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The different mechanisms of resonant transport of phonons between two media in the presence of impu-
rity intermediate layer are described. Particular attention is focused on the resonance interaction of elastic
waves with a two-dimensional defect on the contact boundary between two solids, on the multichannel inter-
face phonon scattering and on the experimentally observed nonmonotonic temperature dependence of the re-
duced heat flux. In the cases when there is a direct interaction between edge atoms of the matrix as non-near-
est neighbors or when the impurities do not fill completely the 2D interface layer, the additional channel for
the transmission of phonons through the interface opens. This additional transmission channel manifests it-
self as a transmission (or reflection or absorption) peak with an asymmetric line shape (the so-called Fano
resonance for phonons due to interference between the two transmission channels). Some applications of the

Fano effect in magnon heat conductivity are also discussed.

PACS: 63.20.—e Phonons in crystal lattices.

Keywords: interface, quasi-local frequency, ballistic transport, Fano resonance.

1. Introduction

Arnold Markovich Kosevich has devoted much atten-
tion to the investigation of the physical phenomena con-
nected with the presence of weakly bounded local and
extended (two-dimensional planar) defects in a crystal
lattice. First articles in this field were published by A.M.
Kosevich together with his scientific teacher I.M. Lifshits
[1], and with his pupil V.I. Khokhlov [2] in the 60th of the
last century. Our work is devoted to the investigation of
resonance mechanisms of transmission, reflection and ab-
sorption of phonons and phonon heat transfer through the
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interface between two crystal lattices, taking into account
the dynamics of the intermediate impurity layer.

The presence of the planar defect has a substantial in-
fluence on various dynamic, thermodynamic and kinetic
characteristics of crystals. To study this influence, it is
necessary to elucidate the features of the interaction of
phonons with the planar defect. The studies of resonance
effects in the scattering of acoustic waves from and for-
mation of localized and resonance vibrational states on a
planar defect have a considerable interest [3-9], since
such effects can give rise to the features in the kinetic
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phonon characteristics of the intercrystalline interfaces
which can be experimentally observed.

2. Interaction of acoustic waves with interface

A.M. Kosevich has proposed to consider basic proper-
ties of the resonance transmission with the example of
one-dimensional model [9]. One-dimensional (1D) mo-
dels, despite their simplicity, can give qualitative descrip-
tion of many physical phenomena observed in real
three-dimensional (3D) systems. Besides that, in the case
of normal incidence of acoustic wave on the interface, the
results received for 1D model coincide with the results re-
ceived for 3D model up to a numerical factor.

Following the model proposed in Ref. 5, we consider
1D oscillator chain with a point defect with complex
structure of local inter-atomic force constants as a one-di-
mensional projection of the two-dimensional (planar) de-
fect, see Fig. 1. Such one-dimensional model can be ap-
plied to the normal incidence at the planar defect in
three-dimensional crystal of the acoustic wave, which
propagates along the symmetry axis of the crystal. In this
case we can assume that there is no change of the acoustic
wave polarization at the interface. We introduce the fol-
lowing notations: m and y; are the mass of an atom and
the force constant in the host linear chain, m, and y, are
the mass of an impurity atom and the force constant char-
acterizing its coupling with the host chain, y5 is the force
constant which describes the direct interaction between
(non-nearest neighboring) edge atoms of the matrix, pass-
ing over the defect atom [5], see Fig. 1.

Let a wave incident on a defect be described by the ex-
pression: u(n) = u(0) exp (ikn), where n enumerates the
atoms in the chain, n = 0 corresponds to the defect atom.
The reflected wave can be written as u,(n) = r u(0) exp(—ikn),
transmitted wave can be written through amplitude coef-
ficient ¢, correspondingly. Here r and ¢ are, respectively,
the complex reflection and transmission amplitudes of the
incident acoustic wave. First we consider the case of the
defect with y; = 0 (without an additional phonon pass).
Using equations of motion of a linear chain containing
such a defect, one can obtain the following expressions
for r and #:

