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Physics of small-scale quantum turbulence in superfluids is essentially based on the knowledge of the energy 
spectrum of Kelvin waves, .kE  In our paper, we derive a new type of kinetic equation for Kelvin waves on 
quantized vortex filaments with random large-scale curvature which describes a step-by-step energy cascade 
over scales caused by five-wave interactions. This approach replaces the previously used six-wave theory, which 
was recently shown to be inconsistent due to nonlocality. Solving the four-wave kinetic equation, we found a 
new local spectrum with a universal (curvature-independent) exponent, 5/3

kE k−∝ , which must replace the 
nonlocal spectrum of the six-wave theory, 7/5

kE k−∝  in future theory, e.g., in finding the quantum turbulence 
decay rate, found by Kosik and Svistunov under wrong assumption of the locality of energy transfer in the six-
wave interactions. 

PACS: 67.25.dk Vortices and turbulence; 
47.37.+q Hydrodynamic aspects of superfluidity; quantum fluids; 
45.10.Hj Perturbation and fractional calculus methods; 
47.10.Df Hamiltonian formulations. 

Keywords: turbulence, superfluid, Kelvin wave. 
 

1. Physical background 

Turbulence in superfluids [1,2] is one of most fascina-
ting natural phenomena where transition from the laws of 
classical physics to the quantum laws occurs gradually as 
energy passes from large to small scales along the turbu-
lent cascade. Such a coexistence of the classical and quan-
tum physics in the same system and their interplay is a 
fundamental consequence of absence of viscosity, the role 
of with in classical turbulence is to quench the energy cas-
cades at scales which are still large enough to be classical. 
In superfluids, on the other hand, when temperature is 
close to the absolute zero, such quenching mechanism is 
absent, and the energy flux unavoidably reaches the scales 
where the quantization of the vortex circulation (disco-
vered by Feynman [3]) is essential. Recently, there have 
been significant advances in experimental techniques al-
lowing studies of turbulence in various systems such as 
3He [4,5], 4He [6,7] and Bose–Einstein condensates of 
supercold atoms [8,9]. Often, experimental devices are not 
small enough to probe the transitional and quantum scales 
directly. For this reason, an impressive progress in numeri-
cal simulations [10,11] is very important because they give 
access to characteristics of turbulence yet unavailable ex-

perimentally. In zero-temperature limit, one of the most 
interesting questions is the nature of the energy dissipation, 
namely the mechanisms of transfer the energy down to the 
tiny (almost atomic) scales where vortices can radiate their 
energy away by emitting phonons. 

A commonly accepted model of superfluid turbulence 
comprises a randomly moving tangle of quantized vortex 
lines which can be characterized by the mean intervortex 
distance A  and the vortex core radius .a A�  The vortex 
core radius has an atomic size and the conventional de-
scription used for fluid media fails within such a core. 
There are two approaches to deal with the vortex core. 
First one is a «microscopic» model in which the core is 
resolved: it is based on the Gross–Pitaevski equation,  

 2 2| | = 0,
t

∂Ψ
+∇ Ψ −Ψ Ψ

∂
 (1) 

where Ψ  is so-called condensate wave function. This 
model is systematically derived for the Bose–Einstein con-
densates in super-cold atoms, but not for the liquid helium. 
Nevertheless, it is frequently used for describing superfluid 
flows in helium because it contains several essential fea-
tures of such superfluids, i.e., vortex quantization, acoustic 
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waves (phonons) in presence of a condensate, and it de-
scribes a gradual (nonsingular) reconnection of vortex lines. 

However, the Gross–Pitaevski equation can be costly to 
study, and one often resorts to using so-called Biot–Savart 
formulation in the Euler equations for the ideal classical 
fluids, exploiting the fact that far away from the vortex 
cores the Gross–Pitaevski dynamics is isomorphic to the 
ideal classical flow via the Madelung transformation. In 
the Biot–Savart model, the vortices are postulated via a 
cutoff in the equations for the vortex line elements. Name-
ly, the equations used are 

 3
( )= ,

4 | |
dκ × −

π −∫
s r sr
r s

�  (2) 

with a cutoff at the core radius a , i.e., integrating over the 
range | |> .a−r s  Here κ  is the circulation quantum. In 
what follows, we will base on the Biot–Savart model. 

