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We have studied thermostimulated luminenscence and electron emission of nitrogen films and nanoclusters 

containing atomic nitrogen free radicals. Thermostimulated electron emission from N2 nanoclusters was ob-

served for the first time. Thermostimulated luminescence spectra obtained during N2–He sample destruction are 

similar to those detected from N2 films pre-irradiated by an electron beam. This similarity reveals common 

mechanisms of energy transfer and relaxation. The correlation of the luminescence intensity and the electron cur-

rent in both systems points to the important role of ionic species in relaxation cascades. A sublimation of solid 

helium shells isolating nitrogen nanoclusters is a trigger for the initiation of thermostimulated luminescence and 

electron emission in these nitrogen–helium condensates. 

PACS: 78.60.Kn Thermoluminescence; 

79.75.+g Exoelectron emission. 

Keywords: solid helium, cryogenic electrolytes, ion dipole gas, phonon spectrum. 

 

Introduction 

Accumulation of reactive particles in nitrogen and ni-

trogen-containing solids has been a problem of particular 

interest for years [1–3]. A great breakthrough was made by 

use of a gas jet condensation technique [4,5] and the local 

concentrations of N atoms up to 10
21

 cm
–3

 were recently 

achieved in impurity–helium condensates (IHCs) [6]. IHCs 

are formed by impurity nanoclusters providing large total 

surface area favorable for stabilization of radicals. We have 

never registered any ions in impurity–helium condensates 

during previous ESR and optical spectroscopy studies. In 

this work we present the first observation of ions in IHCs 

and discuss our recent results of studies of the thermally 

stimulated luminescence (TSL) and electron emission 

(TSEE) of nitrogen nanoclusters and films. Ionic nitrogen 

radicals were studied in solid films of neon [7–9] and mo-

lecular nitrogen [10]. Formation and relaxation of many 

excited complexes (including ionic ones) in solid films of 

rare gases and N2 have been well studied [11–13]. More-

over, crystals of solid 
4
He (so-called “icebergs”) doped 

by metal particles can store rather high density of ions 

~ 10
14

–10
15

 cm
–3

 [14]. Such icebergs remain solid below 

the melting curve of 
4
He. This observation gives us a 

facinating example of metastable Coulomb systems in 

condensed helium. A deep understanding of relaxation 

processes involving both neutral and charged species in 

such energetic materials as IHCs can provide for further 

advances in energy accumulation in cryogenic media.  
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Experimental setups 

A gas jet condensation technique [4,5] was used to ac-

cumulate nitrogen nanoclusters in superfluid helium. A gas 

mixture of N2 (1%) and He was transported from a room 

temperature gas handling system to the cryogenic region. 

Nitrogen atoms were produced by dissociation of N2 mole-

cules by using a high-power radiofrequency (RF) discharge 

(f ~ 40 MHz, P ~ 40 W) applied to electrodes placed 

around the quartz capillary carrying the mixed gases. The 

resulting jet of helium gas with nitrogen particles emerging 

from the quartz capillary was directed onto the surface of 

superfluid 
4
He contained in a glass beaker. A fountain 

pump situated in the bottom part of the optical glass dewar 

maintained a constant liquid helium level in the beaker. 

During the cooling of the gas jet, at first nitrogen nano-

clusters are formed. When the temperature gets lower, he-

lium atoms are adsorbed on the surface of the nitrogen 

clusters. The temperature during sample preparation was 

about 1.5 K. As the jet penetrated the surface of the liquid 

helium, a macroscopic snow-like translucent material con-

sisting of nitrogen nanoclusters isolated by solid helium 

shells was created. A jet with a flux of ~ 5·10
19

 atoms and 

molecules per second yielded ~ 0.3–0.4 cm
3
 of sample in 

10 min. Warming the sample when removed from bulk 

liquid helium initiates evaporation of helium layers, giving 

rise to direct contact between neighboring cluster surfaces, 

accompanied by recombination of the reactive species. 

