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Canonical equations of energy and momentum are constructed in the kinematic-wave theory of waves in

a continuum. This is done in analogy with what is achieved in nonlinear continuum mechanics. The starting

point is a generalized balance of wave action. The standard formulas are recovered when the system follows

from the averaged-Lagrangian variational formulation of Whitham.

PACS: 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.);

05.45.–a Nonlinear dynamics and chaos.
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1. Introduction

During the last two decades many works following a

line opened by J.D. Eshelby have set forth the essential

role played by conservation laws issued from the applica-

tion of Noether’s theorem in modern continuum mechan-

ics (see, e.g., Maugin [1,2]), especially in the study of the

evolution of singularity sets in crystal elasticity (disloca-

tions, cracks, phase-transition fronts) where components

of the divergence of the so-called energy-momentum ten-

sor intervening in the conservation (or non strict conser-

vation) of canonical momentum provide the driving force

on these «objects». Until recently, it was thought that this

could be formulated only for conservative systems deriv-

able from a Lagrangian (hence the application of

Noether’s theorem). But in recent works the author has

shown how the canonical equations of momentum and en-

ergy could be constructed systematically even in a ge-

neral dissipative framework exhibiting both intrinsic dis-

sipation and heat conduction (e.g., Maugin [3,4]).

Remember that these two equations are related to the sys-

tem’s invariance (or lack of invariance) with respect to

space-time translations, space being parametrized by the

material coordinates X of finite-strain continuum me-

chanics and time t is Newton’s time (to remain in a non

relativistic framework).

Of course one is tempted to examine what happens

with the wavelike quantities usually associated in lin-

ear-wave mechanics, i.e., material wave vector K and

frequency � since these combine with X and t in a duality

exhibited by the usual phase function � �� � �K X t. The

use of generally defined wave number and frequency by

Lighthill [5], Whitham [6] and others led to the concept of

kinematic-wave theory which in turn has provided astute

ways to deal with certain problems of nonlinear wave

propagation (in particular, for weakly nonlinear and dis-

persive systems yielding nonlinear Schr�dinger equa-

tions and the notions of bright and dark solitons) in the

expert hands of authors such as Benney [7] and Newell

[8]. We have produced a rare but aesthetically pleasing il-

lustration in the case of surface solitons [9]. Kinema-

tic-wave theory is discussed and illustrated in books

(Whitham [10], Maugin [11], Ostrovsky and Potapov [12]).

In recent works, we naturally pondered the transcrip-

tion of Eshelby’s ideas in this general nonlinear-wave

framework. At first we again applied this only to the con-

servative case, along with a due application of Noether’s

theorem (Maugin [13,14]). Going one step further in the

present paper, we give the expression of canonical equa-

tions for wave-kinematics for general systems since

waves also propagate in inhomogeneous dissipative con-

tinua including even source terms. Accordingly, a rarely

considered notion in continuum mechanics, that of ac-

tion, is introduced and plays a fundamental role.
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2. Generalized phase function

A general smooth motion of a continuum in Euclid-

ean-Newtonian space-time is represented by the smooth

vector-valued function x x X� ( , )t , where x stands for the

actual position and X represents the set of material coor-

dinates on the material manifold [1]. The phase of a plane

linear wave in a continuum is defined in this material de-

scription by

� � � �( , ) ~( , )X K K Xt t� � � � , (1)

where K is the material wave vector and � is the associ-

ated circular frequency. But in the kinematic-wave theory

a general phase function

� �� ( , )X t (2)

is introduced from which the material wave vector K and

the frequency � are defined by

K
X

�
�

�
� �

�
�R , �

�
� �

�

�t
. (3)

Whence there follows at once the two equations (curl-free

nature of K, and conservation of wave vector)

� � �R K 0, (4)

�
�

	 � �
K

t
R� 0 . (5)

In particular, (3) are trivially satisfied for plane wave

solutions for which the last of (1) holds true. For an

inhomogeneous rheonomic linear behavior with disper-

sion we have the dispersion relation

� � 
( ; , )K X t . (6)

Accordingly, the conservation of wave vector (5) becomes
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and thus the Hamiltonian system [15]
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where we have set

D
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Simultaneously, we have the Hamilton-Jacobi equation

