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The velocity of fast and slow collective modes of 90, 94 and 98% porosity aerogels filled with

superfluid helium were measured by means of low-frequency resonant technique at temperatures 0.5–2.5 K.

The temperature dependences of velocities of both modes are compared with the hydrodynamic theory

which was modified taking into account the mobility of the aerogel matrix, porosity of media and tortuosity

of an acoustic way. It has been found that the fast and slow modes in an aerogel are coupled much stronger

than the first and second sounds in bulk He II.

PACS: 67.25.dg– Transport, hydrodynamics, and superflow;
67.25.dr– Restricted geometries;
67.25.dt– Sound and excitations.
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Introduction

Porous substances filled with superfluid helium ex-

hibit abundant and widely diverse wave processes. Their

character is dependent on the relation between the size of

pores or channels d and the viscous penetration depth

�� = (�n /�f�n)1/2 (�n, �n are the viscosity and the density

of the normal He II component, respectively; f is the os-

cillation frequency). If a porous substance is absolutely

rigid (cannot participate in the oscillatory motion of the

liquid) and d << ��, the normal component of He II is

completely clamped and the sound propagates along the

superfluid component �s. Such oscillations called fourth

sound are actually a superposition of the first sound, the

second sound and viscous waves. Pure first and second

sound can propagate under another limiting condition

d >> ��. In this case the first sound is excited by pressure

oscillations and the second sound is generated by temper-

ature oscillation. At d ~ �� a sound mode occurs, which is

intermediate between the first and the fourth sounds. The

second sound transforms into a strongly decaying heat

wave (e.g., see [1]).

In porous media the sound velocity is also dependent

on the degree of channel regularity. In irregular channels

the acoustic length differs from the detector-radiator

spacing. In this case a correction index must be intro-

duced into sound velocity calculation to allow for the

channel tortuosity caused by multiple scattering in porous

media.

The situation is very different when superfluid helium

fills a porous medium of low rigidity and high compliance

in which the motion of the walls and the normal com-

ponents is significant. As an example let us consider

an aerogel. When sound propagates in an aerogel its lat-

tice structure is dragged by the oscillations of the normal

component when d << ��. The wave processes in such

systems were first investigated in aerogels of high

(over 95%) porosity [2]. Two oscillatory modes were reg-
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istered in 4He in aerogel from 1.2 K to the lambda transi-

tion temperature T�. In some experiments piezoelectric

transducers were used to generate pressure waves. In this

case the observed mode had a velocity intermediate be-

tween the first and the fourth sound velocities (C1 and C4,

respectively). A second sound type wave was excited with

a heater-thermometer arrangement. The observed wave

processes were defined as a fast mode and slow mode, re-

spectively. The mode velocities were calculated using a

system of equations for two-fluid hydrodynamics of He II

[3] which was modified [2] to allow for the mobility of

the aerogel matrix.

The general phenomenological theory of sound propa-

gation in porous media filled with a liquid [4] was devel-

oped by Biot. Afterwards it was extended to a porous

medium–superfluid helium system [5] and then to a

three-component (aerogel–superfluid component–normal

component) case taking into account the tortuosity of

channels [6]. Using the derived equations the propagation

of the longitudinal and transverse waves was analyzed

within the low- and high-frequency limits in a wide range

of temperatures.

The wave processes in He II-filled aerogels differ sig-

nificantly from those in bulk helium. In the aerogel sys-

tem both temperature and pressure oscillations are impor-

tant for slow (second sound type wave) and fast (first

sound type wave) modes [7]. This resembles superfluid
3He–4He solutions [1] and allows a variety of methods to

be used to excite simultaneously both fast and slow

modes.

The temperature dependences of the fast mode velo-

city and absorption were investigated in the high-fre-

quency region on aerogels with 92.6–94.8% porosity

[8,9]. As analysis shows, the results obtained agree with

Biot’s theory in normal He I and deviate appreciably in

superfluid He II.

