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Let υn(x) be a sequence of subharmonic functions in a domain G ⊂ Rm.
The conditions under which the convergence of υn(x), as a sequence of gene-
ralized functions, implies its convergence in the Lebesgue spaces Lp(γ) are
studied. The results similar to ours have been obtained earlier by Hörmander
and also by Ghisin and Chouigui. Hörmander investigated the case where
the measure γ is some restriction of the m-dimensional Lebesgue measure.
Grishin and Chouigui considered the case m = 2. In this paper we consider
the case m > 2 and general measures γ.

Key words: subharmonic function, Radon measure.
Mathematics Subject Classification 2010: 31A05, 30D30.

1. Introduction

We study the connection between the convergence of sequences of subhar-
monic functions in the sense of the theory of generalized functions and other
types of convergence. There is no need to justify the relevance of the paper due
to its classical problematics.

The descriptions similar to the one below were obtained by Hörmander ([1,
Proposition 16.1.2]) and by Grishin and Chouigui ([2, Theorem 11]). In this
paper, the cases not studied earlier are considered.

The convergence of a sequence υn to υ in the space Lp(γ) means that
∫
|υn(x)− υ(x)|pdγ(x) → 0 (n →∞).

In the present paper, we find the sufficient conditions on a measure γ with the
support compactly embedded in G which guarantee the convergence of sequences
of subharmonic functions in the space Lp(γ) provided that they converge in the
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sense of the theory of generalized functions. It turns out that in assertions of
this type the condition that υn are subharmonic functions can be replaced by the
condition that υn are δ-subharmonic functions if in addition the sequence µn of
the Riesz measures of υn is required to be weakly bounded.

We have already mentioned several well-known results obtained on the sub-
ject. The two-dimensional case is considered in [2], here we consider the case
where the dimension of the space m ≥ 3. In the theory of subharmonic functions
in Rm, an important role is played by the kernel

hm(x− y) = ‖x− y‖2−m.

In this paper, we consider this kernel as a map from the space Rm into the space
Lp(Rm, dγ(x)), where γ is a positive measure in Rm. In this case, we can write

hm(x− y) : Rm
y → Lp(γ).

We now briefly describe the content of the paper. It consists of three sections.
Section 1 is Introduction. Section 2 contains preliminary results. Here we give
the statements of those well-known results that are used in the subsequent proofs
of theorems. The main results of the paper are contained in Section 3. We
consider the sequences υn of subharmonic and δ-subharmonic functions. We
obtain the conditions under which the convergence of a sequence υn, as a sequence
of generalized functions, implies its convergence in the spaces with integral metric
over a measure γ.

2. Preliminary Results

Recall that Schwartz’s generalized function is a linear continuous functional
over the space of test functions D(G) (D, if G = Rm) consisting of compactly
supported infinitely differentiable functions in G with the standard definition of
convergence. The space of generalized functions is denoted by D′(G). We denote
by Φ continuous functions with compact support in Rm. In the space Φ, the
notion of convergence is introduced as follows. The sequence of the functions ϕn

converges to the function ϕ in the space Φ if there exists a compactum containing
the supports of all functions ϕn such that ϕn converges uniformly to ϕ in the
space Rm.

We define a Radon measure as the difference of two locally finite Borel mea-
sures µ = µ1 − µ2. For the Radon measure µ, the domain of definition consists
of all Borel sets E ⊂ Rm except those E for which the equalities

µ1(E) = µ2(E) = +∞
hold. Thus, in general a Radon measure is not a Borel measure. Its domain of
definition does not contain a wide class of Borel sets. It is important for us that
the domain contains all Borel sets with compact closure.
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We consider three types of convergence in the set of Radon measures. Suppose
that µn is a sequence of Radon measures in the space Rm which, as a sequence
of generalized functions, converges to a generalized function µ, that is, (µn, ϕ) →
(µ, ϕ) for any function ϕ ∈ D. We denote this type of convergence by the formula

µ = T1 lim
n→∞µn.

If there exists a Radon measure µ such that the relation (µn, ϕ) → (µ, ϕ)
holds for any function ϕ ∈ Φ, then we say that the sequence µn converges widely
to µ, and in this case we can write

µ = T lim
n→∞µn.

Let K be a compactum. If there exists a measure µ on K such that the
relation (µn, ϕ) → (µ, ϕ) holds for any function ϕ ∈ C(K), then we say that the
sequence µn converges weakly to µ and we can write

µ = w lim
n→∞µn.

