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A simplified theory of the telescopic oscillations in multi-walled carbon nanotubes is developed. The explicit 
expressions for the telescopic force constants (longitudinal rigidity) and the frequencies of telescopic oscillations 
are derived. The contribution of small-amplitude telescopic oscillations to the nanotubes low temperature speci-
fic heat is estimated.  
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1. Introduction 

Multi-walled carbon nanotubes (MWCNTs) are the first 
discovered nanoscopic quasi-1D nanostructures [1]. Each 
MWCNT consists of some nested single-walled nanotubes 
(shells) held mostly by van der Waals forces [2]. 

The telescopic motion ability of inner shells [3] and 
their unique mechanical properties [4] permit to use multi-
walled nanotubes as main movable arms in coming nano-
mechanical devices. The variety of gadgets of this kind 
was already suggested such as a possible mechanical giga-
hertz oscillator (linear bearing) [3,5], nanoswitch [6], na-
norelay and nanogear [7], nanorail, reciprocating nanoen-
gine [8]. Therefore the analysis of mechanical characte-
ristics of MWCNT is an important objective of study. The 
present work is devoted to a simplified continuum version 
of this problem. The continuum model for telescopic oscil-
lations, in which each shell of MWCNT is considered as 
continuous infinitesimally thin cylinder is described in the 
next section. The third section is devoted to the description 
of the small (thermal) and large-amplitude oscillations for 
double-walled carbon nanotubes (DWCNT) and MWCNT 
in the framework of proposed model. Note that the similar 
continuum model was used recently for the investigation of 
the suction energy and large amplitude telescopic oscilla-
tions in DWCNT [9,10]. The contribution of temperature-
induced oscillations into the tubes heat capacity within 

Debye model is also discussed. In the last section the ob-
tained results are compared with the available experimental 
data [3]. 

2. Intertube interaction in MWCNT within continuum 
model 

The interaction energy of two shells of the multi-walled 
tube is modelled as the sum of pair interaction potentials of 
atoms from different shells. In doing so we took for the 
potential energy of two atoms at the distance l  the Len-
nard-Jones potential  

 6 12
6 12( ) = ,LJE l

l l
γ γ

− +   

with attractive and repulsive constants 24 6
6 = 2.43·10 J·nmγ −  

and 27 12
12 = 3.859·10 J·nmγ −  borrowed from [2]. In ac-

cordance with this approximation the total intertube inter-
action energy takes the form 
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where 1,ir  and 2, jr  are radii vectores of the inner and out-
er tube's atoms, respectively. 

As in [2] we used instead of (1) the continuum model, 
for which  
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where 1r  and 2r  are inner and outer tubes radii, 1L  and 2L  
are their lengths (from now on we assume that 1 2 )L L≤  
and zΔ  is the distance between tubes outer edges and σ  is 
the surface density of carbon atoms in graphene, which is 
almost independent on the tube chirality,  

 –2
2

4= = 38.2 nm ,
3 3 b

σ   

where = 0.142 nmb  is the interatomic distance in gra-
phene. Note that expression (2) governs any one of coaxial 
DWCNT configurations, but for stable natural multi-wal-
led nanotubes the interlayer distance d  ranges from 0.342 
to 0.375 nm, and that it is a function of the curvature [11]. 

The integration over variables 1z  and 2z  can be easily 
carried out analytically, but obtained expressions are too 
cumbersome to be presented here. 

It's clear, that the system energy is minimal when the 
inner tube is completely retracted into the outer tube. In 
terms of hypergeometric functions the minimum interac-
tion energy is given by expression  
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where  
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3. Telescopic oscillations in DWCNT 

If the outer tube is rigidly mounted, then the longitudin-
al motion of the internal tube is described by Newton equa-
tion:  

 1 ( )( ) = ,z
U za z

m z
Δ

Δ
∂−

∂
 (5) 

where a  is the acceleration of the inner tube with mass m . 

We ignore here the contribution of some defect-induced 
dissipative forces since for high-quality nanotubes they are 
by several orders lower than the retraction force due to 
self-healing mechanism [3,5,12]. 

By (5) the motion of inner tube is cyclic with the period  
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where maximal displacement 0zΔ  is determined by the 
equation 0 2 1 0 0( ) ( ) =U z U L L z EΔ Δ≡ − − . 