During the sample warm-up the TSL spectra were repeat-

edly detected with an Ocean Optics spectrometer HR2000+ 

in the range 200–1100 nm with the exposure time of 1 s. 

The glass dewars and beaker restricted the accessible spec-

tral range between 325 and 1100 nm. The optical resolu-

tion of the spectrometer was of order 1.3 nm (FWHM). For 

the first time we observed electrical currents accompany-

ing the destruction of nitrogen–helium samples collected 

on an electrode held at the positive potential (9 V). A sig-

nal collected by the electrode was digitized with a picoam-

meter (Keithley 6485). 

In another series of experiments, solid nitrogen films 

were grown in two ways: by deposition of nitrogen gas 

under an electron beam or by deposition of neutral gas 

which was then irradiated with an electron beam of a given 

energy, which can be varied from 500 eV to 2 keV. The 

high-purity (99.9995%) gas was deposited on a metal sub-

strate cooled to 6 K in a vacuum chamber with the base 

pressure 10
–8

 mbar. The presence of impurities was moni-

tored spectroscopically. The main impurity appeared to be 

oxygen. The resulting condensates were polycrystalline 

films of 100 μm thickness. Note that the samples with an 

open surface are accessible to luminescence studies in the 

temperature range up to 36 K, the range of existence of 

the Pa3 structure ( phase). Transition to the  phase at 

35.6 K in such films was detected previously by the TSEE 

technique [13]; however the intense sublimation of nitro-

gen films limits studies of their spectroscopy at higher tem-

peratures. The luminescence spectra in these experiments 

were also recorded repeatedly for the exposure time requir-

ed to monitor the formation and accumulation of excited 

species. On completion of irradiation, afterglow and “after-

emission” of electrons were detected. When these effects 

decayed completely, samples of solid N2 were heated at a 

constant rate. The temperatures required for sample prepa-

ration and the heating rate were controlled with a silicon 

diode sensor mounted at the substrate which was connect-

ed to a temperature controller (Leybold LTC 60). Yields of 

spectrally resolved thermally stimulated luminescence and 

exoelectron current were detected in a time-correlated 

fashion. The TSL spectra in the range 170–870 nm were 

recorded using an Ocean Optics spectrometer S2000, the 

TSEE current was detected with an electrode kept at +9 V, 

and amplified by a FEMTO DLPCA 200 current amplifier. 

More detailed descriptions of the experimental setup can 

be found elsewhere [15,16]. 

Experimental results 

The time dependences of the current, the temperature 

and the integrated (in the range from 300 up to 1100 nm) 

luminescence intensity obtained during warm-up and de-

struction of nitrogen–helium sample are shown in Fig. 1. In 

the case of highly porous impurity–helium sample, a warm-

up of its different parts is not uniform due to poor thermal 

conductivity and there is no direct relation between the 

thermometer temperature and the temperature of the react-

ing part (which emits light). We can only estimate the tem-

perature of the complete sample destruction (when the last 

part of the sample is burned out). This temperature is about 

12 K (Fig. 1). We have missed some current counts at the 

beginning of the warm-up due to a late start of picoammeter 

software. Nevertheless one can see a correlation between 

the current and the integrated luminescence intensity. This 

means that the main trigger for nitrogen–helium sample 

Fig. 1. (Color online) The time dependence of the current (black 

line with hollow circles), the integrated luminescence intensity 

(blue line), and the temperature (red line with solid circles) de-

tected during warm-up and destruction of a nitrogen–helium 

sample. 
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destruction is the evaporation of helium atoms from the 

impurity nanocluster surfaces which occurs for tempera-

tures above 2 K. If energetic nitrogen–helium samples with 

high-energy content warmed up at low pressure (less than 

500 Pa) they sublimated at temperatures below 12–14 K. 

Some delay of the current peaks relative to the lumines-

cence flashes can be explained by thermo- and photostimu-

lated mechanisms of electron de-trapping, when the intense 

recombination of N atoms stabilized mainly on the cluster 

surfaces produces a bright emission and accelerates the 

sample warming. As demonstrated in [17,18], the electron 

emission from RG solids containing charge centers can be 

stimulated by both irradiation with photons and sample 

warming. 