Naturally, at scales L A�  the discreteness is unimpor-
tant and they can be described classically with the ener-
gy flux toward smaller scales by the celebrated Richard-
son–Kolmogorov cascade. Then the energy is transferred 
through the crossover scale A  by some complicated me-
chanisms [17–19], thereby exciting smaller scales < < aλA  
which propagate along the individual vortex filaments as 
waves. These were predicted by Lord Kelvin more than 
one century ago [12] and experimentally observed in su-
perfluid 4He about 50 years ago. It is believed that Kelvin 
waves (KWs) play a crucial role in superfluid dynamics, 
transferring energy from A  to a much smaller scale, where 
it can dissipate via emission of bulk phonons. In a wide 
range of scales KWs are weakly nonlinear and can be 
treated within the theory of weak-wave turbulence [16]. 
Such an approach for KWs was initiated in [13] where a 
six-wave kinetic equation (KE) was presented, and a KW 
spectrum was obtained from this equation based on a di-
mensional analysis, 7/5( )KSE k k−∝ . Dimensional analysis 
of the KE is based on the assumption that all integrals in 
the collision term are converges. Physically it means that 
the energy transfer over scales can be considered as step-
by-step cascade, in which energy to a given range of wave-
vectors k  comes from the smaller k ′  of the same order 
of magnitude and is transferred toward larger ,k ′′  again 
of the order of .k  This assumption, firstly suggested in 
1941 by Kolmogorov for hydrodynamical turbulence is 
often called «locality of the energy transfer». Spectrum 

7/5( )KSE k k−∝  was subsequently used in theoretical con-
structions in superfluid turbulence, e.g., to describe the 
classical-quantum crossover range of scales and to explain 
the dissipation rate in the superfluid turbulence [17–20]. 
However, it was recently shown in [14] that this spectrum 
is nonlocal and, therefore, nonrealizable. This crucial lo-
cality check was only possible after a highly nontrivial 
calculation of the six-wave interaction coefficient done in 
Ref. 14 which took into account previously omitted impor-

tant contributions and which yielded explicit relations for 
this coefficient in relevant asymptotical limits. 

In this paper, we exploit the consequences of the nonlo-
cality of the 6-wave theory, and replace the latter with a 
new local 5-wave theory of KW turbulence. Our 5-wave 
theory arises from the 6-wave theory (completed in [14]) 
in the strongly nonlocal case, when one of the waves in 
the sextet is much longer than the other five and corres-
ponds to the outer scale — infra-red (IR) cutoff. We derive 
a new spectrum of the KW turbulence which is local, and 
which must be used in future for revising the parts of the 
superfluid turbulence where the nonlocal spectrum of the 
6-wave theory has previously been used. 

2. On statistical description of weak-wave turbulence 

Weak-wave turbulence refers to a class of strongly non-
equilibrium statistical systems consisting of a large number 
of excited weakly nonlinear waves in nondissipative (Ha-
miltonian) dispersive media [16]. Such systems comprise a 
unique example where strongly nonequilibrium statistics 
can be addressed systematically, and states analogous to 
Kolmogorov–Richardson cascades of classical turbulence 
can be obtained analytically. Let us briefly overview the 
theory of weak-wave turbulence with application to the 
five- and six-wave systems (three- and four-wave 
processes are absent for KWs) starting from a classical 
Hamiltonian equation for the complex canonical amplitude 
of waves ( , )a a t≡k k  and a∗k  (classical analogues of the 
Bose-operators of particle creations and annihilation) with 
a wavevector :k  

 = .
a

i
t a∗

∂ δ
∂ δ

k

k

H  (3) 

Here H  is a Hamiltonian which for the wave systems is 

 free int free= ; = ,k a a d∗+ ω∫ k k kH H H H  (4) 

where kω  is the wave frequency. For KWs 
2= / 4k kω Λκ π  where κ  is the circulation quantum. 

intH  is an effective interaction Hamiltonian for KWs, 
propagating along straight vortex line, that is equal to 

 2,3,4 2,3,4
1 3 1 4 1 2 3 41 1

1= [ c.c.]
6

d d V a a a a∗ ∗ ∗
↔ δ +∫ k k…H  (5) 

for four-wave systems or 

 4,5,6 4,5,6
3 3 1 6 1 2 3 4 5 61,2,3 1,2,3

1=
36

d d W a a a a a a∗ ∗ ∗
↔ δ∫ k k…H  (6) 

for six-wave systems. Here we use shorthand notations: 
,j j

a a≡ k  = | |,j jk k  3,4,5
1 2 3 4 51,2 ( )δ ≡ δ + − − −k k k k k  

and 4,5,6
1 2 3 4 5 61,2,3 ( ).δ ≡ δ + + − − −k k k k k k  

These equations effectively describe weakly nonlinear 
waves of any nature [16], using only relevant dynamical 
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information, that presents in the system Hamiltonian .H  
The main technical problem is to find H  for a particular 
complicated physical system. Fortunately, in case of KWs 
this cumbersome job was done for us and for general read-
er in Ref. 14. 

