that three- and four-particle correlations should be 

taken into account for the quantitative description. The 

contribution of three- and four-particle correlations, as is 

shown in Refs. 36, 53, improves significantly the ground-

state results and gives a fairly good agreement at 0.T  

Further, let us calculate the heat capacity of liquid 
4
He 

with taking into account the effective mass of the helium 

atom in the liquid (curve 2). At low temperatures the heat 

capacity with taking into account the effective mass of the 

Bose particles practically coincides with curve 1, which 

agrees well with experimental data. This shows a weak 

dependence of the heat capacity on the effective mass be-

low the temperature of phase transition. As is seen from 

Fig. 4, the calculated curve 2 (unlike curve 1) agrees quite 

well with the experimental one. It is related to the fact that 

by using the effective mass we partially take into account a 

contribution from three- and four-particle correlations. It is 

not surprising that in close vicinity of the Bose condensa-

tion point the theoretically calculated heat capacity de-

viates most significantly from the experimental curve. It is 

solely related to the inconsistency of our description near 

Fig. 2. Structure factor of liquid 
4
He at different temperatures. 

Solid line is calculated pair structure factor, circles is experimen-

tal data taken from 31 (for convenience the curves are shifted one 

from another on 0.5). 

Table 1. Comparison of ground-state energy of liquid 
4
He 

Reference E0/N K0/N 0/N 

[40] –7.1 14.5 –21.6 

[41]  14.6  

[42] –5.56 14.6 –19.82 

[43] –5.73 13.73 –19.46 

[44] –6.02 14.30 –20.32 

[45] –6.85 13.62 –20.47 

[46] –6.10 13.96 –20.06 

[47] –6.97 14.47 –21.44 

[48] –6.96 14.77 –21.73 

[49] –7.13 14.00 –21.14 

[36], 1-st order, pair  –6.3 12.1 –18.4 

[36], 2-nd order, pair  –9.4 15.2 –24.6 

[36]* –6.4 14.2 –20.6 

this paper, 1-st order, pair  –5.2 10.9 –16.1 

Notes: [36]* — 2-nd order, pair + three-, four-particle correlations. 

Fig. 3. Internal energy of liquid 
4
He: K/N is kinetic energy; /N 

is potential energy; E/N is internal energy; 
exp /E N  is experi-

mental data taken from Ref. 51. 
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the critical point because the nonanalytical part (51) of the 

one-particle spectrum, which makes a significant contribu-

tion in the thermodynamic functions at ,cT T  is disre-

garded in our approach. One has to use renormalization 

group methods [54–56] for the correct description of the 

heat capacity in this temperature region. 

6. Conclusions 

In this paper we briefly report results on the microscop-

ic theory of liquid 
4
He at finite temperatures. First of all 

the method of calculation of the density matrix of interact-

ing Bose system in the pair-particle correlation approxima-

tion is discussed. It is shown that obtained density matrix 

correctly describes low- and high-temperature behavior of 

the system. In particular, the results obtained coincide with 

the results of Bogoliubov’s theory at 0.T  RPA for clas-

sical systems is recovered at high-temperature limit. The 

numerical calculations of the structure functions of liquid 
4
He provided in the paper demonstrate good agreement 

with experimental data. 

We succeed in deriving quite well an agreement of the 

internal energy and heat capacity curves of liquid 
4
He with 

experimental data practically for all temperatures. The cal-

culation found that for quantitative description of the heat 

capacity of liquid helium in normal phase one needs to 

take into account not only collective effects, but deforma-

tion of the one-particle spectrum is also needed. It is shown 

that one-particle spectrum of the interacting Bose system is 

quadratic in the wave vector, i.e., very similar to the dis-

persion relation of the ideal gas but with a new mass. This 

new mass at low temperatures is always greater than the 

mass of particles, and thus, the presence of the interaction 

at least in our approximation always lowers the critical 

temperature. So, an attempt is made to justify microscopi-

cally the idea that the -transition in a real quantum liquid 

is very similar to the Bose–Einstein condensation pheno-

mena of the ideal gas ―slightly‖ deformed by the interac-

tion between the particles. 

Hence, the quantum-statistical approach based on the 

density matrix is suitable for describing thermodynamic 

properties of such a strongly-interacting Bose liquid as the 

liquid 
4
He not only in the limits of low and high tempera-

tures, but for the entire temperature range. 
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