The recent observations of the TSEE from solid nitro-

gen [13] provide a new means for investigating the relaxa-

tion processes occurring in solid nitrogen by simultaneous-

ly using the optical and current activation spectroscopy 

methods. As mentioned above, after completion of the 

sample irradiation the well-known [19] long lived after-

glow (the so-called  group) at the wavelength of the 
2
D

4
S doubly forbidden transition of N atom (522 nm) 

appears, with a characteristic decay time  of about 37 s. 

We observed also a persistent after-emission of electrons 

exhibiting two exponential decays, one with 1 = 37 s, co-

inciding with the afterglow decay time , and the another 

with a longer 2 about 215 s. 

Before starting the warm-up experiments and recording 

the “glow curves”, both the afterglow and the after-emis-

sion were allowed to drop to zero, indicating that all the 

excited N atoms produced under irradiation had sufficient 

time to return to the ground state. The actual curves show-

ing the temperature dependence of the TSEE and the spec-

trally resolved thermally stimulated luminescence TSL 

over the range of the  phase existence obtained during the 

warm-up of a nitrogen film are presented in Fig. 2, where 

for the TSL curve, the  group being the most intense line 

was monitored. The TSL shows a wide feature with maxi-

mum peaked at 16 K and a “high temperature” shoulder 

which extends up to 30 K. The TSEE curve at low temper-

atures consists of two overlapping peaks at 15 and 16 K 

with an extended “high temperature” tail. The TSEE yield 

exhibits a sharp increase as the phase transition to the  

phase is approached. Besides the  group, we also moni-

tored the TSL at 793 nm, the wavelength of the so-called 

“ line” — an unidentified line. The similarity of the glow 

curves detected at 793 and 522 nm shown in Fig. 2 implies 

a similar mechanism for a population of the emitting states. 

Elucidation of the processes resulting in -line emission 

requires further study.  

The dynamics of TSL spectra during warm-up of a nitro-

gen–helium sample and a “pure” solid nitrogen film are 

shown in Figs. 3 and 4, respectively. 

We should note that reappearance of the 522.7 and the 

555.5 nm lines in the TSL spectra from a nitrogen solid 

film was not reproducible (Fig. 4). In fact, we observed 

Fig. 2. The thermostimulated electron emission and the lumines-

cence intensities at 522 and 793 nm of a solid nitrogen film pre-

irradiated with a 1 keV electron beam. 

Fig. 3. Dynamics of thermoluminescence spectra of a nitrogen–

helium sample. Every 2nd of the spectra measured is shown. 

Fig. 4. Dynamics of thermoluminescence spectra of a solid nitro-

gen film. Every 20th of the spectra measured is shown. 
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some flashes in samples and films containing minor ad-

mixture of oxygen. The similar effect was mentioned in 

earlier work, e.g., [20]. 

The most intense flash spectrum detected during the ni-

trogen–helium sample destruction is shown in Fig. 5. Vari-

ous different states of atomic and molecular nitrogen along 

with those of atomic oxygen involved in the energy relaxa-

tion processes. The  and  groups corresponding to the 

transitions N (
2
D

4
S) and O (

1
S

1
D) dominate the spec-

trum. Weak Vegard–Kaplan bands of N2 molecules, the ', 

, and '' groups of N atoms, and the  line are also shown 

in the spectrum. 

The typical TSL spectrum detected during a warm-up 

of the solid nitrogen film pre-irradiated with an electron 

beam is shown in Fig. 6. The spectrum is rather similar to 

the one shown in Fig. 5. The spectral features of the TSL 

observed from the N2–He sample and the N2 film together 

with their identifications are summarized in Table 1. 

