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Melting line of polymeric nitrogen 
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We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for 

Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymer-

ized nitrogen. The P–T relation, orthobaric densities and latent heat of melting were determined using a standard 

double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the 

temperature of molecular–nonmolecular transition in solid. We discuss the possibility of a triple point (solid–

molecular fluid–polymeric fluid) at ~ 80 GPa and observed maximum of melting temperature of nitrogen. 
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1. Introduction 

Recent studies of solid nitrogen at high pressures [1] 

revealed existence of its new crystalline phases. Polymor-

phism is typical for molecular cryocrystals but the specific 

feature of nitrogen is that some high-pressure phases of 

solid nitrogen are nonmolecular [2]. 

Experimental confirmation of the polymerization in so-

lid [3] and liquid nitrogen [4] allow theorists and experi-

mentalists to discuss the issue of a new configuration of 

the phase diagram of solid nitrogen at high pressures. 

The calculated P–T line of the molecular–to–polymeric 

transition in solid nitrogen [5,6] reveals essential depend-

ence on the structure of polymeric phase. Phase transitions 

with rearranging of chemical bonds are typical not only for 

nitrogen, but for many simple molecular condensed sys-

tems build from molecules with multiple chemical bonds. 

The possibility of molecular–to–polymer transition in 

liquid nitrogen was discussed in relation to the discovery 

of the temperature drop and increased conductivity of the 

nitrogen fluid behind the reflected shock wave (shock 

cooling) discovered by Nellis et al. [7]. 

Ab initio simulations of Boates and Bonev [8] reveal 

that dense liquid nitrogen may also have complex struc-

ture, similar to that found in the solid nitrogen. The transi-

tion from the molecular to the atomic structure can be in-

terpreted as a break triple chemical bond in N2 and 

formation of a network of ordinary chemical bonds con-

necting each N atom with three its nearest neighbors in the 

polymeric structure. 

Thus, the general idea, which may explain the phenom-

enon of polymerization in the liquid and solid phases, is 

the same. This allows using the equation of state (EOS) of 

the solid phase and liquid phase polymer nitrogen line to 

predict the melting crystalline polymeric nitrogen into po-

lymeric liquid. 

In this work we use a new EOS for highly compressed 

polymer nitrogen liquid which was developed recently and 

calibrated on results of ab initio simulations and applied to 

the prediction of the liquid–liquid transition in highly com-

pressed nitrogen [9]. Using two equations of state: for po-

lymeric solid and polymeric liquid nitrogen one can calcu-

late the location of the melting line on P–T diagram, and 

densities of coexisting phases. 

2. EOS for polymeric nitrogen solid 

We applied the modified Mie–Grüneisen model and 

EOS for anharmonic polymeric solid proposed in our work 

[10]. This EOS describes the thermodynamic properties of 

solid nitrogen in a wide range of parameters of state in 

cubic gauche (cg)-polymeric phase, and predicts the nega-

tive thermal expansion and significant deviations of heat 

capacity from the Dulong–Petit law. This EOS was used 

earlier in prediction of the molecular–to–polymer phase 

transition in solid nitrogen [6]. 
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The Helmholtz free energy of an anharmonic solid was 

written [10] as a sum: 

 
( ) (anh)

poly poly poly
h

F F F  , (1) 

where 
( )
poly

h
F  is the quasi-harmonic contribution, represent-

ed by the modified Mie–Grüneisen model, and 
(anh)
polyF  is 

an anharmonic correction: 
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Here 
(0)
polyU  is the energy of static lattice, and ( )F DD x  is 

the Debye function: 
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Both thermal and caloric EOS are easily obtainable 

from Eq. (1) by differentiation with respect to density and 

temperature:  
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Here 1( )Bk T   . 

As it was shown in Ref. 10, the anharmonic contri-

butions to the heat capacity as well as to the thermal ex-

pansion and isothermal compressibility are important. 