When we speak about the w-convergence, it is assumed that the compactum
K is uniquely determined by the context. Note that the w-convergence coincides
with the weak convergence in the space C∗(K).

Let us recall some definitions and results from the theory of integrals and
measures.

A subset M1 of Radon measures is said to be weakly bounded if the set
A(ϕ) = {|(µ, ϕ)| : µ ∈ M1} is finite for any function ϕ ∈ Φ.

A subset M1 of Radon measures is said to be T -compact if any sequence µn

in M1 contains a widely convergent subsequence.
Let µ be a positive measure, and E be a Borel set. The set E is said to be

Jordan measurable with respect to the measure µ if µ(∂E) = 0.
The following theorems hold (see ([3], Introduction); ([4], Proposition and its

Corollary 15 in 1 of Ch. 3 therein)).

Theorem 1. A set M1 is weakly bounded if and only if the set B(K) =
{|µ|(K) : µ ∈ M1} is finite for any compactum K ⊂ Rm.

Theorem 2. A set M1 is T -compact if and only if it is weakly bounded.

We study the connection between the various types of convergence of se-
quences of Radon measures. It is obvious that the T -convergence implies the
T1-convergence. The converse assertion is false. Indeed, let µn =

√
n(δ1/n − δ0),

where δx0 is the Dirac measure on the real axis concentrated at the point x0. We
have T1 limn→∞ µn = 0. Nonetheless, the sequence µn is T -divergent. However,
the following assertion holds
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Theorem 3. Let µn be a sequence of positive Radon measures. Then T - and
T1- convergences are equivalent.

This theorem implies the following assertion

Theorem 4. If a sequence µn of Radon measures is T1-convergent and weakly
bounded, then it is T -convergent.

Theorem 5. Suppose that µ = T limµn (n → ∞) and the measures µn are
positive. Let K be a compactum that is Jordan measurable with respect to the
measure µ. Then µ = w lim µn (n →∞) on the compactum K.

Theorem 6. Suppose that a sequence of Borel measures µn on a compactum
K, regarded as a sequence of elements of the space C∗(K), converges weakly to
zero. Let M be a compact set in C(K). Then

sup{|(µn, ϕ)| : ϕ ∈ M} → 0 (n →∞).

P r o o f. It follows from the weak convergence and the uniform boundedness
principle that there exists a number a1 such that the inequality |µn|(K) ≤ a1

holds for all n. Let ε > 0 be an arbitrary number, and ϕ1, · · · , ϕN be an ε-net in
M . Since µn converges weakly to zero, there exists N1 such that for n > N1 we
have the inequalities |(µn, ϕk)| < ε, k = 1, . . . , N . Let ϕ be an arbitrary element
of M . There exists k such that ‖ϕ − ϕk‖ ≤ ε. Then for n > N we have the
inequality

|(µn, ϕ)| ≤ |(µn, ϕk)|+ a1‖ϕ− ϕk‖ ≤ (1 + a1)ε,

which completes the proof.

Theorem 7. Suppose that a sequence of harmonic functions un in a domain
G ⊂ Rm, regarded as a sequence of generalized functions, converges to a general-
ized function u. Then u is a regular generalized function which is representable
by some harmonic function u in the domain G. Furthermore, the sequence un

converges uniformly to u on each compactum K in G.

This is a special case of Theorem 4.4.2 in [5].
We now list the requisite properties of the kernel hm(x − y). The following

assertion holds

Theorem 8. Suppose that a is a continuous function with compact support
in Rm, and let

b(y) =
∫

a(x)hm(x− y)dx.

Then b is a continuous function in Rm.
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P r o o f. Note that the change of the variables x̃ = x−y in the integral gives
the equation

b(y) =
∫

a(x̃ + y)hm(x̃)dx̃.

Let δ > 0 be an arbitrary number. We assume that the inequality ‖y1−y0‖ ≤ δ
holds. We have

|b(y1)− b(y0)| ≤
∫
|a(x + y1)− a(x + y0)|hm(x)dx

≤ M sup |a(x + y1)− a(x + y0)|,
and the result follows easily.