Fig. 1. Simple 1D model of a planar lattice defect with locally
different nearest-neighbor and non-nearest neighbor interactions
(with force constants y, and y3) in the vicinity of the defect.
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where & =w? is the square of the vibrational frequency of
atoms in the chain and ¢(g) is the function defined by the
expression:
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We are interested in the features of the numerator in
Eq. (1). Vanishing of the numerator corresponds to the
resonant transmission of the wave through the impurity
(impurity monolayer). The squared frequency satisfying
this condition is
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For many systems, particularly for point contacts, the
coupling constant of the defect to the host lattice is typi-
cally much smaller than the coupling constant in the host
chain its y,/y; << 1. In this case the following expression
for g, 1s valid:
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The resonant wave transmission arises owing to the in-
teraction of the incident wave with an eigenmode of the
chain formed due to the presence of the impurity. Up to
the small terms of the order of y,/yq, the frequency of this
vibrational mode is determined solely by the interaction
of the defect with the host lattice and by the mass of this
defect. Within this model we obtain that outside of very
narrow frequency region, the wave incident on the defect
is almost completely reflected, i.e., the reflection coeffi-
cient is close to unity, and the transmission coefficient is
very small, see Fig. 2. At the resonance frequency, the re-
flection coefficient goes to zero and the transmission
coefficient goes to unity.

The resonance frequency describes a low frequency,
weak-dispersion mode of the optical type. The amplitude
of the displacements of the impurity atom in this mode is
significantly greater than the amplitude of the vibrations
of the atoms of the host lattice. We note that the corre-
sponding results in the long-wave limit were received in
Refs. 3 and 4 with the use of the theory of capillary phe-
nomena in the theory of elasticity, the main features of
which was developed in Refs. 5, 10.
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Fig. 2. Amplitude coefficients of wave reflection » (solid
curve) and transmission ¢ (dashed curve) versus the frequency
of the incident wave for crystals with identical physical prop-
erties; m,,,, 1S the maximum frequency of continuous spectrum
of the system.

3. Phonon heat transport through thin film

In the previous section a mechanism of the resonance
phonon transmission through the planar defect was de-
scribed under the assumption of a single resonance
(quasi-local) frequency. This means that the intermediate
layer is homogeneous along all the area of the contact
both in the impurity contents and in the thickness. As for
the real experiments, it is necessary to take into account
that, as a rule, the contact surface is a set of sections in
which the contents of impurities and thicknesses of the
layers could be different. It is possible to assume in this case
that the different channels of the phonon transport corre-
spond to different sections of the flat layer. Every channel
possesses its own resonance frequency ® o5 =+/€ s - When
the phonon transport is considered at temperatures above
2 K, this transport obeys rules of the geometric optics [8].
Therefore, the total phonon heat flow is the sum of the
flows in every channel. Let a,, be the area of a part of the
corresponding contact with number n and D,(®) the
phonon energy transmission coefficient for the nth chan-
nel, characterized by the resonance frequency of trans-
mission o,. Then the effective coefficient of multichan-
nel resonance transmission of phonons is described by the
expression [8]

> b,y
D(o)=—"———. 3)
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n=1
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The capillary theory [5] of phonon transport makes it
possible to take account of different types of impurities
and different channel thicknesses using a single parame-
ter p. Assuming all channels to be uniform with respect to
the impurity composition, we can write pg,, = p#, where
pg is the excess surface density of the molecular layer with
smallest thickness and 7 is the number of molecular layers
in the channel, which serves as the channel number.

Consider two anisotropic body centered (BC) lattices
with an intercalated interface layer. We choose that the
axes OX and OY are parallel to the boundary. Let’s a is the
distance between neighbor atoms at the plane XOY, and 5/2
is the distance between neighbor atoms layers perpendicu-
lar to the axis OZ (see Fig. 3). The system is homogeneous
in the plane XOY. Using the standard representation for the
displacement u(z, x, y, z) = u(z)exp(—iot + ikx/a + ik,yla)
we have the equations of the movement of atoms:

m(z)eu(z)+2a(z)[cosk, +cosk, —2Ju(z)+
+4v(z, 2+ b/2)[cos(k/2) cos(k ,/2)u(z + b/2) —u(z)]+
+4v(z,z —b/2)[cos(k,/2)cos(k ,,/2)u(z —b/2) —u(z)] =0,
“4)
where € = ®°, o is the vibration frequency, m(z) is an atom

mass, a(z) is the intra-layer interaction, and y(z,z + b/,) is the
interlayer interaction between neighboring layers. In our case