Statistical description of weakly interacting waves can 
be reached [16] in terms of the KE 

 ( , ) = St( , ),n t t
t

∂
∂
k k  (7) 

for the waveaction spectrum ( , )n tk , defined by 

 ( , ) ( , ) = ( , ) ( ),a t a t n t∗ ′ ′δ −k k k k k   

where …  stands for the ensemble averaging. The colli-
sion integral St ( , )tk  can be found in various ways [16], 
including the Golden Rule widely used in quantum me-
chanics. For the five- and six-wave processes we have, 
respectively, 

 { 1,2,3 1,2,3 1,2,32
1 3 1 3St = | |

12
d d V↔

π
δ ×∫ k k kk k… N   

 1 2 3( )×δ ω −ω −ω −ω +k   

 },2,3 ,2,3 ,2,32
1 2 31 1 13| | ( ) ,V+ δ δ ω −ω −ω −ωk k k

kN  (8) 

 2,3,4 1 1 1 1
1 2 3 4 1 2 3 41 ( );n n n n n n n n− − − −≡ − − −N   

 4,5,6 4,5,62
3 3 1 5 ,1,3 ,1,3St | |

12
d d W↔

π
= δ ×∫ k kk k…   

 1 2 3 4 5 1 2 3 4 5( )n n n n n n×δ ω +ω +ω −ω −ω −ω ×k k   

 1 1 1 1 1 1
1 2 3 4 5 6( ) .n n n n n n− − − − − −× + + − − −  (9) 

Scaling solutions of these KE's can be found under two 
conditions satisfied for various wave systems, e.g., gravity 
and capillary waves on the fluid surface, Langmuir and 
ion-sound waves in plasma, etc. [16]. 

Scale-invariance of the wave system, when the fre-
quency of waves and the interaction coefficients are ho-
mogeneous functions of wave vectors: 

2 1 2 3 4 5( ) = ( ), ( , ; , , )k k Vαω λ λ ω λ λ λ λ λ ≡k k k k k  

5 1 2 3 4 5( , ; , , ),Vα≡ λ k k k k k  

and a similar relationship for 4,5,6
1,2,3W  with an index 6α . 

Interaction locality, in a sense that the main contribu-
tion to the energy balance of a given k-wave (with wave-
vector )k  originates from its interaction with k′-waves 
with .k k′∼  Mathematically it means that all integrals 
over 1,k  2 ,k  etc. in the KE’s (7)–(9) converge, and there-
fore in the scale-invariant case the leading contribution to 
the collision integral indeed originates from the regions 

2 ,k k∼  3 ,k k∼  etc. Note that nonlocal spectra are not 

solutions of the KE’s (7)–(9) and, therefore, physically 
irrelevant. 

In the scale-invariant wave systems one seeks for the 
scale-invariant solutions of the KE’s: 

 ( ) = ,xn k Ak−  (10) 

where A  is a dimensional number. To find the scaling 
index x  for turbulent spectra with a constant energy flux 
over scales, we note that all KE’s (7)–(9) conserve the total 
energy of the wave system, 

 = 0, , .dE E E d E n
dt

≡ ≡ ω∫ k k k kk   

Therefore the k-space energy density, ,Ek  satisfies a con-
tinuity equation: 

 = 0 .k kE
t k

∂ ∂ε
+

∂ ∂
  

Here kε  is the energy flux over scales, expressed via an 
integral over sphere of radius :k  

 
<

= St( , ) .k k
k k

d k t′
′

′ ′ε ω∫ k   

Under the assumption of the interaction locality, one es-
timates the d-dimensional integral d∫ k  as dk , the interac-
tion coefficients   

 2,3,4 , , 4
1 ,k k k

kV V Vkα∼ ∼   

 4,5,6 , , 6
1,2,3 , , ,k k k

k k kW W Wkα∼ ∼  (11) 

and =
xp

k pn A k
−

 (for the p-wave interactions). There-
fore:  

 4 2 45 55( ) ( ) , 2 3 scattering;   xd
k k V k A kα −ε ⇔∼  

 5 2 56 66( ) ( ) , 3 3 scattering .xd
k k W k A kα −ε ⇔∼  (12) 

For the spectra of turbulence with a constant energy flux 
= =kε ε const, i.e., 0.k kε ∝  For the p-wave process this 

gives the scaling exponent of ( ),n k  ,px  and the energy 
scaling exponent ,py  ( )

y pE k k
−

∝ : 