The positions of the spectral features observed are close 

to the ones known for N2 molecules, N and O atoms in N2 

matrices. Keeping in mind the spectral resolution of the 

spectrometers used in these studies, the agreement of the 

results obtained with clusters and solid films with the pub-

lished data on emission from N2 matrices is quite satisfac-

tory. 

Table 1. The spectral features of TSL observed from the N2–He 

sample and the N2 film, their identification and positions in com-

parison with literature data 
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339.6 

365.8 

395.3 

(very weak and 

broad) 

bands of Vegard–

Kaplan system: 

  0–9,   338.6 

  0–10, 364.4 

0–11, 395 

[21] 

522.6 522.7 α group, 

N (
2
D

4
S), 523 

[20] 

557.4 555.5 β group, 

O (
1
S

1
D), 554.2 

[20] 

594.4 594 α’ group, 594.5 [20] 

794.4 792.6 γ line, 793.5  

(upon irradiation) 

[20] 

858.5 855.1 δ’’ group, 856 [20] 

1047.7 beyond the oper-

ating range of the 

spectrometer 

δ group, 

N (
2
P

2
D), 1045 

[20] 

Discussion 

Generaly, the TSL spectra obtained during the N2–He 

sample warm-up are similar to those detected from the N2 

films, while the final destruction temperature of nitrogen–

helium sample is close to the temperature at which the 

TSEE and TSL start in nitrogen films. In both systems we 

observed strong the  and  groups, the ' and '' groups 

of N atoms, an unidentified  line and Vegard–Kaplan 

bands of N2 molecules. It means that similar energy trans-

fer and relaxation channels are involved in both systems 

studied. Some small quantitative differences observed in 

the spectra can be easily understood. For example, the 

more intense  group observed in the TSL spectrum of the 

nitrogen–helium sample (Fig. 5) can be simply explained 

by the higher oxygen content in the sample. Close inspec-

tion of the TSL dynamics of nitrogen films shows that the 

ratio of the intensities of  and ′ groups, I/I′ (about 70), 

is somewhat smaller than that in nitrogen–helium samples 

(I/I′ = 80) [5]. The intensity of the  group emission of 

O atoms is comparable with the intensity of  group emis-

sions of N atoms because of the much higher (~10
7
 times) 

Fig. 5. The most intense flash spectrum detected during the nitro-

gen–helium sample destruction. 

Fig. 6. The TSL spectrum detected at 16 K during the solid nitro-

gen film warm-up. 
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probability of the O (
1
S

1
D) transition as compared with 

the N (
2
D

4
S) transition. The main source of oxygen in 

nitrogen–helium samples are different impurities such as 

O2, OH, H2O in gaseous helium giving totally ~ 10 ppm. 

Although the concentration of stabilized N atoms in solid 

N2 matrix is three orders of magnitude larger than that of 

the O atoms, the significantly larger transition probability 

of O atoms leads to a noticeable emission from the O at-

oms. An oxygen impurity also appears in the nitrogen film 

studies from residual gases in the deposition chamber es-

pecially at low gas flow rate.  

It is notable that the TSEE currents detected for both sys-

tems correlated with the corresponding TSL signals, point-

ing to the important role of the ionic species in the relaxa-

tion cascades. The intense release of negative charge 

carriers from the nitrogen–helium sample beginning at 

temperatures below 8–10 K indicates that electrons are the 

best candidates to be the charge carriers. The observation 

of three electron emission peaks (see Fig. 1) may lead to 

the destruction of different regions of the impurity–helium 

sample because of its inhomogeneous warm-up, which 

releases the electrons from these regions. Alternatively, the 

observed peaks may be explained by the existence of a 

corresponding number of electron traps with different acti-

vation energies. The lowest temperature peak may be relat-

ed to the release of electrons from “bubbles” destroyed 

during liquid helium evaporation. As is known, electrons 

are self-trapped in liquid helium via the “bubble” structure 

formation [22].  