2

m(z)=m; for z<-d/2,
m(z)=my for —d/2<z<d/2,
m(z)=ms for d/2< z;o(z) =04 for z<-d/2,
o(z)=0, for —d/2<z<d/2, a(z)=a3 for d/2<z;
Y(z,z+b/2)=v, for z<Hd+b)/2
Y(z,z+b/2) =y, for (d+b)/2<z<d/2,
Y(z,z+b/2=y5 for d/2<z.

There are following equations for each lattice:
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Fig. 3. Schematic figure showing an interface between two
crystal lattices which contain three intercalant impurity layers.
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mygu , (z)+20 ,[cosk, +cosk , —2]u,(z)+
+4y,[cos(k,/2)cos(k ,/2)u(z+b/2)—u(z)]+
+4y,[cos(k,/2)cos(k ,/2)u(z —b/2)—u(z)] =0,
n=1,2,3.

We assume bulk excitations in the first and the third lat-
tices

z < —d/2:u(z) = Ay exp(2ik,,z/b) + B, exp(-2ik, z/D),
—d/2<z<d/2:u(z) = Ay exp(2k,,z/b) + B, exp(—2k,, z/b),
z2d/2:u(z) = Az exp(2iks, z/b), %)

where A, By and A5 are the amplitudes of initial, re-
flected and transmitted waves.

The frequency dependences of transmission coeffi-
cients D = A3/4, for different thickness d in the consid-
ered model are represented in Fig. 4.

The above theory can be developed for the multichan-
nel resonance transport of phonons across the interface
between two media and can be applied for the interpreta-
tion of experimental measurements of the phonon ballis-
tic transport in the point contacts Si—Cu [11,12]. These
works have revealed for the first time the low-tempera-
ture quantum ballistic transport of phonons in the temper-
ature region from 0.1 to 3 K. Besides that, in papers
[11,12] a reduced point contact heat flow in the regime of
the geometric optics for phonons was measured in the
temperature interval from 3 to 10 K. The results obtained
in these experiments have shown that in this temperature
interval the reduced heat flow through the point contact is
a nonmonotonous function of temperature and has pro-
nounced peaks at temperatures 7; = 4.46 K, 7, = 6.53 K,
T3 =8.77 K. We suppose that the series of the peaks of the
reduced heat flow could be explained [11,12] by the
model presented in Fig. 5.

Interface

Edge 1

Fig. 5. Schematic model of a point contact. T and T}, are tem-
peratures of the massive edges of the contact, a;, a,, and a5 are
zones with different composition of the interface layer.

Observed peaks are the result of the resonance phonon
transport. In the case of the single-channel resonance
transport studied in Ref. 13, a model of the narrow reso-
nance peak was applied, meaning the following: the total
heat flux O may be then written as the sum of the ballistic
flux Qp and the resonance heat flux Qg, O = Op + Og. As-
suming the narrow resonance peak near the frequency
o4 , we obtain the following formula describing the tem-
perature dependence of the heat flux:

O(T,Ty)=C(T* -T¢) +

+ZK0L 1 - 1 (6)

exp(hwg /T)—1 exp(hogy /Ty) -1 .