Theorem 9. Let p ≥ 1 be an arbitrary fixed number. Suppose that γ is a
positive finite Borel measure such that

sup





∫

B(y,δ)

|hm(x− y)|pdγ(x) : y ∈ Rm




→ 0, (δ → 0). (1)

Then the function hm(x− y) : Rm
y → Lp(γ) is uniformly continuous with respect

to the variable y in the space Rm.

For this theorem see [6].

3. Main Results

Theorem 10. Suppose that υn is a sequence of subharmonic functions in a
domain G ⊂ Rm which converges as a sequence of generalized functions to a
generalized function w. Then

1) the generalized function w is a regular generalized function which is repre-
sented by a subharmonic function w in G;

2) if µ is the Riesz measure of the function w, and µn are the Riesz measures
of υn, then µ = T lim µn (n →∞);

3) the raising principle holds, that is, xn → x ∈ G (n →∞) implies

lim
n→∞ υn(xn) ≤ w(x);

4) the set of the points x ∈ G, for which the inequality

lim
n→∞ υn(x) < w(x),

holds, has capacity zero;
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5) if u∗(x) := limy→x u(y), then for all points x ∈ G the equality
(

lim
n→∞ υn(x)

)∗
= w(x)

holds;
6) if β is a positive Borel measure in G such that b(y) =

∫
hm(x− y)dβ(x) is

continuous and the function
∫

hm(x− y)d|β|(x) is locally bounded, then

lim
n→∞

∫
υn(x)dβ(x) =

∫
w(x)dβ(x);

7) if γ is a positive finite Borel measure with compact support in G such that
the function

hm(x− y) : Rm
y → Lp(γ)

is uniformly continuous, then
∫
|υn(x)− w(x)|pdγ(x) → 0 (n →∞).

P r o o f. Let µn be the Riesz measure of υn. The function υn and its Riesz
measure are connected by the relation

µn =
1

(m− 2)σm−1
4υn, (2)

where σm−1 is the surface area of the unit sphere in Rm. Since the operation of
differentiation is continuous in D′(G), then the sequence µn is T1-convergent. It
follows from Theorem 3 that µn is a T -convergent sequence. Let

µ = T lim µn (n →∞).

Let a domain G1 be compactly embedded in G. This means that the set
K = G1 is compact and K ⊂ G. Suppose in addition that µ(∂G1) = 0. Since
∂K ⊂ ∂G1, then µ(∂K) = 0. Then it follows from Theorem 5 that

µK = w lim
n→∞(µn)K , (3)

where the subscript K means the restriction of the corresponding measure to the
compactum K. The Riesz representation theorem gives

υn(x) = −
∫

K

hm(x− y)d(µn)K(y) + un(x), (4)
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where un is a harmonic function in the set
◦
K and, a fortiori, in the set G1. Let a

be an infinitely differentiable function with compact support in G1. We multiply
equality (4) by a and integrate it. By changing the order of integration, we obtain

∫
υn(x)a(x)dx =

∫
b1(y)d(µn)K(y) +

∫
un(x)a(x)dx, (5)

where
b1(y) = −

∫
hm(x− y)a(x)dx.

By Theorem 8, the function b1 is continuous in Rm and also in the compactum
K. It now follows from (3) that

lim
n→∞

∫
b1(y)d(µn)K(y) =

∫
b1(y)dµK(y).

By the hypothesis of the theorem,

lim
n→∞

∫
υn(x)a(x)dx = (w, a(x)).

We have thus proved that for any function a in D(G1) there exists a limit

lim
n→∞

∫
un(x)a(x)dx.

By Theorem 7, there exists a function u harmonic in G1 such that the sequence
un converges uniformly to u on all compacta contained in G1.

By passing to the limit in equality (5), we obtain

(w, a(x)) =
∫

b1(y)dµK(y) +
∫

u(x)a(x)dx

=
∫

◦
K

(
−

∫
hm(x− y)dµK(y) + u(x)

)
a(x)dx

=
∫

◦
K


−

∫

K

hm(x− y)dµ(y) + u(x)


 a(x)dx.

Note that G1 is an arbitrary domain compactly embedded in G and such that the
measure µ does not charge its border. Hence w is a regular generalized function
represented in G by a subharmonic function. Assertion 1) of the theorem is
proved.
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Suppose that µ is the Riesz measure of w, ϕ is the function in D(G). Then

(µ, ϕ) =
1

(m− 2)σm−1
(4w, ϕ) =

1
(m− 2)σm−1

lim
n→∞(4υn, ϕ) = lim

n→∞(µn, ϕ).