The anharmonic contribution includes anharmonic cor-

rections 1( )A   and 2 ( )A  : 
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and 1( )A   and 2 ( )A  were found in Ref. 10 using devia-

tions of the heat capacity from the Dulong–Petit law, dedu-

ced from Monte Carlo data [11] for cubic gauche (cg)-solid 

nitrogen: 

 * * *
1( ) 0.004918 ( 1.0468)( 0.8481)A         , (7) 

 4 * * *
2( ) 4.03 10 ( 0.9666)( 0.8763)A         , (8) 

* 3
0 0, 7cm /molV V    . 

The quasi-harmonic thermal Grüneisen parameter,    

ln / lnD     , was determined by extracting the anhar-

monic corrections, calculated according to Eqs. (4) and (5) 

from the Monte Carlo data [11] on pressure and energy. 

Surprisingly, it was found to be almost independent of 

temperature and decreasing nearly linear with the increas-

ing density. Equations for D  and density-dependent Grü-

neisen parameter: 

 0
0

1
 

     
 (9) 

includes three constants: 0 , 0  and 
(0)

0( )DD    , 

where 0  is the density corresponding within quasi-

harmonic approximation to 0  . All the constants were 

determined from Monte Carlo data [11]: 0  = 30.5, 0 

= 1/7 cm
3
/mol, and 200 KD  . 

The linear decrease of the thermal quasi-harmonic Grü-

neisen parameter with density [10] gives the possibility for 

a simple modification of the Mie–Grüneisen model. Ex-

pression for the quasi-harmonic contribution to the Helm-

holtz free energy as a function of temperature T and vo-

lume V remains the same as in the original Mie–Grüneisen 

model.  

Applying the standard thermodynamic relations one can 

obtain expressions for quasi-harmonic contributions to all 

thermodynamic functions. Equations for the energy and 

heat capacity remain the same as in the original Mie–Grü-

neisen model, except for the new density dependence of 

the Debye temperature. 

All the EOS parameters used in this work were adopted 

from Ref. 10 except the static lattice energy 
(0)
polyU , which 

was shifted by 0E  — the difference in energies between 

static molecular and static cg-lattices. The value of 0E  

parameter is important in calculation of the phase equilib-

rium. Zhang et al. [12] refer to 0E  value of 1 eV/atom. In 

our calculations we adopted the value 0 0.97E   eV/atom 

obtained by Mailhiot et al. [13]. 

3. EOS for liquid polymeric phase 

EOS of polymerizing fluid nitrogen was written [9] as 

an expression for Helmholtz free energy F  of a mixture of 

2N  molecules, dimers 4N  and all other possible polymers 

2N k  is as follows: 

 
(id) ( )

1 polypoly ( ) ( )HD
LF F F F      .  (10) 

Here 1n  is numerical density (concentration) of molecular 

component 2(N ) , 3
1 /3nd    is “molecular” and L   

3 /3Lnd   is “polymeric” packing fraction, n is the molar 

density of nitrogen,   is the degree of polymerization: 

11 /n n   . 

The general expression for ideal-gas part for Helmholtz 

free energy can be written as:  
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where  kQ T  are partition functions of kth component: 

k = 1 ( 2N ), k = 2 4(N ), etc. The explicit expression of the 

ideal-gas Helmholtz free energy 
(id)
polyF , was developed in 

Ref. 9 in terms of two dimensionless quantities   and  : 
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Auxiliary variables   and   are defined [9] as follows: 
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The polymerization degree   can be expressed in terms of 

  and   as:  

 1 /     . (15) 

Effect of nonideality  
1( )

HD
F   was included by the 

hard-dumbbell contribution [14]. 

The contribution of the strong attraction between atoms 

in polymerized fluid leads to formation of a network of 

interatomic single bonds and is accounted by the last term 

in Eq. (10). It is a function of the “polymeric” packing 

fraction 3 /3L Lnd    proposed in Ref. 15: 
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The above Eqs. (10)–(16) completely define the EOS 

for the polymeric liquid.  