To separate the two parts of the total heat flux, its value
can be divided by (T4 —T(f' ). This model (using only one
frequency) can be fitted to our experimental data with
correlation of about 0.95. The resonance frequency o, is
connected with 7, by the relation ~wy =3.89 T\ .«

=N
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Fig. 4. Frequency dependence of energy transmission coefficients D of N atomic impurity layer: N=1,b=d (a); N=2,b=1.5d

(b); N=3,d=2b (c).
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Using the model of the multichannel resonance transport,
we modify the expression (6) in the following way:

o 1
Té-1d T-T¢§

3
T
x Y K| | exp 3.89;(1+12(T—Tn)2J -1
TS

-1
—[exp(3.89 T"j - 1] e %
Ty

The optimal correspondence between the values calcu-
lated by this formula and the experimental results was ob-
tained with the following values of parameters:

-1

n=1

To=0.15K;T) =446 K; T, =6.8K; T3 =871 K; T, = 1.5K;

K,=0.7nW, K,=2nW, K;=50nW,
C =49.55 nW/K*,

The expression (7) takes into account the presence of
three channels of the resonance transport. It also accounts
for (using an additional term containing the intrinsic tem-
perature 7,.) the instability of the intermediate layer of
weakly bound impurities near the resonance. The instabil-
ity of the intermediate layers near the resonance is condi-
tioned by the fact that u/u, >> 1 (where u is displace-
ment of intermediate layer, u; , are displacements of
value layers) [4]. The role of the adsorption—desorption
mechanism of impurity ions was discussed in papers
[14,15]. In Fig. 6 we present experimentally observed
temperature dependence of the reduced heat flux in Si—Cu
point-contacts above 2 K. Results of numerical calcula-
tions with the use of expression (6) are presented in
Fig. 7. These results indicate that the proposed model de-
scribes the experimental results presented in Fig. 6 with a
good accuracy. It should be noted that the temperature T
used in calculations corresponds to the binding energy of
the impurity layer with contact banks. Temperature 7 is
by two orders of magnitude lower than the Debye temper-
ature of crystals forming banks of contacts. This is in

Fig. 6. Experimentally observed temperature dependence of the
reduced heat flux in Si—Cu point-contacts above 2 K [11,12].
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Fig. 7. Results of a numerical calculation within the considered
model: 7y =0.15 K; 7 =446 K; T, = 6.8 K; T3 =8.71 K; T =
= 1.5K; K;=0.7nW, Ky =2 nW, K5 = 50 nW, C =49.55 nW/K*.

agreement with the fact that the binding constant of the
impurity layer with the banks of contacts is by two orders
of magnitude lower than the binding constant in crystals
forming this contact [16—18]. Formulae (6) and (7) permit
one to evaluate the parameters of different channels of the
phonon transport. Coefficients K; are proportional to the
areas of different interface layers. If we assume that the
channel area with the largest resonance frequency is
unity, than we obtain the ratio 1:0.04:0.014 between areas
of layers taking part in the resonance transport. When
combining formulae (2), (6), (7), we obtain the relation

2
Tmaxn _ pT _ Lm 8
“mexn | _Ps _Cm, (®)
Tnin m Ps Ly
It follows from the experimental data that

L L

“2-18+02, “1=38+02, 9)

Ly Ls

where L3 corresponds to the number of layers with the
largest resonance frequency (smallest p). It follows from
the ratio (8) that the lowest frequency channel (n = 1) con-
tains the maximum number of layers (about four times more
than the high-frequency channel with n = 3), and the channel
with the intermediate frequency (n = 2) includes two times
more layers than the high-frequency channel with n = 3.

4. Fano resonance in phonon transport

The phenomena described in previous section are
called «multichannel», but these phenomena are con-
nected with the transmission of phonons through the ho-
mogeneous film of finite thickneess d (Fabry—Perot reso-
nance interferometer). Indeed, in the case of the
Fabry—Perot interferometer, the number of transmission
peaks is determined by the number of the interface
intercalant impurity layers (see Fig. 3 for the case of three
intercalant impurity layers). For the Fabry—Perot reso-
nances, the transmission peaks have symmetric shape and
interaction of incident phonon with the impurity layers re-
sults in the resonance transmission enhancement only.
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But the overall picture of the resonance phonon transmit-
tance through the interface intercalant impurity layers be-
comes much richer if the additional interaction, namely
the interaction between the matrix edges across the impu-
rity layer, is taken into account [5]. Such interaction in-
deed opens new channels for phonon transmission, which
in turn results in Fano-like multichannel phonon trans-
mission phenomena [5].