 2
2

= , = .
1
p

p p px d y x
p
α

+ −α
−

 (13) 

In fact, these expressions are valid for any > 2p . For the 
three- and the four-wave processes (with p = 3 and p = 4) 
this gives the well-known results, see, e.g., Ref. 16. Note 
however, that the 4-wave 1↔3 is considered here for the 
first time, and it is different from the previously considered 
standard 2↔2 processes. 
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3. Kelvin-wave turbulence with six-wave interaction 

To consider the KW system, one has to start with the 
Biot–Savart equations (2), consider an equilibrium state 
corresponding to an infinitely long straight vortex line and 
perturb it with small angle disturbances. This will corres-
pond to a setup of weakly nonlinear KWs which are dis-
persive, and for description of which the weak-wave turbu-
lence theory can be used. For this, one has to parametrize 
the transverse displacement vector of the perturbed like by 
the distance along the unperturbed line, pass to Fourier 
space and expand in small perturbation angles and small 
parameter 1/ Λ , where = ln( / ) 1aΛ A � . Such expansion 
in two small parameters is not easy. This is because in the 
leading order in 1/Λ  the model is integrable, i.e., noncas-
cading, and to describe the leading order of the energy 
transfers one has to go to next order in 1/ Λ . Second diffi-
culty is that the lowest order process, the four-wave reson-
ances, are absent for such one dimensional systems with 
concave up dispersion relation. Thus one has to go to the 
next order in the small nonlinearity too. Combination of 
these two facts makes finding of the effective interaction 
Hamiltonian intH  for KWs a hard task. For the six-wave 
process, which assumes that the underlying vortex is per-
fectly straight, this task was accomplished only recently 
[14]. Effective 3↔3-interaction coefficient W  was shown 
to have a form  

 4,5,6 4,5,6
1 2 3 4 5 61,2,3 1,2,3

3= ,
4

W k k k k k k F−
πκ

 (14) 

where F  is a nonsingular dimensionless function of 
1 6, ,k k…  close to unity in the relevant region of its argu-

ments. In particular, 1F →  when one or several k’s are 
much less than the maximum wavenumber in the sextet. 

Equations (3), (6) and (14) provide general reader with 
all necessary information about KWs required for further 
developments in this paper. Those interested in further 
details about the derivations of these equations can find 
them in [14]. 

Notice that the form of Eq. (14) could be expected be-
cause it demonstrates a very simple physical fact: long 
KWs (with small k’s) can contribute to the energy of a vor-
tex line only when they produce curvature. The curvature, 
in turn, is proportional to wave amplitude ka  and, at fixed 
amplitude, is inversely proportional to their wave-length, 
i.e., .k∝  Therefore in the effective motion equation each 

ja  has to be accompanied by ,jk  if .jk k�  Exactly this 
statement is reflected by Eq. (14). One can say, that cum-
bersome calculations [14] support these reasoning, and 
additionally provide with explicit numerical factor 3 / 4− π  
and give an explicit expression for F  which can be impor-
tant in further research, required for careful comparison 
with future experiments or numerics. 

Equation (14) estimates 4,5,6
1,2,3W  as 6Wk . Thus, Eq. (12) 

reproduces the Kozik–Svistunov (KS) scaling for the 3↔3 

processes, which for further discussion is writhen with a 
dimensionless constant KSC : 

 
2/5 1/5 7/5 1/5

17/5 7/5= , = .KS KS
KS KS

C C
n E

k k
κ ε κ ε

Λ  (15) 

We repeat that KS spectrum (15) would be valid only if 
it was local, i.e., if all integrals (9) converged and thus one 
could estimate 3 3St ( )k↔  as in Eq. (12). However, detailed 
analysis (given in Ref. 14 and shortly reproduced below) 
shows the KS spectrum is nonlocal and therefore physical-
ly nonrealizable. In order to find the valid spectrum of tur-
bulent KW we will briefly reproduce this analysis, using 
the Eq. (14). 