(compare eq. (3))
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If we now consider a wave in an inhomogeneous rheo-

nomic dispersive nonlinear material, the frequency will

also depend on the amplitude. Let a the n-vector of R n

R n that characterizes this small slowly varying amplitude

of a complex system (in general with several degrees of

freedom). Thus, now,

� � 
( ; , , )K X at . (11)

Accordingly, the second of Hamilton’s equations (7)

will now read [15]

D

Dt

TK

X
A a� �

�
�

	 � �



expl
R( ) , A

a
: � �

�
�



. (12)

In the studies of Newell [8] and Maugin and Hadouaj

[9], one is even led to considering a nonlinear «disper-

sive» dispersion relation in which the assumed slowly

varying quantities such as space and time derivative of

the amplitude are involved in the function 
, which rela-

tion becomes a true «wave equation» itself for the ampli-

tude.

3. Generalized action function

In full similarity with (1), the scalar quantity called the

action density per unit reference volume is classically

defined by

S t S H Ht( , )
~

( , )X P P X� � � � , (13)

where P is a material momentum and H is an energy

(Hamiltonian). It is on the basis of this and the invariance

of S that L. de Broglie deduced his celebrated relation

P K� � , if Planck’s relation H � � � applies, so that S � ��
in this essentially linear theory (here � is Planck’s reduced

unit of action). Forgetting about the expression given in

(13), consider a general smooth function S S t� ( , )X and

define general material momentum and energy by (com-

pare to (3))

P � � R S , H
S

t
X

� �
�

�
, (14)

where � R is the material gradient and d dt t
X

/ : /� � � is

the material time derivative. Obviously then,

� � �R P 0 ,
d

dt
HR

P
� �� . (15)

From the second of these it follows that if the first is valid

initially, it remains valid in time. The case (13) satisfies

(14) trivially. In standard analytical mechanics, the first

of (14) is none other than the Jacobi equation of motion; it

would be de Broglie’s «guidance» equation in the causal

interpretation of quantum mechanics; see post scriptum

below.

In nonlinear (of course conservative) dynamic inho-

mogeneous (but scleronomic = no explicit time depend-

ence) elasticity we know the expression of H, for instance

as a sufficiently regular function
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H H N� �( , , , )P X X , (16)

where � � �
X F

1 is the spatial gradient of the «inverse

motion» [1,2], and N is the entropy density. As a matter of

fact, we more precisely have

H E N� � � 	� �1

2 0

1 1

�
P C P X F( , , ) , (17)

where �0 is the reference (possibly X dependent) matter

density, E is the internal energy per reference volume,

P C V� ��0 , C F F� �T , and V F v� � ��1 , with v x� � �/ t,

F x� � R . This is not the standard formulation of elastic-

ity, but the one using the so-called «inverse motion». We

let the reader do the tricky exercise that the second of (15)

then yields the canonical equations of energy and momen-

tum in the form (cf. [1]):

d N

d t
� 0 ,

d

dt
R

P
b f� 	div inh , (18)

wherein

b 1 T F� � 	 �( )L , L H K E� � � � �P V ,

T F� � �E / , f
X

inh

expl

�
�

�

L
,

(19)

where the explicit gradient in the last quantity extracts the

X explicit dependence of the «Lagrangian»L in the case

of material inhomogeneity via the density and the internal

energy. Tensor b is called the material Eshelby stress ten-

sor. Had we started from a Lagrangian variational princi-

ple, equations (18) would have followed in this very form

after application of Noether’s theorem under time and

(material) space translations. Works [3,4] have shown

how to establish the generalizations of (18) for a general

continuum in the presence of dissipation and all types of

additional effects.

Remark. The action is seldom considered as a basic

quantity in continuum mechanics. However, a conserva-

tion-like equation is obtained for this action — as defined

in (13) — for a group of simultaneous space and time

transformations (expansions or scaling) as shown by the

author [1] (Chapter 4) and also Lazar [16].