Uve Fano has published in 1961 an article [19] in
which he considered phenomena, connected with the in-
teraction of local levels with a continuum spectrum. Be-
low we discuss briefly the manifestation of the Fano res-
onance for electrons referring to the paper [20]. Authors
of Ref. 20 have observed the Fano resonance in a conduc-
tance of a quantum wire with a side-coupled quantum dot.
In a weak coupling regime, conductance dips due to the
Fano resonance have been revealed. In other words, the
Fano resonance (or antiresonance) is a consequence of the
destructive interference between a quasi-local state and
a continuum of states, which correspond, respectively, to
the states in the quantum dot and in the quantum wire. It
appears that the line shape of the conductance G as a func-
tion of electron energy has a form, which is characteristic
for the Fano resonance:

G(e) o (e +q) /(e +1),

where ¢ is the energy difference with respect to the posi-
tion of the resonance level normalized by the resonance
line width, and ¢ is the Fano parameter. The Fano parame-
ter represents the degree of distortion, and ¢ = 0 corre-
sponds to an anti-resonance conductance dip. It was
shown in Ref. 20 that when electron energies in the quan-
tum wire and in the quantum dot coincide (the resonance),
the destructive interference between the two conductance
channels occurs and electron in the quantum wire reflects
back and the conductance shows a minimum.

Fano-like resonance can be found for phonons also
[5]. One of the authors of the present work has predicted
the appearance of the so-called «asymmetric» vibrational
mode (with asymmetric displacement pattern) near a
composite (laterally-inhomogeneous) planar defect with
symmetrical distribution of atoms and binding constants
[5]. In the considered asymmetric mode, the vibrational
amplitude is (almost) zero in one semi-infinite crystal
(half-space) but is nonzero at the interface planar defect
and in another half-space. The asymmetric mode can be
described as a «linear combination» of symmetrical and
antisymmetrical modes with the same polarization, fre-
quency and two-dimensional wave number. To provide
the possibility of the asymmetric cancellation of surface
traction and of the crossing between two branches in the
long-wave and low-frequency domain, one has to take
into consideration the direct interaction (bonding) of the
ledges of the planar defect (which in general is equivalent
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to the account for the interaction between non-nearest
neighbors in the lattice-dynamical approach). As it was
shown in Ref. 5, the additional «phonon transmission
channel» through the direct bonds between the ledges of
the planar defect, passing over the «locally resonant» im-
purity atoms, can give rise to the phenomena of the total
reflection and anomalous interface absorption (total
nontransmission and nonreflection) of the incident long
acoustic wave at the «composite» two-dimensional de-
fect. The physical thickness of such two-dimensional de-
fect can be much less than the wavelength of the totally
reflected wave. These dynamical phenomena, as well as
the existence of the asymmetric vibration mode near a
composite planar defect with a symmetric distribution of
atoms and binding constants, do not have counterparts in
acoustics of layered media, see, e.g., Ref. 21. Later it was
experimentally demonstrated that a thin layer of locally
resonant material (a monolayer of steel spheres, coated
with silicone rubber and embedded in epoxy matrix)
indeed can completely reflect an acoustic wave with a
wavelength two orders of magnitude larger than the layer
thickness [22].

Now we consider the resonance reflection and trans-
mission of phonons through intercalated layer between
two semi-infinite crystal lattices. As in Sec. 1, we study a
one-dimensional model and consider an infinitely long
oscillator chain which contains a substitution impurity
atom, weakly linked with the matrix atoms, see Fig. 1. In
this system the frequency of quasi-local (resonance) os-
cillations of the impurity emerges, at which the transmis-
sion coefficient through the impurity becomes equal to
unity (full phonon transmission through the interface, see
Fig. 2). Above this frequency, the transmission of phonons
through the interface is strongly suppressed, see Fig. 4.
Now we compare these results with the results, which are
obtained with an account for the additional force constant
Y3, corresponding to the interaction between non-nearest
neighbors passing through the locally resonant impurity
layer, see Fig. 1.