4. Nonlocality of the energy transfer with the six-wave 
interactions 

Let us now check if the KS spectrum (15) is local 
or not. For this, we consider the 3 3↔  collision term (9) 

for KW with the interaction amplitude 4,5,6
1,2,3W  as in (14) 

and ( )n k  as in Eq. (10). In this case jd∫ k  are one-

dimensional integrals jdk
∞

−∞∫ . In the IR region 1 , jk k k� , 

=j  2, 3, 4, 5, we have 1F ≈  and the integral over 1k  
scales as 

 2 2
1 1 1 1 1

1/ 1/

2 2( ) = .xAk n k dk k dk−Ψ ≡
κ κ∫ ∫

A A
 (16) 

Lower limit 0  in Eq. (16) is replaced by 1/ ,A  where A  is 
the mean inter-vortex separation A , at which approxima-
tion of noninteracting vortex lines fails and one expects a 
cutoff of the power like behavior (10). Prefactor 2 in Eq. 
(16) reflects the fact that the ranges of positive and nega-
tive 1k  give equal contributions, and factor 1/ κ  is intro-
duced to make parameter Ψ  dimensionless. Ψ  has a 
meaning of the mean-square angle of the deviation of the 
vortex lines from straight. Therefore 1;Ψ  for highly 
polarized vortex lines 1.Ψ�  

Clearly, integral (16) IR-diverges if > 3x , which is the 
case for the KS spectrum (15) with 6 = 17 / 5.x  Note that all 
the similar integrals over 2 ,k  3,k  4 ,k  and 5k  in Eq. (9) 
also diverge exactly in the same manner as integral (16). 
Moreover, when two of the wavenumbers belonging to the 
same side in the sextet tend to zero simultaneously then 
each of such wavenumbers will yield an integral as in 
(16), and the net result will be the product of these inte-
grals, i.e., a stronger singularity than in the case of just one 
small wavenumber. On the other hand, small wavenumbers 
which are on the opposite sides of the resonant sextet 
do not lead to a stronger divergence because of an extra 
smallness arising in this case in Eq. (9) from 

1 1 1 1 1 1
1 2 3 4 5 6 .n n n n n n− − − − − −+ + − − −  
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Divergence of the integrals in Eq. (9) means that KS 
spectrum (15) is not a solution of the KE (9) and thus non-
realizable. One should find another, self-consistent solu-
tion of this KE. 

5. Effective four-wave theory of KW turbulence 

Nonlocality of the six-wave theory is a serious problem. 
It indicates that dominant sextets contributing to the 3↔3-
scattering are those for which two of the wavenumbers 
from the same side of the six-wave resonance conditions 

 1 2 3 4 5= ,kω +ω +ω ω +ω +ω   

 1 2 3 4 5= ,+ + + +k k k k k k   
  (17) 

are very small, 1 /jk A . Thus these equations effectively 
become 

 1 2 3 1 2 3= , = ,+ + + +k k k k k k k k   

 2 1 3 3 2 1= , or = ,+ + + +k k k k k k k k  (18) 

and respective conditions for the frequencies, which im-
plies a 4-wave process of the 1↔3 type. In the other 
words, one can interpret such nonlocal sextets on straight 
vortex lines as quartets on curved vortices, with the slow-
est modes in the sextet responsible for the large-scale cur-
vature R  of the underlying vortex line in the 4-wave ap-
proach. 

To derive an effective 4-wave KE, let us start with the 
6-wave collision integral (9) and find the leading contribu-
tions to it when the spectrum kn  is steeper than 3k−  in the 
IR region. There are four of them. The first one originates 
from the region where 1k  and 2k  are much smaller than 
the rest of 'jk s. The three other contributions originate 
from the other side of the sextet: regions where either 3k  
and 4,k  or 3k  and 5k , or 4k  and 5k  are small. These 
contributions are equal and we may find only one of them 
and multiply the result by three. Notably, the sum of the 
four contributions can be written exactly in the form of the 
1↔3-collision term (8) with the effective 1↔3-interaction 
amplitude 

 2,3,4
1 2 3 41 = 3 / (4 2),V − Ψ πk k k k  (19) 

because, as shown in Ref. 14, 

1 2 3 4 5 6
01

lim ( , , | , ) = 1.
k

F
→

k k k k k k  

Deriving Eq. (8) with 2,3,4
1 ,V  Eq. (19), we took only lead-

ing contributions in the respective IR regions, factorized 
the integrals over these wavevectors like in Eq. (16) and 
took only the zeroth order terms with respect to the small 
wavevectors (by putting these wavenumbers to zero) in the 
rest of the expression (9). 

Equation (8) with 2,3,4
1V  as in Eq. (19) is an effective 

4-wave KE, which we were aiming to obtain. This KE cor-
responds to interacting quartets of KWs propagating along 
a vortex line having a random large-scale curvature R A . 
Equation (19) estimates 2,3,4

1V  as 4kV  with ΨV ∼ . Us-
ing this scaling in Eq. (12) , we arrive at a spectrum for the 
1↔3 processes with scaling exponents 4 = 11/ 3x  and 

5 = 5 / 3y , 

 
1/3 1/3

2/3 11/3 2/3 5/3= = ,LN LN
LN LN

C C
n E

k k
ε Λκε

⇒
Ψ Ψ

 (20) 

Local (1↔3) L’vov–Nazarenko (LN) spectrum. 