Due to the special form of potential (2) we can separate 
out two limiting forms of motion (Fig. 1): 

1) steady movement for 0z bΔ  while the potential is 
linear in zΔ ; 

2) small oscillations when 0z bΔ  and the potential is 
quadratic in zΔ . 

It is obvious that for real DWCNTs the interaction 
energy and force are affected by the atomic structure of its 
shells. As a result the interaction energy is modulated [13] 
with period defined by the lattice parameters of both shells. 
The amplitude of energy modulation can reach a value 
of 1000 K for zigzag@zigzag and 60 100−  K for arm-
chair@armchair DWCNTs (for 5 nm length inner shell) 
and is linear in length. 

On the other hand due to incommensurability of atomic 
lattices for most chiral nanotubes as well as arm-
chair@chiral or zigzag@chiral pairs the modulation period 
can be much bigger than the whole DWCNT length. This 
means that impact of the shells structure substantially re-
duces as the smaller nanotube length increases. 

Actually the interaction between two (or more) nano-
tubes of different length is well-described by the conti-
nuum model if the oscillation energy is much higher than 
1000 K which corresponds to the great amplitude telescop-
ic motion ( 0z bΔ ). The small amplitude oscillations 
also can be considered within the continuum model for 
most cases of incommensurate nanotubes for which the 
energy modulation amplitude varies between 210−  and 10 K. 

Fig. 1. The intertube interaction energy (a) and longitudinal inter-
tube interaction force (b) for the (5,5)@(17,1) DWCNT with 10
and 20 nm lengths. 
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Furthermore, for DWCNTs with shell of equal length the 
effect of lattice structure on the intertube interaction energy 
is negligible compared to that of nanotube edges. As a result 
if 2 1 < 0.4L L−  nm (where 0.4 nm is the van der Waals 
force saturation displacement) the continuum model is valid 
regardless of temperature and shells structure. 

3.1. Large-amplitude oscillations in DWCNT 

When the displacement 0zΔ  is greater than few nano-
meters the potential energy is linear on zΔ  except small-
displacement region (with quadratic potential energy) 
which can be neglected. In such a case the period of oscil-
lation can be derived from simple formulas for the steady 
and uniformly accelerated motion. For equal-lengths tubes 
the period takes the form  

 0 min0 min
0

2 ( )2( )
( ) = 4 = 4 ,

z z z

m E UE U
E

a F F
τ

−−
 (7) 

where zF  is the longitudinal component of retraction force  
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   (8) 
Taking into account that 2 1=r r d+  for natural DWCNTs, 
expression (8) may be written as  

 1 2
1 2 0 1 1 0 2 2( , ) ( ) ( ) ,z z zF r r F r r F r r≡ − ≡ −  (9) 

where 1
0 1( )zF r  and 2

0 2( )zF r  are approximately constant for 
tubes of rather large radii and their asymptotic value 0zF  
is about 1.54 nN/nm  (Fig. 2). 

In terms of maximal displacement 0 0 min= ( )z E UΔ − ×  
1| |zF −×  the period can be rewritten as follows: 
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= 4 = 4 .

| | | |z z
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If 2 1>L L  then the region of steady motion also contri-
butes to (6): 
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Actually the oscillatory period does not depend on inner 
tube radius 1r  (if it is sufficiently large) since both the in-
ner tube mass m  and retraction force zF  are linear with 1r . 

If the outer tube is also mobile, then the above expres-
sions for periods remain to be valid with m  replaced by 
the reduced mass  

 1 2

1 2
= .m mM

m m+
  

Note that the interaction energy of atoms forming the tubes 
rapidly decreases with the interatomic distance. Therefore 
it is enough to consider only interaction of adjacent tubes 
in MWCNT. Since some adjacent shells of MWCNT can 
be rigidly glued by defects, then glued tubes should be 
considered as double-sided shells with integrated masses. 