Assertion 2) follows from this equality and Theorem 3.
Assertions 3)–5) of the theorem follow from the well-known facts from the

potential theory. For example, assertion 3) is a consequence of Theorem 1.3 in
[3]. Assertion 4) is a consequence of Theorem 3.8 in [3], and assertion 5) follows
from Remark 2 to Theorem 3.8 in [3].

We now prove assertion 6). By the hypothesis, β is a measure with compact
support in the domain G. Therefore there exists a compactum K1 ⊂ G such that
supp β ⊂ K1. Let the compactum K = G1 in equality (4) be such that K1 ⊂ G1.
By integrating equality (4) with respect to the measure β, we obtain

∫
υn(x)dβ(x) =

∫
b(y)d(µn)K(y) +

∫
un(x)dβ(x),

where
b(y) = −

∫
hm(x− y)dβ(x).

The change of order of integration is legitimate since hm(x−y) ∈ L1(|β|×(µn)K).
Since b is a continuous function, we have

lim
n→∞

∫
υn(x)dβ(x) =

∫
b(y)dµK(y) +

∫
u(x)dβ(x)

=
∫ 

−
∫

K

hm(x− y)dµK(y) + u(x)


 dβ(x) =

∫
w(x)dβ(x).

Assertion 6) is proved.
We now prove assertion 7). Let

Jn =
(∫

|υn(x)− w(x)|pdγ(x)
) 1

p

,

and let nk be a sequence such that

lim
n→∞Jn = lim

k→∞
Jnk

.

Let the domain G1 be compactly embedded in G and such that suppγ ⊂ G1

and µ(∂G1) = 0. Then, applying Minkowski’s inequality, we obtain

Jnk
≤

(∫ ∣∣∣∣
∫

hm(x− y)d((µnk
)K − µK)(y)

∣∣∣∣
p

dγ(x)
) 1

p

+
(∫

|unk
(x)− u(x)|pdγ(x)

) 1
p

= J1k + J2k,
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where K = G1. It is obvious that J2k → 0 (k →∞). Let p > 1. For J1k, we have
the equality

J1k = sup
‖s‖q≤1

∣∣∣∣
∫

s(x)
∫

hm(x− y)d((µnk
)K − µK)(y)dγ(x)

∣∣∣∣ , (6)

where q is found from the equality 1/p + 1/q = 1, and the norm of the function
s is calculated in the space Lq(γ). We have

∫ (∫
|s(x)|hm(x− y)dγ(x)

)
d(µnk

)K(y)

≤
∫ (∫

hp
m(x− y)dγ(x)

) 1
p

d(µnk
)K(y).

It follows from the condition of part 7) of the theorem that the function(∫
hp

m(x− y)dγ(x)
) 1

p is continuous with respect to the parameter y and thus
bounded on the compactum K. Therefore,

∫ (∫
|s(x)|hm(x− y)dγ(x)

)
d(µnk

)K(y) ≤ M1µnk
(K).

Similarly, ∫ (∫
|s(x)|hm(x− y)dγ(x)

)
d(µ)K(y) ≤ M1µ(K).

It follows now from Tonelli’s and Fubini’s theorems that it is possible to change
the order of integration in the integral from (6). Therefore,

J1k = sup
‖s‖q≤1

∣∣∣∣
∫ (∫

s(x)hm(x− y)dγ(x)
)

d((µnk
)K − µK)(y)

∣∣∣∣ ,

For y ∈ K, we have the bound

∣∣∣∣
∫

s(x)hm(x− y)dγ(x)
∣∣∣∣ ≤

(∫
|hm(x− y)|pdγ(x)

) 1
p

≤ M1.

Note that the sequence µnk
(K) is bounded. Therefore the family

Fs(y) =
∫

s(x)hm(x− y)dγ(x), ‖s‖q ≤ 1,

is uniformly bounded. The Hölder inequality yields

|Fs(y2)− Fs(y1)| ≤
(∫

|hm(x− y2)− hm(x− y1)|pdγ(x)
) 1

p

.
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It follows from the restrictions of part 7) of the theorem that the family of func-
tions Fs(y) is equicontinuous. By Arzelàs theorem, the family Fs(y) is compact.
Next, Theorem 6 gives J1k → 0 (k →∞).