EOS for polymeric liquid nitrogen was calibrated on 

ab initio simulation data [8] and applied to prediction of 

fluid–fluid transition in strongly compressed nitrogen [9]. 

The 0E  value was fitted to reproduce the melting pres-

sure near the triple point at 1500 K [1]. 

4. Results and conclusions 

The pressure–temperature relation, orthobaric volumes 

and latent heat of melting were determined using a stand-

ard double tangent construction. Orthobaric volumes of the 

coexisting liquid and solid phases of polymeric nitrogen 

were obtained as abscissa of the point of contact of the 

common tangent to the curves of the free energy Eq. (2) 

and Eq. (10) and the equilibrium pressure of melting was 

defined as the slope of this tangent. The results are present-

ed and compared with experimental data in Figs. 1 and 2. 

It should be noted that EOS for polymeric liquid [9] 

was calibrated on ab initio data [8] ranging from 2000 to 

5000 K and hence the solution appear to be possible only 

within the limited range of temperatures and pressures. At 

temperatures above ~ 1750 K the predicted melting line 

crosses the (extrapolated) liquid–liquid phase separation 

line and therefore no above common tangent was found. At 

temperatures below 1500 K the extrapolation of EOS for 

liquid phase become, in our opinion, too far. 

In Fig. 1 we present the predicted temperature–pressure 

relation on the melting curve of polymeric nitrogen. Pre-

dicted melting temperature is compared here with experi-

mental data and the molecular–to–plastic transition line 

predicted earlier [6]. Note that the estimated melting tem-

perature decreases with increasing pressure, alike the tem-

perature of molecular–nonmolecular transition in solid. 

The predicted pressure dependence of the orthobaric 

volumes of the solid and liquid polymeric nitrogen on the 

melting curve are shown in Fig. 2 together with the only 

available experimental data Eremets et al. [16] for the mo-

lecular (circles and squares) and polymeric nitrogen (dia-

monds) at room temperature. This comparison gives an idea 

of the volume change during melting of polymeric cg-phase 

in that limited range of pressures where the calculations 

have been carried out. There is a reasonable quantitative 

agreement with the room-temperature data of Eremets 

Fig. 1. Temperature–pressure dependence of the nitrogen melting 

line. Predicted melting temperature (dashed line) in comparison 

with experiments [1,17,18], ab initio [8] data, and molecular–to–

polymeric solid–solid transition (dash-dotted line), predicted 

earlier [6]. Light gray area: phase boundary of cg-N estimated in 

Ref. 1. 

Fig. 2. Predicted pressure–volume dependence of the solid (open 

diamonds) and liquid (open squares) polymeric nitrogen on the 

melting line. Solid symbols represent experimental data of 

Eremets et al. [16] for molecular (solid circles and squares) and 

polymeric nitrogen (solid diamonds) at room temperature. 
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et al. [17]. As one can see in Fig. 2, volumes of polymeric 

solid at high temperature are less than measured at room 

temperature. And the unusual increase of both volumes 

with pressure is not surprising. It due to negative slope of 

P(T) relation and negative thermal expansion of polymeric 

nitrogen [11]. 

The estimated latent heat L of cg-N melting is also neg-

ative and its absolute value increases with temperature. At 

T = 1700 K the value of latent heat reaches –2.0 eV/atom. 

Recent ab initio simulations [8] predict existence of at 

least a second triple point (solid–molecular fluid–polyme-

ric fluid) at Ptr ~ 80 GPa on the melting line of nitrogen. 

Our calculations support this prediction. 

The predicted melting temperature decreases with the 

increasing pressure. It drops from 1750 K at 80 GPa up to 

1500 K at 95 GPa (see Fig. 1). Such behavior is in line 

with the recent measurements of Goncharov et al. [1] who 

observed the maximum of the melting temperature. 
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