4. Canonical energy equation for wave mechanics

Imagine that we have to start with a local scalar bal-

ance law of the form

d S

dt
ER d�� � �W . (20)

Later on S will be identified with an action, and W as an

action flux, while Ed is an external energy input. For the

time being we formally multiply both sides of (20) by � , a

circular frequency, and subtract from both sides of the re-

sulting equation the quantity dL dt
~

/ , where the scalar

quantity
~
L will be specified later. After some manipula-

tion we obtain thus the formal equation

d

dt
S L h E S

t

d L

dt
R d R(

~
) ( ) :

~

.� � �
�

�� �� � � � 	
�

�
	 �� �W W

(21)

Because of the meaning granted to Ed this is an equation

of energy balance. In particular, if we were working in the

kinematic-wave theory of Lighthill and Whitham,
~
L

would be the so-called averaged (over the phase) Lag-

rangian such that [10,13,14]

S
L

�
�

�

~

�
, W

K
�

�

�

~
L

,
~ ~

( , , , )L L t� K X� , (22)

for an inhomogeneous rheonomic system. Then (21)

yields the energy balance as

d H

dt
h h hR

t
~

~ ~
:�� � � � 	Q

ext , (23)

wherein energy density, effective heat flux and internal

and external energy sources are given by

~ ~
H S L� �� ,

~
Q W� � , h

L

t

t � �
�

�

~

expl

, h Ed
ext � �.

(24)

In the absence of external heat source, (23) follows from

the variational formulation of Whitham of the averaged

Lagrangian after application of Noether’s theorem for

time translations.

5. Canonical momentum equations

for wave mechanics

We proceed just like in the previous paragraph but

multiply both sides of the a priori set equation (20) by a

material (co-)vector which is none other than a wave vec-

tor K and add to both sides of the resulting vectorial equa-

tion the material co-vector � RL
~

. After some manipula-

tions we arrive at the following co-vectorial balance

equation

d

dt
E S LR d R R R

~
~

:
~P

b f K W K� � � � � � �� � 	 �div � , (25)

where we have set

~
P K� S ,

~
(
~

)b 1 W K� � � �L . (26)

If S is the action, then the first of the last two equations

defines the material wave momentum and is a continuum

generalization of de Broglie’s relation. The mixed mate-

rial tensor defined in (26) we called the material wave

Eshelby tensor. If we are within the framework of the

Lighthill-Whitham theory of the averaged Lagrangian
~
L ,

then equations (22) apply and computing the material gra-

dient of
~
L and substituting in the right-hand side of (25)
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we arrive at the balance of material wave momentum in

the form

d

dt
R

~
~P
b f f� � 	div inh ext , (27)

with «material forces» of inhomogeneity and external ori-

gin given by

f
X

inh

expl

�
�

�

~
L

, f K
ext � Ed . (28)

In the absence of external heat source, (27) follows from

the variational formulation of Whitham of the averaged

Lagrangian after application of Noether’s theorem for

material space translations.

6. Amplitude dependence

If we are in the strict framework of the averaged

Lagrangian variational method, even supposing from the

beginning that the averaged Lagrangian depends explic-

itly on the amplitude a of the studied wave process (as

supposed in the generalized dispersion relation (11)), it is

shown that one of Euler-Lagrange in fact results in the

equation of amplitude independence

0 � � �
~

/L a . (29)

unless, of course, there exists an external source f
a bal-

ancing this. In this case equations (23) and (27) will con-

tain additional terms in their right hand side, given by

h a a
f a� � � , f f a

a aext. ( )� � � R
T . (30)

7. Conclusion

Of course there are essential differences between the

elasticity case recalled at the end of Section 3 and the

wave case of Section 4. In the elasticity case, the depar-

ture point in the absence of variational formulation is the

local balance of physical linear momentum, i.e., the basic

balance law of continuum mechanics written in the actual

configuration and involving the Cauchy stress or the first

Piola-Kirchhoff stress T, along with a statement of the

first law of thermodynamics [4]; and all agree on these.

Furthermore, the nonlinear case and the case involving

characteristic internal length scales (hence a weak

nonlocality), such as in so-called gradient elasticity, are

automatically included [1,16] and prove extremely useful

for studying directly nonlinear waves in crystals [11,17].

In the kinematic-wave theory briefly discussed in this pa-

per, equation (21) is hardly conceived as a basic equation,

although this is not forbidden but a little farfetched and

we do not clearly see what nonlinearity and nonlocality

mean. For sure, however, the momentum equation (25)

should yield the time evolution of Brenig’s wave momen-

tum [18] since, for instance,
~
P Ka� � 2(up to a factor of

modulus one) for a one-dimensional harmonic wave-like

motion (see equation (6.3) in [14])

P.S. Some of the above- made considerations may be

close to those found in the causal re-interpretation of

quantum mechanics; see Jammer [19] Sections 2.5 and

2.6; Holland [20] Chapter 2.
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