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The effect of the charge carriers overheating in a two-dimensional (2D) hole gas in a Si1–xGex quantum

well, where x = 0.13; 0.36; 0.8, 0.95, has been realized. The Shubnikov–de Haas (SdH) oscillation amplitude

was used as a «thermometer» to measure the temperature of overheated holes. The temperature dependence

of the hole–phonon relaxation time was found using analysis of dependence of amplitude of SdH oscillations

change on temperature and applied electrical field. Analysis of the temperature dependence of the hole–pho-

non relaxation time exhibits transition of 2D system from regime of «partial inelasticity» to conditions of

small angle scattering.

PACS: 72.15.Lh Relaxation times and mean free path;
72.20.Ht High-field and nonlinear effects;
72.20.My Galvanomagnetic and other magnetotransport effects.

Keywords: quantum well, 2D hole gas, Shubnikov–de Haas oscillation, hole–phonon relaxation time.

Introduction

The surface of the crystal experiences surface acous-

tic waves [1]: Rayleigh and Lamb waves and so on. The

interaction of electrons with them differs essentially from

the electron–phonon interaction in the bulk of the crystal.

The specific features of the electron–phonon interaction

are present in thin films of metals and semiconductors be-

cause the surface processes more strongly affect the ki-

netic properties of these objects. In free thin films with

d < λ (d is the film thickness, λ is the phonon wave

length) there are bending waves obeying the quadratic

dispersion law ω ∝ q 2 (ω and q are the phonon frequency

and momentum, respectively) [2]. Films on a substrate

can experience Love waves with shear horizontal pola-

rization. These waves obey an unusual dispersion law

ω ∝ /q1 2 [3]. The specifics of the phonon spectrum of

films affect the character of the electron–phonon interac-

tion. Besides, the space quantization of the electron spec-

trum can be an additional factor of influence in semi-

metallic and semiconducting films. The situation is quite

simpler at the interface in semiconducting heterostruc-

tures. Here the electron occupies the quantum states in the

quantum well (QW) and form a two-dimensional (2D)

electron gas, whereas the phonons can be thought of as

three-dimensional (3D) since the elastic properties of the

crystal are identical at the both sides of the interface. The

heterostructures in semiconductors offer a possibility of

investigating the electron–phonon interaction between

2D electron gas and 3D phonons.

The aim of this study is to investigate the hole–phonon

interaction in a 2D hole gas in SiGe heterostructures, in

particular to obtain information about the time and the

temperature dependence of the hole–phonon interaction.

The use of the quantum corrections to conductivity cau-

sed by the effects of weak localization on interaction can-

not provide information about the electron–phonon re-

laxation time at very low temperatures because in this
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condition electron–electron scattering predominates over

other inelastic processes. This relaxation time can, how-

ever, be found from the electron overheating effect,

where the electron temperature Te increases above the

phonon temperature Tph due to a strong electric field

(current) or other heating factors. It should be noted that

the electron overheating effect in a 2D electron gas is in-

duced by the heat transport through the interface. Estima-

tion of the electron–phonon relaxation time is possible

because the transfer of the excess energy from the elec-

tron system to the phonon one is controlled by this time,

even under the condition of strong elastic scattering. Ex-

perimentally, this problem comes to estimating the elec-

tron temperature Te which changes under the influence a

strong current. To achieve the electron overheating effect,

the phonon should be free to leave the conducting layer

and come into the crystal surrounding (i.e. good acoustic

coupling is required between the conducting layer and the

crystal). This requirement is met in heterostructures.

In present study the overheating effect of charge carriers

was realized in p-type heterostructures with a Si1–xGex

quantum well. The Shubnikov–de Haas oscillation (SdHO)

amplitude was used as a «thermometer» to measure the

temperature of overheated holes.