In this case it was shown in Refs. 5, 23 that two fre-
quency regions with enhanced phonon transmission are
formed, which are separated by a frequency region with
reduced phonon transmission if the non-nearest neigh-
bour force constant y; is larger than the weak bounding
force constant vy,, see Fig. 8.

The picture of phonon transmission through defect
atom is completely inverted in comparison with the case
of impurity defect formed by weakly linked impurity,
shown in Fig. 1. Namely, for y, << y3 ~y; a strong trans-
mission valley occurs at the same resonance frequency
W =~ +/2Y,/m |, at which there is a transmission maximum
fory; <<y, << y;. Moreover, this transmission minimum
occurs on the background of almost total phonon trans-
mission through the impurity atom due to the strong inter-

Fizika Nizkikh Temperatur, 2008, v. 34, No. 7
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action of the matrix atoms through the defect layer (with
force constant y5 ~y;). Such system permits one to make
the frequency filter, which reflects the phonons in a very
narrow region of frequencies (when heat transmission is
minimal at corresponding temperature), while high phonon
transmission is observed in other regions of frequencies. It
is worth to mention that such inversion of the transmission
and reflection spectra in the two limiting cases is directly
related to the interference Fano-like origin of the reso-
nance transmission minimum. Similar inversion of the
Fano-like transmission and reflection resonances occurs
also in the sound transmission through two-dimensional
periodic arrays of thin-walled hollow cylinders due to flex-
ural shell vibration modes [24]. It is worth to mention that
the nonmonotonous temperature dependence of the re-
duced heat flux, shown in Fig. 6, which is proportional to

the effective phonon transmission coefficient through the
Si—Cu microcontact, we can also interpret as a result of
Fano-like scattering of phonons by some «nanodefects» lo-
cated at the contact region, cf. Fig. 8.

In paper [25], independently of paper [5], the occu-
rance of Fano-like resonances in scattering of vibrational
waves in perturbed quasi-one-dimensional waveguides
was predicted. The analogy between electron and phonon
scattering was carried out and coefficients of vibrational
wave transmission through multichannel quasi-one-di-
mensional waveguide, made of a stripe of several parallel
interconnected oscillator chains, each mass in which is
linked to its nearest and next-to-nearest neighbours, was
considered in Ref. 25. Coefficients of phonon transmis-
sion with asymmetric line shapes were described, but no
generalization of the considered effects to phonon propa-
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Fig. 8. Coefficients of phonon energy transmission ¢ (solid line) and reflection » (dashed line) through impurity atom: y, = 0.1 vy, y3 =0
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gation in real three-dimensional systems, like considered
in Ref. 5 composite (laterally-inhomogeneous) 2D defect
in three-dimensional crystal, was proposed in Ref. 25.
In paper [26], the problem of phonon reflection from
point defect in 1D lattice with nearest-neighbour and
next-to-nearest neighbour interactions, including local
neighbourhood of the defect, was considered once again.
The total phonon reflection from the point defect was
described, which was related, similar to the description
of this effect in Ref. 5, with the existence of asymmetric
vibrational mode in the lattice. The description of total
wave reflection from a defect in 1D chain with the
interaction between nearest and next-to-nearest neigh-
bour sites was also repeated in recent paper [27].

5. Magnons and Fano resonance

As it is well known, there are two channels in the heat
transport in magnetic insulators—phonon and magnon
channels. Moreover, the theoretical approach for the
magnon heat transport is similar to the phonon heat con-
ductivity. So an analogy of the Fano resonance in phonon
transport could be considered in the magnon heat transport
also. Fano resonance is expected whenever a set of discrete
states is mixed with continuum spectrum. Exactly this situ-
ation was predicted in the theoretical work [28] for spin-1
magnetic chains with a strong planar anisotropy and an ex-
change that is either ferromagnetic or antiferromagnetic.
Energetic spectrum of these chains consists of three excita-
tion branches approximately in the same energetic domain
of magnon dispersion curve, two-magnon continuum and
single-ion bound states. The presence of these low-lying
magnetic excitations was experimentally observed in EPR
experiments [29] and also in thermodynamic properties of
Ni(C,HgN,),Ni(CN)y, usually referred to with the abbre-
viated symbol NENC [30]. Population of excitations of
different branches has a strong magnetic dependence,
which opens a possibility to «tune», by external magnetic
field, the contribution of different kind of the magnetic ex-
citations to the total magnon heat flux. The interaction be-
tween the single-ion bound states and two-magnon contin-
uum could lead to the resonance in the magnon heat
conductivity on the background of phonon heat channel.
The experimental observation of the Fano resonance in the
magnon heat transport is not easy, because the parameters
of the magnetic exchange of a studied system must secure
the prevalence of the contribution from magnon heat flux
over the phonon part of heat flux in the considered temper-
ature and magnetic field range.