Since the pressure and temperature waves are strongly

coupled in the He II–aerogel system, it is interesting to in-

vestigate the wave processes, when the slow and fast

modes are excited with one transducer. Owing to the

strong correlation between the porosity and the sound ve-

locity Ca in a «dry» aerogel, it is possible to observe how

the fast and slow modes transform on changing from the

case Ca > C1 in dense aerogels to the case Ca < C1 in a

high-porosity aerogel. In this paper the densities of the

aerogels permitted both cases. The fast and slow modes

were excited with the same acoustic transducers. The re-

sults obtained were analyzed taking into account the tor-

tuosity and compared with current theories [2,6].

Experimental technique

The velocities of the fast and slow modes were mea-

sured by a low-frequency resonance method in the fre-

quency range 100 Hz–20 kHz. The experimental cell

(similar to the one in Ref. 10) was a copper body with an

internal cylindrical hole about 8 mm in diameter and two

caps at the ends. The diameter was selected so that the

aerogel sample could fit tightly in the body. The porosity

of the aerogels was 90, 94 and 98%. Some sample param-

eters are shown in Table 1. To provide good mechanical

contact between the transducer and the aerogel, the body

was made 0.5 mm shorter than the sample, which was thus

slightly compressed when the cell was closed. A piezo-

electric transducer with a silvered surface (0.5 mm thick

and 6 mm in diameter) was fixed to the 0.4 mm-thick

membrane at the center of each cap. The electrical con-

nections to the transducers was made using silver paint.

Table 1. Basic characteristics of the used aerogels: porosity �,

density �a, longitudinal sound velocity Ca, tortuosity �� calculated

from the velocities Cf and Cs of the fast and slow modes, respec-

tively

�, % �a, g/ñm
3

Ña, m/s �� (Ñf) �� (Ñs)

90 0.225 505 1.14±0.01 1.14±0.01

94 0.133 146 1.07±0.01 1.07±0.01

98 0.04 50 1.06±0.01 —

The resonance curves were taken as follows. An excit-

ing signal from a Wavetech 29 A generator was fed to one

of the transducers. The transmitted signal was registered

by the other transducer and fed to the input of a two-phase

lock-in analyzer EG&G 5208. The resonance curves were

obtained through frequency scanning and the resonance

frequencies were estimated at the signal maximum. The

accuracy of the resonance frequencies was ± 0.5 Hz.

The temperature range of the measurement was

0.5–2.5 K. The acoustic cell was fixed to the 3He pot of

the evaporating 3He refrigerator via a mechanical thermal

contact. The temperature of the evaporating pot and the

cell were stabilized and measured using calibrated RuO2

resistance thermometers. The accuracy of temperature

measurement was ±10–3 K.

The cell was first cooled to low temperature and the

sound velocity was measured in a «dry» aerogel (see

Table 1). The helium was then condensed and the oscilla-

tion spectrum of the aerogel–He II system was registered

at different temperatures. The temperature of the cell was

stabilized for about 20 min at each point of measurement.

The typical resonance spectrum taken on one of the

aerogel samples filled with superfluid helium is shown in

Fig. 1. There are three peaks of the slow mode and one

peak of the fast mode. The resonance peaks were identi-

fied by analyzing their temperature evolution. Reso-

nances 1, 2 and 4 that vanished at the lambda point of the

He II–He I transition corresponded to the slow mode.

Peak 3 of the fast mode persisted in the He I region.
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Results and discussion

The temperature dependences of the slow and fast

mode velocities measured in aerogels of 90, 94 and 98%

porosity are shown in Figs. 2. The velocities C(T) of both

the modes were found using a simple relation

Ñ(T) = 2Lf(T), (1)

where L is the geometric length of the resonator, f is the

resonance frequency of the mode. In bulk 4He the cou-

pling between pressure and temperature oscillations in

the first and the second sounds is specified by the thermal

expansion coefficient, which is rather low. However, the

situation changes if He II contains admixtures of 3He [1]

or if it is placed in aerogel [7]. In the last case, due to os-

cillation of either the admixture concentration or aerogel

strands the coupling arise between the temperature and

the pressure oscillation. The effect becomes more pro-

nounced with increase of admixture concentration 3He or

aerogel density. This is clearly seen from the following

relation between the pressure oscillation and temperature

oscillation in the slow mode [11]:
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Here � is the entropy of the unit mass of He II. Note, that

in the actual experimental condition we could not observe

the slow mode in the 98% aerogel used in this experiment.