In the TSL of nitrogen films a broad main peak at 16 K 

with an extended “high temperature” shoulder dominates 

the TSL glow curve. This suggests a relatively wide distri-

bution of trap depths and activation energies for stored 

charges. An average activation energy deduced by the half-

width method [23] for traps which form the 16 K peak is 

about 14 meV. Close correlation of the TSL detected for 

the  group and TSEE current at temperatures up to 25 K 

suggests that this luminescence arises from the neutraliza-

tion reaction of the ionic species N
+
 with electrons detrap-

ped upon the warm-up of the nitrogen film: N
+
 + e

–
 → N

*
. 

This appears plausible taking into account that the ioniza-

tion potential of the N atom is 14.53 eV is lower than that 

for nitrogen molecule (15.58 eV). Despite the firm data on 

TSEE from solid nitrogen films [13] there is still an inter-

esting question regarding the presence and specific nature 

of positive ions. Molecular ions 2N  and 4N  had been 

detected by ESR spectroscopy [7,8] and IR absorption [9] 

in neon matrices. These ions were formed in the neon ma-

trix by electron bombardment and photoionization. Note 

that they were detected only when N2/Ne ratio was greater 

than 1/600 and a quenching reactant was codeposited with 

the nitrogen [8]. Up to now, in our ESR and optical spec-

troscopy studies we did not observe the ion presence in 

either nitrogen–helium or nitrogen–neon–helium samples. 

However quite recently the presence of 4N  in the electron 

bombarded solid nitrogen films was revealed using current 

and optical activation spectroscopy in the VUV range [10]. 

The tetranitrogen cation 4N  manifested itself by the dis-

sociative recombination reaction with an electron released 

from the trap upon warm-up:  

1 –
4 2 2 2 2

*N  e  N  N ( )  N  Nua h          (VUV). 

An application of the RF discharge almost excludes the 

possibility of trapping predominantly the charges of one 

sign in impurity–helium condensates. The origin as well as 

the specific nature of ions in impurity–helium condensates 

produced by RF discharge is still unclear. There are two 

main possibilities for creating ions in IHCs: (1) during a 

gas jet condensation, ions formed in an RF discharge re-

gion (possibly, due to deep UV irradition of the clusters 

from the helium gas discharge) can be trapped by growing 

impurity clusters (moreover, they themselves can be nucle-

ation centers due to the higher polarizability); (2) the ioni-

zation of particles during the sample destruction due to 

interaction of excited atoms and molecules following the 

recombination of stored radicals. The first possibility ap-

pears more preferred because of our spectroscopic observa-

tion of 2N  ions in the condensing gas jet [24]. It is now 

well known that sublimation of solid helium shells isolat-

ing the impurity nanoclusters triggers the recombination of 

radicals stabilized on surfaces of the clusters and gives rise 

to the thermostimulated luminescence [5,25]. The electron 

emission from nitrogen–helium condensates at the same 

time as the TSL suggests a similar allocation of electrons, 

on the surfaces or in outer layers of the nitrogen clusters. 

Conclusions 

1. Thermostimulated electron emission in nitrogen–

helium condensates during their destruction was observed 

for the first time. 

2. The same energy relaxation pathways were thermally 

initiated in nitrogen nanoclusters and films prepared by 

different techniques. The earlier start (at lower tempera-

tures) of the thermoluminescence and the electron emission 

from nitrogen nanoclusters is determined by intense re-

combination of nitrogen atoms stabilized on clusters’ sur-

faces following evaporation of solid helium shells sur-

rounding the clusters. 

3. Thermostimulated luminescence and electron emis-

sion observed during warm-up of nitrogen–helium conden-

sates and nitrogen films demonstrate the similarity of the 

processes initiated, including the neutralization of the ionic 

species. 

4. The electron emission from nitrogen–helium samples 

upon their destruction can be explained either by a capture 

of ions in nitrogen nanoclusters during the sample prepa-

ration or by the creation of the ions as a result of interac-

tion of excited atoms and molecules during the sample de-

struction.  
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