6. Local step-by-step energy transfer with four-wave 
1↔3 interactions 

Mathematically, locality of the energy transfer in the 
1↔3-wave processes means convergence of the multi-
dimensional integral in the corresponding collision term 
(8). Here we will show that proof of convergence in Eq. (8) 
is a delicate issue and cannot be done only on the basis of 
power counting because the latter would give a divergent 
answer. 

6.1. Proof of the infrared convergence 

Let us show that in the IR region, when at least one of 
the wave vectors, say 2k , is much smaller then ,k  only a 
quadrupole cancelation of the largest, next to the largest and 
the two further sub-leading contributions appear to result in 
the final, convergent result for the collision term (8). 

Three integrations in Eq. (8) are restricted by two con-
servation laws, namely by 

 2 2 2 2
1 2 3 1 2 31 3 : = , =k k k k→ + + + +k k k k  (21) 

in the first term, and by 

 2 2 2 2
2 3 1 2 3 13 1: = , =k k k k→ + + + +k k k k  (22) 

in the second term. Therefore, only one integration, say 
with respect to 2 ,k  remains in each term. 

In the IR region 2 1k k k� � , we find from Eqs. (21), 
(22) for the 1 3→  and the 3 1→  terms: 

 
2 2
2 2

1
1 2

1 3 : = ,
k k

→ − ≈ −
+

k k k
k k k

  

                   1 2
3 2

1 2
1 3 : = ,→ − ≈ −

+
k k

k k
k k

 
(23) 

                   
2 2
2 2

1
2

3 1: = ,
k k

→ + ≈ +
+

k k k
k k k

  

                   2
3 2

2
3 1: =    .→ − ≈ −

+
kk

k k
k k

 
(24) 
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These equations demonstrate three important facts: 
1) in both cases in the leading order 3 2 ,k k�  i.e., when 

2k k�  then 3k  is small as well; 
2) the difference between 1k  and k  is of the second 

order in small 2k : 2
1 2| | / ;k k−k k �  

3) these leading contributions to 1 −k k  have the same 
modulus and different sign in the 1↔3 term and in the 
3↔1 term. 

Therefore in the leading order the expressions for N  
in Eq. (8) can be written as 

 
3

2(1 )1,2,3 2
2 2 3 2( 2)( / ) ,x

kk x
x Ax k k n n n k

k
−

+
− −N � �  (25) 

 
3

2(1 ),2,3 2
2 2 31 2( 2)( / ) ,xk

k x
x Ax k k n n n k

k
−

+
+ +N � �  (26) 

where we substituted jn  from Eq. (10). Importantly, these 
estimates (in the leading order) have the same magnitude 
and different signs. 

Next step is to compute integrals 

 1 3 1 3 1 2 3( )I d d→ ≡ δ − − − ×∫ k k k k k k   

2 2 2 2 2
1 2 3 2 2

2 2

| | 1( ) = ;
22 | 2 |

k k k k
kk k

+
×δ − − − →

+ −

k k
kk

 (27) 

 3 1 1 3 2 3 1( )I d d→ ≡ δ + + − ×∫ k k k k k k   

 2 2 2 2
2 3 1

1

1 1( ) = ,
2 | | 2

k k k k
k

×δ + + − →
+k k

 (28) 

i.e., in the leading order these results coincide and do not 
contain the smallness. 

Now we can find the contributions to St1 3↔ , given by 
Eq. (8), from the region 2 .k k�  According to Eq. (19) we 

can write 1,2,3 ,2,3
1 2 31= = .k

kV V Vkk k k  Using our esti-
mates (25), (26) for N  and Eqs. (27), (28) we have 

2 3
2(3 )2

21 3 211 3 : St ;
24

k k x
x

x V A k d
k

−
→ −

π
→ ≈ − ∫ k�  (29) 

2 3
2(3 )2

23 1 21
33 1: St .    