Basing on above discussion, one supposes that 98%

aerogel does not provide an effective coupling between

pressure and temperature oscillations.

It is interesting to compare our results with the hydro-

dynamic calculation [2] for a two-liquid He II model al-

lowing for the movement of the aerogel matrix during

wave propagation in a high-porosity aerogel–He II sys-

tem. The two-fluid hydrodynamic equations was

supplemented with an equation of aerogel oscillations [2]

and the extra inertia of normal fluid due to matrix. The

secular equation of the sound velocity was obtained:

( )( ) ( )( )C C C C C C C Ca

n
a

2
1
2 2

2
2 2

4
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�

�
. (3)

The numerical solution of Eq. (3) gives the velocities

of the fast Cf and the slow Cs modes in the aerogels

of three porosities at different temperatures (see Figs. 2,
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Fig. 1. The amplitude–frequency characteristic of the

He II–aerogel 90% system at T = 0.7 K.
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Fig. 2. The temperature dependence of the fast (�) and slow

(�) mode velocities in the He II–aerogel (90% (a), 94% (b),

and 98% (c) porosity) system. Calculation is made using the

data of [6] (solid line) and [2] (dashed line).



dashed lines). It is seen that the description of the de-

pendences Cf(T) and Cs(T) is rather inaccurate in the

whole range of temperatures and the discrepancy between

experiment and calculation increases as the aerogel po-

rosity decreases. This is due in part because the approach

of Ref. 2 ignores the tortuosity as well as the porosity of

the aerogel. It is inadequate to describe an aerogel whose

structure is a tree network of clustered nanoparticles of

2–5 nm in size and pores up to 100 nm. In Ref. 2 the agree-

ment with experimental results was obtained only for a

narrow temperature range by introducing corrections.

The fast mode in the 95% porous aerogel in the range

1.3–1.8 K was fixed by normalization to �s/� at T = 1 K.

The correction for the slow mode in the sample of 99%

porosity around Tc allows for the tortuosity of the sound

path.

The general analysis of the aerogel–He II system

should take into account the tortuosity and the matrix po-

rosity. These factors have been considered explicitly in a

recently developed theory [6]. Its general description of

the collective mode propagation in an aerogel filled with

superfluid helium is based on Biot’s approach [4]. The

main parameters in the theory are tortuosity �� , porosity

�, fluid density �, aerogel density �a, bulk modulus of the

liquid and the aerogel, shear modulus of the aerogel.

Tortuosity �� is a geometrical quality, independent of the

density of the solid and the density of the liquid, and can

vary from 1 (for plane-parallel capillaries) to � (for iso-

lated pores or pores oriented perpendicular to the mo-

tion). The following secular equation was obtained in

terms of this theory for fast and slow modes in the

low-frequency limit d << �� [6]:

�� � � � � � �s a s C[ ( )]� �� � �4

� � � � � � �
�
�
�

��
�C R A N Q RS

a s
2 2 2( ) ( )� �� �� �

� � �
	



��

�



��
�
�
�
�2��

�

�s
s S SnQ R R

� � � � � � �
	



��

�



�� �R A N Q R Q R RS s S Sn( )2 2 0

2
�

�
, (4)

where the combinations of the parameters for the aerogel

in Eq. (4) are
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The final secular equation in the low-frequency limit

of oscillations is
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Note that at �� = � = 1 Eq. (5) turns into Eq. (3).

The root of Eq. (5) the larger root of the secular equa-

tion corresponds to the fast mode velocity Cf , the smaller

one describes the slow mode velocity Cs. The tortuosity

index �� in Eq. (5) was found by normalizing the experi-

mental values of Cf and Cs to the results of calculation by

Eq. (5) at T = 0.6 K where the velocities of both the modes

are temperature-independent. Note that the values of ��
obtained for the fast and slow modes in an aerogel of the

same porosity are very close, which complies with the

conclusions in Ref. 12.