We have considered the case p > 1. Now let p = 1. Then

J1k =
∫ (∫

sk(x)hm(x− y)dγ(x)
)

d ((µnk
)K − µK) (y),

where
sk(x) = sign

∫
hm(x− y)d ((µnk

)K − µK) (y).

The sequence

Fk(y) =
∫

sk(x)hm(x− y)dγ(x)

is compact in C(K). In the same way as above, we obtain that J1k → 0 (k →∞).
Therefore, Jn → 0 (n →∞). Assertion 7) and, consequently, the whole theorem
are proved.

As it is seen later, the analogue of Theorem 10 for δ-subharmonic functions
can be proved by changing the reasoning insignificantly.

Theorem 11. Suppose that υn is a sequence of δ-subharmonic functions in
a domain G ⊂ Rm that converges as a sequence of generalized functions to a
generalized function w, and the sequence of the Riesz measures µn of the functions
υn is weakly bounded. Then

1) the generalized function w is a regular generalized function represented by
a δ-subharmonic function w in G;

2) if µ is the Riesz measure of w, then µ = T limµn (n →∞);
3) if β is a Borel measure with compact support in G such that the function

b(y) =
∫

hm(x − y)dβ(x) is continuous and the function
∫

hm(x − y)d|β|(x) is
locally bounded, then

lim
n→∞

∫
υn(x)dβ(x) =

∫
w(x)dβ(x);

4) if γ is a positive finite Borel measure with compact support in G such that
the function

hm(x− y) : Rm → Lp(γ)

is uniformly continuous, then
∫
|υn(x)− w(x)|pdγ(x) → 0 (n →∞).
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P r o o f. Since the sequences µn, (µn)+, (µn)−, |µn| are T -compact, to prove
assertion 1) we can assume without loss of generality that they are T -convergent.
Let

µ = T lim µn, µ̄ = T lim |µn| (n →∞).

Next, we proceed along the same line as in the proof of assertion 1) in Theorem
10 with the only change: the condition µ(∂G1) = 0 should be replaced by the
condition µ(∂G1) = 0.

The proofs of other assertions follow the proofs of the corresponding assertions
from Theorem 10.

Note that in Theorem 11 there are no analogues of assertions 3)–5) of Theo-
rem 10. The proofs of these assertions in Theorem 10 are based on some properties
of subharmonic functions which do not hold for δ-subharmonic functions.

The following statements can be derived from Theorem 11 and examples 1–3
in [6].

Theorem 12. Suppose that υn is a sequence of δ-subharmonic functions in a
domain G ⊂ Rm, m > 2, which, as a sequence of generalized functions, converges
to a generalized function w. Suppose that the sequence µn of the Riesz measures
of the functions υn is weakly bounded. Then w is a regular generalized function
represented by a δ-subharmonic function w in G. Furthermore, for any domain
G1 compactly embedded in G and for any p ∈ [1, m

m−2) the following limit relation
holds:

lim
n→∞

∫

G1

|υn(x)− w(x)|pdx = 0.

In the particular case, where υn are subharmonic functions, this theorem
coincides with the results obtained by Hörmander in [1].

Theorem 13. Suppose that υn is a sequence of δ-subharmonic functions in a
domain G ⊂ Rm, m > 2, which, as a sequence of generalized functions, converges
to a generalized function w. Suppose that the sequence µn of the Riesz measures
of the functions υn is weakly bounded. Then w is a regular generalized function
represented by a δ-subharmonic function w in G. Furthermore, if the sphere
S(x0, r) = {x : ‖x − x0‖ = r} is contained in G and p ∈ [1, m−1

m−2), then the
following limit relation holds:

lim
n→∞

∫

S(x0,r)

|υn(x)− w(x)|pds = 0.

Theorem 14. Suppose that υn is a sequence of δ-subharmonic functions in a
domain G ⊂ Rm, m > 2, which, as a sequence of generalized functions, converges
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to a generalized function w. Suppose that the sequence µn of the Riesz measures
of the functions υn is weakly bounded. Then w is a regular generalized function
represented by a δ-subharmonic function w in G. Furthermore, if a compactum
σ ⊂ G is contained in the (m− 1)-dimensional plane, and p ∈ [1, m−1

m−2), then the
following limit relation holds:

lim
n→∞

∫

σ

|υn(x)− w(x)|pds = 0.

The integrals in Theorems 13 and 14 are the surface integrals of the first kind.
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