It would be interesting to consider similar experiments
on spin-1 chain systems with an additional biquadratic ex-
change interaction, theoretically already studied in Ref. 31,
where the single-ion bound state occurs directly within the
continuum, or in spin-1 chains with Ising anisotropy [32].
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6. Effect of anomalous interface absorption

Our lattice dynamics calculations also confirmed the
effect of anomalous interface absorption (almost total
nontransmission and total nonreflection) of the acoustic
phonon incident on the composite planar defect [5]. To
describe this resonance phenomenon, one has to take into
account the finite intrinsic dissipative losses of the vibra-
tion energy in the vicinity of the planar lattice defect. In
the simplest model, this can be accomplished by introduc-
ing complex local force constants vy, and y3, characteriz-
ing the defect, whose imaginary parts effectively account
for these losses. The effect is more pronounced when a
mass ml(edge)ofthe outermost atoms at the edges of the ma-
trix, surrounding the impurity layer, is larger than the
masses of both the matrix atom, m{edge) > my, and the de-
fect atom, m%edge) > m,. In Fig. 1, it corresponds to the
case when the atoms at the sites » =—1 and n = 1 have a mass
mfedge), and mfedge) > my, ml(edge) > m,. In Fig. 9 we plot the
coefficients of the phonon energy transmission ¢ (dashed
line), the reflection  (dotted dashed line) and the interface
absorption 4, =1—¢—r (solid line) at the planar defect with
m%edge} =2my =2m,, Y,/ = 0.2 - i0.0740/®,,, and
Y341 = 0.4 — i0.9630/m,«, versus reduced frequency
/0 .- The resonance frequency and the conditions for
the anomalous interface absorption, with A, ~1, are the
following [5]:

2 (edge)
o = |22 HYINs m Y3
0 my my Yz’
+2 Q)
m Y2 Y3 _ 5 @0 (10)
Y1 Omax

The value of ), the ratio between masses of edge matrix
and defect atoms ml(edge)/mz and the values of imaginary
parts of the local complex force constants y, and y5 at the
defect, which were used in calculations shown in Fig. 9,
exactly fit the analytical prediction given by Eq. (10). The
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Fig. 9. Coefficients of phonon energy transmission ¢ (dashed
line), reflection » (dotted dashed line) and interface absorption
Ag =1—1—r (solid line) at the planar impurity defect layer with
() =2y =2my, a1 = 0.2 — 0.0740Vmex and v3/yi =
= 0.4 —i0.9630/mpy, versus reduced frequency w/mpy,x.
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mass defect of the edge matrix atoms (m](edge) =2m, =2m,)

sharpens spatial localization of resonance vibrations, which
in turn results in the increase of the interface absorption. It is
worth mentioning that the phenomenon of anomalous inter-
face absorption at the planar lattice defect is absent for zero
non-nearest-neighbour force constant y3 (and for y3 <<y,).

Summary

To summarize, our studies of phonon transport through
the interface between two solids in the presence of the in-
termediate impurity layer have revealed new possibilities
for the enhanced heat flux and heat flux with
nonmonotonic temperature dependence caused by the res-
onance and Fano-like interference phonon transmission
phenomena.

Moreover, for the materials with the magnon heat
transport an additional resonance channel can occur in
analogy with the Fano-like interference phenomena for
phonons. This kind of magnon heat flux could be ob-
served in some quasi-one-dimensional magnets.
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