Sample description

Four of the samples studied in this work (labelled

A–D, see Table 1) were prepared by the molecular beam

epitaxy technique [4]. In samples A and B the layers are

arranged as follows: a single crystal Si n-type (100) sub-

strate, pure undoped Si epitaxial layer, Si1–xGex quantum

well (~10 nm thick), undoped Si spacer (~20 nm), Si sup-

ply layer boron-doped at about 2.5·1018 cm–3, pure Si cap

(10 nm). In samples Ñ and D the composition of the crys-

tal beneath the QW, the spacer and the boron-doped layers

were Si0.7Ge0.3 and Si0.37Ge0.63, instead of pure Si.

To measure conductivity Hall bars were prepared,

shaped as a «double cross», i.e. a narrow (~0.5 mm) strip

with two pairs of narrow (0.05 mm) potential bars about

2 mm apart. The diagonal Rxx and off-diagonal Rxy com-

ponents of the resistance tensor were measured as func-

tions of magnetic field on samples A and C up to 11 T and

for samples B and D up to 6 T. The sample parameters: di-

agonal resistivity ρxx, hole concentration from Hall pHall

and SdHO pShH, mobility μHall and effective mass m*,

hole diffusion coefficient D measuring at the lowest tem-

perature are shown in Table 1.
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Fig. 1. Magnetoresistance ρxx and ρxy of samples A (a), B (b), C (c), D (d). T = 33 mK for sample A, and T � 0 3. K of the other samples.



Table 1. Characteristic parameters of the samples.
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A Si0.87Ge0.13 3.04 1.89 2.0 1.16 0.24 20.7

B Si0.64Ge0.36 4.78 6.42 6.7 0.22 0,24 13.9

C Si0.2Ge0.8 3.17 15.8 14.6 0.11 0.16 29.3

D Si0.05Ge0.95 0.54 17.5 16.2 0.68 0.156 179

The variations in magnetoresistances ρxx B( ) and ρxy B( )

with field, at the lowest temperatures, are illustrated in

Fig. 1 (ρ stands for the resistance per square area of a 2D

electron system). The curves exhibit pronounced Shub-

nikov–de Haas oscillations at B ≥ 1 Tand clear steps of the

quantum Hall effect in sample A.

Experimental results and discussion

Quantum interference effects were used in Ref. 5 to

estimate the electron temperature during electron over-

heating. Electron overheating becomes more obvious

when the SdHO are observed [6–8]. In the cited papers

the falloff of the amplitude of the oscillations with in-

creasing applied electric field was used to find a relation-

ship between the electron temperature and the rate of loss

of excess energy by the electrons. In Ref. 8 the depen-

dence of the energy loss time on the overheating tempera-

ture was found, and it was concluded that the main chan-

nel of electron energy loss is the emission of acoustic

phonons. In the present study, the overheating effect of

the charge carriers is used to calculate, straightforwardly,

the temperature dependence of the hole–phonon relax-

ation time in p-type Si1–xGex quantum wells.

In our experiments, the hole temperature Th was

found by comparing the SdHO amplitude change with

current and with temperature. As an example, the SdHO

amplitude observed in sample D at low current and vary-

ing temperature (a) and at constant temperature and vary-

ing current (b) are shown in Fig. 2.

The amplitude variation in these two cases were ana-

lyzed for three extrema (with filling factors ν = 18, 20,

and 22) in the magnetic field region 0.8–3.5 T. The quan-

tum numbers νare found from the off-diagonal compo-

nent of the resistance ρxy B( ) using the equation for resis-

tance quantization under the condition of the quantum

Hall effect (h e/ 2ν).

The electron overheating effect was considered in a

number of theoretical studies (their results are applicable

to hole overheating as well). In Ref. 9 an expression

T T
E

T
Te

e
e e− =

−
− −ph

ph
ph ph

2σ
γ

τ ( ) , (1)

was obtained from the heat balance equation, which con-

tains the characteristic of our interest, i.e. the time of elec-

tron–phonon relaxation τ e−ph at a certain temperature

Te−ph , characterizing the electron–phonon interaction un-

der the electron overheating condition. The prefactor γ
describes the temperature dependence of the electronic

specific heat C T Te ( ) = γ . Since this parameter is un-

known, it is reasonable to pass on to the equation of

Ref. 10
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This follows from Eq. (1) if we write down the heat

capacity and conductivity in terms of density of states

νds: C k Te ds= /( )π ν2 23 and σ ν= e D
ds

2 , besides it is

necessary to use expressions for 2D electron gas:

ν πds m= /* ( )�
2 , D F= /( )1 2 2

v τ (vF is the Fermi velocity

vF m n= / /( *)( )� 2 1 2π , n is the concentration of 2D elec-

trons). Equation (2) is quite convenient because it in-

cludes only one characteristic of the samples, namely

the electron diffusion coefficient D. The calculations ac-

cording to Eq. (2) gives possibility to obtain dependence

τ e eT− −ph ph( ). Temperature Te−ph is taken to be the mean

T T Te e− = + /ph ph( ) 2 [11,12], here Tph corresponds to the

temperature of the crystal.

The temperature dependences of the hole–phonon re-

laxation time τ h−ph of all the samples are shown in Fig. 3.

The dependences τ h hT− −ph ph( ) above 1 K for sample D

and above ~0.5–0.6 K for the other samples can be

approximated by the power function τ e T−
− −= ⋅ph

1 9 29 10

(Fig. 3, solid lines). It is essential that this function is

common despite the different characteristics of the sam-

ples. Moreover, the points corresponding to the filling

factors ν different for each sample fall on the same curve,

which suggests that the τ h−ph — value is independent of

the magnetic field. A stronger dependence τ h hT− −ph ph( )

appears below the temperatures specified above.

The results obtained must be interpreted in the con-

texts of the theoretical studies considering the tempera-

ture variations of electron–phonon relaxation for 2D elec-

trons interacting with 3D phonons [13,14]. In Ref. 14

these variations are analyzed in a wide range of tempera-

tures. The energy is quantized in a QW:

E
p

m

p

m m L
nx

x

y

y z

1

2 2 2 2

2

2

2 2 2
= + +

* * *

π �
,

where L is the width of the well, n is the quantum number.

Electrons occupied the ground state in the QW with the

energy E m Lz1
2 2 22= /π � * . The electron–phonon interac-

tion of 2D carriers is limited on variation of the transverse

momentum of the electrons in direction of quantization

(in z direction). The transverse component of the mo-

menta of the emitted (absorbed) phonons is determined by

the width of the QW q L⊥ /� 2π . At high temperatures

the thermal phonon momentum is q LT > /2π , and the

electron–phonon scattering is accompanied by emission

(absorption) of phonons with the wave vector mainly per-

pendicular of the QW. The process is characterized by the

dependence τ e T−
− ∝ph

1 . At lower temperatures the mo-

mentum of the thermal phonon q k T sT B= / � (s is the

sound velocity) is smaller than 2π / L. But if the phonon is

capable to change the wave vector of the electron by the

maximum value 2k F , the energy exchange between the

electron and the lattice can be about k TB . We expect the

dependence τ e T−
− ∝ph

1 2 in this region of «partial inelas-

ticity». At even lower temperatures (q kT F< 2 ) the wave

vector of the emitted (absorbed) phonon is limited by

temperature and the scattering is similar to the small-an-

gle scattering in a 3D metal following the dependence

τ e T−
− ∝ph

1 5.

The obtained dependencies τ h T−
− ∝ph

1 2 (Fig. 3) corre-

spond to the region of «partial inelasticity» [14]. At low-

ering temperatures the dependence becomes stronger. We
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attribute this to the small-angle mechanism predict in

theory [14], which is characterized by the dependence

τ e T−
− ∝ph

1 5. The temperature of the transition to this

dependence obeys qualitatively (to within the numeri-

cal coefficient << 1) the condition q kT F� 2 , if we take

k nF = /( )2 1 2π for a 2D electron gas, i.e., the temperature

grows as the carrier concentration increases. The quanti-

tative discrepancy is not clear yet and may be connected

with conditional character of the formulas for 2D electron

gas to the real situation.
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