24
k k x

x
x V A k d

k
−

→ −
π

→ ≈ + ∫ k�  (30) 

One can see that, in spite of the deep cancelations in the 
estimates for ,N  the integrals (29), (30) diverge if 

3.5x ≥ , which is satisfied for LN-scaling exponent 
= 11/ 3.x  
Nevertheless on has to take into account the following: 

the 1↔3 contribution to the collision integral has three 
identical divergent regions: 2 3 1k k k k≈∼ � , 

1 3 2k k k k≈∼ �  and 2 1 3k k k k≈∼ � , and Eq. (29) 
estimates only the first one. Therefore the total contribu-
tion is 

 
2 3

2(3 )2
1 3 21 3 21

3St = 3St ,
24

IR k k x
x

x V A k d
k

−
→ → −

π
≈ − ∫ k�  (31) 

while the 3↔1 contribution has only one divergent region 
1 .≈k k  Therefore, 

 
2 3

2(3 )2
1 3 21 3 21

3St = St , 
24

IR k k x
x

x V A k d
k

−
→ → −

π
≈ + ∫ k�  (32) 

i.e., exactly the same result as in Eq. (29), but with the dif-
ferent sign. Therefore the divergent contributions (29), (30) 
cancel each other and one has to take into account the next 
order. 

Notice that next order terms in the expansion over 
2k k�  results in the already convergent integral  

 (6 2 )
1 3 2 22

0
St ,

IRk k
IR xk d−
↔ ∝ ∫ k k

�

 (33) 

with the LN exponent = 11/ 3x . Moreover, typically exci-
tation of KWs is symmetrical in ↔−k k . In this case, this 
integral has an odd integrand and, therefore, it is equal to 
zero. Then the leading contribution to the 1↔3-collision 
term in the IR region can be summarized as follows: 

 
2 3

9 22(4 )
1 3 221

0
St .

IRk k
IR xx

IRx
V A k d k
k

−−
↔ +

∝∫ k
�

∼  (34) 

The IR convergence require: < 9 / 2 .x  
With LN exponent = 9 / 3x  this gives 

1 3
5 / 3St .IR

IR
IR IRk k→

δ∝ ≡  

Here we introduce an «IR convergence reserve»: 
= 5 / 3.IRδ  

6.2. Proof of the ultraviolet convergence 

Convergence of the integral (8) in the UV region, when 
one of the wavevectors, say 2k k� , can be established in 
a similar manner. 

Notice first of all that in the 1 3→  term in Eq. (8), 
there is no UV region, because by the 2nd of Eq. (21) we 
have jk k≤ . In the 3 1→  term to satisfy Eq. (22) in the 

leading order we can take 2 1 2; UVk k k≥k k� �  (case 

3 1 3; UVk k≥k k�  gives an identical result). Using para-

metrization 2
1 2 2 3 2 2= / ( ), = / ( )k+ + − +k k k k k kk k k  

(cf. (26)) we get some cancelations in ,2,3
1
kN  and the 

leading order result is 

 
2 2

,2,3 2 2
1 ( 1) .

x x
k k k

x x
k k

− − −
⎛ ⎞ ⎛ ⎞∝ + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

N  (35) 
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Further, similarly to Eqs. (27), (28), one gets 
3 1 21/ .I k→ �  As before, the interaction coefficient 

2
2V k∝  or 2 4

2V k∝ . Counting the powers of 2k  one gets: 

 1 3St , = max( 2 4, 2) .
UV

UV
yk y x x↔ ∝ − + − +  (36) 

The UV convergence require: < 0 > 2 .y x⇒  
One concludes that in the case = 11/ 3,x  

1 3
5 / 3St ,UV

UV
UV UVk k→

−δ−∝ ≡  where we introduce an «UV 
convergence reserve» = 5 / 3 .UVδ  

6.3. Counterbalanced interaction locality 

Notably, = .IR UVδ δ  This equality is not occasional. 
Observed «counterbalanced» IR-UV locality is a conse-
quence of the scale-invariance of the problem. Indeed, for 
a given values of IR UVk k k�� �  the IR-energy flux 

IRk k⇒ �  (from the IR region IRk k≤  toward the region 
k�∼ ) should scale with ( / )IRk k�  exactly in the same 

manner as the UV-energy flux UVk k⇒�  (from the 
-regionk� toward the UV-region UVk k≤ ) scales with 
/ UVk k� . This is because the UV-flux UVk k⇒�  from 
-regionk�  can be considered as the IR flux toward 

-region.UVk  Remembering that the IR-energy flux 
IRk k⇒ �  scales like ( / ) ,IR

IRk k δ�  while the UV-flux 
UVk k⇒�  is proportional to ( / ) ,UVUVk k δ�  one immediate-

ly concludes that IRδ  should be equal to UVδ . 
The overall conclusion is that the collision term St1 3↔  

is convergent in both the IR and the UV regions for 
= 11/ 3x  and the energy transfer in the 1↔3 kinetic equa-

tion is local. 