3.2. Thermal oscillations of DWCNT 

For low temperatures the telescopic oscillations are the 
smallest frequency 1D modes in DWCNT. Therefore for 

0T →  by Boltzmann theorem their mean energy is 
= .BE k T  
For small oscillations the maximal potential energy of 

DWCNT coincides with E :  
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where k  is the rigidity parameter. Taking into account that 
in harmonic approximation the rigidity is the second deriv-
ative of potential energy on the inner tube longitudinal 
displacement and assuming the tube radius is much smaller 
of its length we obtain for 1 2=L L  the following expres-
sion: 
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The harmonic oscillations frequency for this 1 2( , )k r r  is 

 0
1= ,

2
k
m

ω
π

 (14) 

and the amplitude of longitudinal thermal oscillations can 
be estimated using the next relation: 

 30 2 nm= 6 10 .
K

Bz k
kT

Δ −≈ ⋅  (15) Fig. 2. The external shell radius dependence of 2
0zF  for the natu-

ral DWCNT with interlayer distance = 0.34d  nm. 
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It can be shown that 0zΔ  is few times smaller than the 
graphene lattice parameter even for 300T ∼  K. 

To model the intertube interaction force 
1 2 1 2( , , , , )F r r L L zΔ  in the case of 1 2L L≠  depending on 

the inner tube edge position zΔ  let us assume that the axis 
of outer tube coincides with the interval 2[0, ]L  of real axis 
and introduce two parameters: 

 ____________________________________________________  
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where 0k  is almost independent of 1 2,r r  for rather large values of these parameters. For 1 > 10r  nm we have 
2

0 3.7 nN/nmk ≈ − . 
For small maximum retractions of inner tube ( < 0.3 nm)zΔ  1 2 1 2( , , , , )F r r L L zΔ  can be written as follows: 
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Here 0 0= /x F k  is the displacement, which makes the longitudinal retraction force equals to zero, 1 2 1 2( , , , )k r r L L  is the 
DWCNT longitudinal rigidity and 0 1 2 1 2 1 2 1 2( , , , ) = ( , , , ,0)F r r L L F r r L L . 

In case of tubes with significantly different lengths 1 2(| | 1L L−  nm) the expression (17) takes the form  
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and in the case of equal lengths = 1 2 1 21 2 1 2( , ) = 2 ( , )L L L Lk r r k r r≠ . 
 _______________________________________________ 

The oscillation cycle can be considered as  
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is the system minimum potential energy defined by (3). 
With an accuracy of several percent previous equation can 
by approximated by  
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Since the longitudinal rigidity depends only on the 
tubes radii and the inner tube mass is proportional to the 
product of its length and radius, then the harmonic oscilla-
tion frequency scales on the length as 1/2

0 .Lω −∼  
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From the above discussion it is clear that for 300T  K 
the continuum model is valid for the DWCNTs with in-
commensurate shells but ceases to be true for commensu-
rate (armchair@armchair, zigzag@zigzag) and some qua-
si-commensurate configurations. As an example, for the 
majority of zigzag@chiral and armchair@chiral DWCNTs 
the considered thermal oscillations are possible for tempe-
ratures higher than 0.01–1 K. As for the chiral@chiral con-
figurations, in some cases the shells atomic structure im-
pact may becomes negligible even for 310 KT −∼ . 

3.3. Thermal oscillation frequencies in multi-walled CNTs 

Considering the long-amplitude oscillations of multi-
walled nanotube we assumed that some nanotube's shells 
can be bounded by the defects, but in the case of thermal 
oscillations we should take into account the motion of all 
shells because amplitudes of their oscillations are of the 
same order and much lesser then interatomic distance. For 
simplicity assume that all MWCNT's shells are equal in 
length. 

We obtained the MWCNT's thermal oscillations fre-
quencies by solving the system of equations for longitu-
dinal displacements of tubes with forces defined by the 
expression above for the intertube potential. In the conti-
nuum model arbitrary multi-walled nanotube can be cha-
racterized by the inner shell radius 0r , the number of shells 
n  under consideration and the constant distance between 
adjacent shells ( = 0.34d  nm). 

Considering only adjacent shells interaction we find ex-
plicit values of the consequent MWCNT eigenfrequencies 

, = 1...i i nω  (Fig. 3). The smallest eigenvalue is always 
equal to zero corresponding to the whole nanotube transla-
tional motion. The analysis shows that the maximal fre-
quency depends on the MWCNT characteristics but in case 
of tube with large number of shells ( 10n ) it tends to the 
asymptotic value which depends only on the tubes length 
(Fig. 4):  

 max
280= GHz .