The dependences Cs(T) and Cf (T) were calculated by

Eq. (5) for the aerogels with 90, 94 and 98% porosity

using the �� values (see Figs. 2, solid lines). It is seen

that the theory [6] describes the measured velocities of

the two modes quite accurately in the whole temperature

range.

The effect of aerogel porosity on collective mode

velocities

As follows from experimental data, the velocities of

both fast and slow modes are strongly dependent on the

porosity of aerogels. This is clearly seen in Fig. 3 show-

ing Cs(�) and Cf (�) calculated in terms of the theory [6]

(solid lines) for two temperatures. The velocities of the

first (C1), and fourth (C4) sound in He II (curves 3 and 4,

respectively) and also the sound speed in «dry» aerogel

Ca are included for comparison. At rather low tempera-

tures (Fig. 3,a) at which the velocities Cs and Cf are prac-

tically temperature-independent, in the high-porosity

limit !� "#$ Cs tends to Ca and Cf approaches C1 for the

bulk He II.

As the aerogel density increases (porosity decreases),

Cf starts to exceed C1 and reaches the value of the sound

velocity Ca in a «dry» aerogel. In dense aerogels Cs tends

to the fourth sound velocity C4 which practically coin-

cides with C1 at low temperatures. The experimental

points fall accurately onto the curves calculated by the

theory developed in Ref. 6.

The features of the collective modes in aerogels filled with superfluid helium
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The behavior of fast and slow modes is more intricate

near the lambda temperature T� (see Fig. 3,b). In this tem-

perature range in high-porosity aerogels (� "$ ) the fast

mode velocity changes from value Cf %C1 to magnitudes

intermediate between C1 and C4, as it was in Ref. 2. As

the porosity decreases further, when Ca > C1, Cf tends

rapidly to Ca, like in the low-temperature case. At � $1

the velocity Cs approaches C2 and in dense aerogels Cs

tends to C4, however C4 < C1 at these temperatures.

So the analysis of the limiting cases shows that for

slow mode there exist two limits at � $1 depending on

temperature: Cs(�) $ C2 near Tc as is shown in Ref. 2,

whereas Cs(�) $ Ca at T $ 0. The reason of the dip of

the fast mode is increase of the normal component of su-

perfluid helium. Especially, this phenomena is caused by

the parameter 1�� �a n/ . Since the sound velocity in-

creases sharply with aerogel density, we can assume, that

in dense aerogels fast modes travel mainly through

aerogel matrices («dense» means � < 93%).

Note, that in Ref. 14 where 90% aerogel was studied

the experimental condition did not allow to measure the

sound velocity in the «dry» aerogel. For this reason the

underestimated value of Ca was applied in data analysis.

As a result the slow mode was erroneously taken for the

fast one.

Conclusions

In this series of experiments the velocities of the fast

and slow collective modes in aerogels of different porosi-

ties filled with He II have been investigated in a wide

range of temperatures. The measurements were made in

the low-frequency region where the viscous penetration

depth exceeds the characteristic size of the pores in the

aerogel. Under this condition, the normal component of

He II is completely clamped in a rigid porous medium and

can not take part in propagation of oscillations. In an

aerogel the normal component moves dragging the aero-

gel strands. The activity of the aerogel in propagation of

the wave is dependent on its density. The results obtained

illustrate how the character of the wave processes chan-

ges with the aerogel porosity.

The analysis provided shows that for an adequate de-

scription of experimental data, one should take into ac-

count the irregularity of the channels which is equivalent

to introduce the tortuosity coefficient. Such an approach,

developed in Ref. 6, allowed to achieve a rather good

agreement with experiment. Note, hydrodynamic theory

[2,6] can be used to analyse the experimental data if wave

length is larger than both the channel size and mean free

path of the quasiparticles.

It has been found that the fast and slow modes in an

aerogel are coupled much stronger than the first and sec-

ond sounds in bulk He II. This is supported by the excite-

ment of a slow mode by pressure oscillations.
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