7. Discussion 

— In this paper we have revised the theory of superflu-
id turbulence in the quantum range of scales where the 
turbulent cascade is due to nonlinear interaction of weak 
Kelvin waves on quantized vortex lines. In particular, we 
have addressed the problem that the previously used KS 
spectrum is nonlocal, i.e., an invalid mathematically and 
irrelevant physically solution. 

— We have presented a new effective theory of Kelvin 
wave turbulence consisting of wave quintets interacting on 
vortex lines with random large-scale curvature. This four-
wave theory replaces the nonlocal six-wave theory. We 
derived an effective four-wave kinetic Eqs. (8), (19), and 
solved it to obtain a new wave spectrum (20). We proved 
that this new spectrum is local, and therefore it is a valid 
solution of the kinetic equation, which should replace the 
nonlocal (and therefore invalid) Kosik–Svistunov spectrum 
(15) in the theory of quantum turbulence. In particular, it is 
now necessary to revise the theory of the classical-
quantum crossover scales and its predictions for the turbu-
lence dissipation rate Refs. 17–20. Further, a similar revi-
sion is needed for the analysis of laboratory experiments 

and numerical simulations of superfluid turbulence, which 
have been done over the last five years with reliance on the 
un-physical KS spectrum (15). 

— The difference between the LN-exponent –5/3 (see 
(20)) from the KS-exponent –7/5 (see (15)) is 4/15 which 
is rather small. This may explain why the previous numeri-
cal experiments seem to agree with the KS spectrum, ob-
tained numerically in Ref. 15. However, by inspection one 
can also see that these results also agree with the LN slope. 

The different physics results in different expressions for 
the dimensional pre-factors in the KS and LN spectra, in 
particular the different dependence on the energy flux ,ε  
as well as an extra dependence on the large-scale behavior 
(through Ψ ) in (20). Careful examination of such pre-
factors is necessary in future numerical simulations in or-
der to test the predicted dependencies. Such numerical si-
mulations can be done efficiently with the local nonlinear 
equation (LNE) suggested in Ref. 14 based on the detailed 
analysis of the nonlinear KW interactions:  

 
i i i4

1 = 0.    
4 4

w w wi
t z z z

⎧ ⎫⎡ ⎤∂ κ ∂ ∂ ∂⎪ ⎪⎢ ⎥+ Λ −⎨ ⎬⎢ ⎥∂ π ∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

 (37) 

The LNE model is similar but not identical to the Trun-
cated LIA model of [15] (these models become asymptoti-
cally identical for weak KWs). 

— Both pre-factors in the KS spectrum (15) and in the 
LN spectrum (20) contain very different numerical con-
stants C: an order one constant in LN ( LN 1C ∼ , yet to be 
found) and a zero constant in KS ( KS 0C ≡  as a formal 
consequence of its nonlocality). Also we should note a 
mysterious very small numerical factor 510−  in formula 
(16) for the energy flux in Ref. 13, that has no physical 
justification. Actually, nonlocality of the energy transfer 
over scales means that this number should be very large, 
rather than very small. This emphasizes the confusion, and 
highlights the need for numerical re-evaluation of the spec-
trum’s prefactor. 

To conclude comparison between KS and LN approach 
notice that the drastic difference in the numerical pre-
factors constitutes an important difference between the KS 
and the LN spectra for a practical analysis of experimental 
date, while the difference between the underlying physics 
of the local and nonlocal energy cascades, that results in 
the difference between spectral indices, is important from 
fundamental, theoretical viewpoint. 

— In this work, the effective local five-wave kinetic 
equation was derived from the six-wave kinetic equation 
by exploiting nonlocality of the latter. Strictly speaking, 
this derivation is valid only when the six-wave kinetic equ-
ation is valid, i.e., when all the scales are weakly nonlinear, 
including the ones at the infra-red cutoff. However, the 
resulting five-wave kinetic equation is likely to be applica-
ble more widely, when only the small scales, and not the 
large scales, are weak. A similar picture was previously 
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observed for the nonlocal turbulence of Rossby/drift waves 
in Ref. 22 and for nonlocal MHD turbulence in Ref. 23. In 
future we plan to attempt derivation of the five-wave kinet-
ic equation directly from the dynamical equations for the 
Kelvin waves, which would allow us to extend its applica-
bility to the case with strong large scales.  

— Finally we note that the suggested here theory can 
potentially be useful for other one-dimensional physical 
systems, including optical fibers, where nonlinear interac-
tions of one-dimensional wave packages becomes impor-
tant with increase in network capacity. 
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