L
ω  (22) 

The obtained value of maximal frequency is underesti-
mated for real tubes because defects may increase the lon-

gitudinal rigidity of MWCNT. The minimal oscillation 
frequency strongly depends on the number of shells (as a 
result of increasing of the outer shell mass) and can be 
found using the following interpolation formula (Fig. 4): 
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Using obtained frequencies the contribution of tube's te-
lescopic oscillations to the individual MWCNT internal 
energy is calculated  
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where Bk  is the Boltzmann constant and T  is an absolute 
temperature, and specific heat  
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By (25) if minBk T ω , then  
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while ( )v BC T nk  if maxBk T ω . 
It is well known that under the Debye temperature the 

bulk solid specific heat decreases as a cubic function of the 
temperature and for the one dimensional structures such 
decreasing is given by the linear function. In the case of 
MWCNTs the telescopic oscillation induced specific heat 
decreases exponentially in the range of small temperatures 
and the corresponding Debye-like temperature is  Fig. 3. Frequencies of small telescopic oscillations for the 50 nm-

length MWCNT with 20 shells. 
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min
0.9365

1.7 e= = K,
2

n

D
B

T
k L n
ω −

 (27) 

where minω  is given by (23). As a result of exponential 
decreasing MWCNT's specific heat may be several orders 
higher than that of environment for DT T  while for 

DT T  these values change over. For the natural carbon 
nanotubes DT  varies in the interval 310 –1 K− . 

If MWCNT's shells have different lengths the hamper-
ing of low-energy telescopic motion by the lattice structure 
causes the abrupt increase of the oscillation frequency and 
also leads to the specific heat exponential decreasing. 
Moreover for most MWCNTs the thermal oscillations 
freezing-out as a result of both processes takes place within 
the same temperature range from 310−  to 1 10−  K. 

For the temperature = 1 KT  (assuming that > DT T ) 
the telescopic oscillations contribution to the total nano-
tube's specific heat may run as high as 50% for the rela-
tively small double-walled nanotubes ( = 20 30L −  nm, 

2 ~ 1r  nm). For the ten-walled MWCNTs of length =L  
50 nm=  and external radius = 2.5r  nm the telescopic 

oscillation specific heat is about 0.025 J/(kg·K)  and pho-
non contribution is in the range 0.2  to 0.3 J/(kg·K)  [14]. 
The maximal electronic contribution for metallic SWCNT 
is estimated to be ten times smaller than that of lattice os-
cillations [14]. As for all semiconducting nanotubes (which 
are the majority of natural MWCNTs) the electronic spe-
cific heat is negligible. Taking into account the 1D struc-
ture phonon specific heat linear decreasing in the consi-
dered temperature region it is reasonable to expect that for 

110T − K (if it is higher than DT ) the telescopic oscilla-
tion contribution may become dominant. 

4. Summary 

The explicit expressions for longitudinal rigidities and 
frequencies of small and large-amplitude telescopic oscil-
lations of DWCNT and MWCNT were deduced in the 
framework of continuum Lennard-Jones model borrowed 
from [2]. Besides the obtained frequencies of telescopic 
oscillations of MWCNT are in good agreement with avail-
able experimental data [3] and results of numerical simula-
tions [15–17]. 

For example, the thermal oscillation frequency of 
12.21 nm (7,0)@(9,9) DWCNT obtained in Ref. 15 is 
(75 8) GHz±  while the considered model gives 62 GHz. 
The retraction force zF  for the (9,0)@(12,0) DWCNT ob-
tained in [16,17] is 1.6 nN and using Lennard-Jones para-
meters from [16] it yields = 1.54zF  nN. For (5,5)@(10,10) 
and (10,10)@(15,15) DWCNTs the maximum retraction 

forces ratio is 1.67 by our model and 1.7 in [18]. So, the 
difference between frequencies calculated by our analytical 
formulas and those found by numerical methods with ac-
count of discrete structure of nanotubes lies within the 5%-
range. 

It is worth to be mentioned that investigation of multi-
walled nanotube oscillations by using exact expression for 
the two-shell retraction force and longitudinal rigidity is 
not computationally intensive in contrast to the molecular 
dynamics simulations. This permits us easily to calculate 
(within the bounds of continuum model) all oscillation 
frequencies and corresponding parameters (such as specific 
heat) of any MWCNT regardless of number of shells and 
their configuration. 

Therefore the considered Lennard-Jones continuum 
model is seemingly well suited for description of telescop-
ic trembling of MWCNT. 

Authors are grateful to Prof. V.M. Adamyan for the 
significant help. 
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