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Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of

a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be

produced either by driving the system at a frequency outside the plane wave spectrum or by driving the sys-

tem at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the can-

tilevers are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude

of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and

time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear

lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low

density of modes for the formation of smoothly running excitation.

PACS: 05.45.–a Nonlinear dynamics and chaos;
63.20.Pw Localized modes;
63.20.Ry Anharmonic lattice modes;
85.85.+j Micro- and nano-electromechanical systems (MEMS/NEMS) and devices.

Keywords: nonlinear dynamics, intrinsic localized mode, discrete breather, stationary and traveling localized
modes, micromechanical cantilever array.

1. Introduction

Starting with the works of Lifshitz [1,2] the dynamical

properties of defective lattices have been investigated in

great detail [3–9]. The general results are that most local-

ized vibrational modes appear outside the harmonic plane

wave spectrum and behave as slightly anharmonic oscil-

lators. Even the intricate spectrum of defect modes pro-

duced by molecular impurities was unraveled by combin-

ing the techniques of persistent IR spectral hole burning

with those of FIR spectroscopy [10]. By the 1980’s there

remained a small group of point defect systems that

showed anomalous spectral behavior clearly outside the

framework of standard defect model dynamics. One of

these systems was KI:Ag+.

The fact that the entire T = 0 K defect-induced spec-

trum of KI:Ag+ disappeared as the temperature was in-

creased to 25 K provided a stringent test of current lattice

dynamics theories [11]. The analysis of the temperature

dependent results obtained for different vibrational

modes provided strong evidence that there were at least

two stable elastic configurations associated with an iso-

lated Ag+ ion located at a particular K+ site in this fcc

crystal and that each of these configurations had its own

defect-induced vibrational spectrum. By focusing atten-

tion on the low-temperature configuration where the Ag+

ion is known to be on-center it was possible to compare

theory and experiment in some detail. The theoretical dis-

covery of pocket gap modes and their experimental verifi-

cation through the host-lattice isotope effect was an im-

portant demonstration of the success of the perturbed

harmonic approximation in describing this lattice defect

system in the low-temperature configuration [12]. How-

ever, the theoretical spectrum is still too simple to account

for the experimental temperature dependent results since

with increasing temperature a variety of experiments in-
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dicated that a different configuration becomes populated

in which the Ag+ ion is off-center from the normal K+ site

and tunnels about it. Because of the ion tunneling it is

clear that this configuration has a very anharmonic

ground state potential. A jump-rotational diffusion model

can describe the observed temperature dependent results

in terms of two elastic configurations separated from each

other by a large energy barrier [13]. The impurity jumps

between the configurations with temperature dependent

dwell times; however, the physics behind two elastic con-

figurations existing at a single point defect site is still un-

clear. In 1988 it was proposed that intrinsic localized

modes (ILMs) could exist in perfect anharmonic lattices

and that the unusual low-temperature spectroscopic prop-

erties observed for KI:Ag+ might be a consequence of the

trapping of such modes [14]. The proposal was that the

defect could act as a vibrational trap for an ILM and it was

the capturing or releasing of the ILM at the defect loca-

tion with temperature that accounted for the unusual spec-

tral behavior observed for this «simple» lattice defect sys-

tem. A variety of spectroscopic configurations would be a

natural consequence of such trapping. Contact was also

made with the Lifshitz approach for defect modes. The

fact that sometime earlier Kosevich and Kovalev [15] had

used a nonlinear Klein–Gordon equation to examine long

wavelength localized vibrations in a one-dimensional an-

harmonic chain was missed by Sievers and Takeno.

Since 1988 ILM experimental and theoretical studies

have focused on pure lattices to remove any complexity

introduced by extrinsic defects. Published experiments

on atomic systems [16–20] present novel spectroscopic

signatures assigned to ILMs but without additional evi-

dence supporting localization they do not insure an air

tight assignment of localization behavior. The steady

state microwave studies of magnetic ILMs in an anti-

ferromagnet, although still spectroscopic in nature, is,

perhaps, more convincing since ILM counting [21] and

switching [22] have been observed. Reviews of localized

excitations for a variety of discrete nonlinear systems

have been presented [23–25] and these excitations now

appear under a variety of names, such as discrete breather,

discrete soliton, or lattice soliton.

The recent development of micro-electrical mechani-

cal systems (MEMS) provides macroscopic nonlinear ar-

rays of both theoretical and practical interest and the

direct visualization of the properties of ILMs in these sys-

tems is the subject of this paper. Most MEMS applications

currently require a linear response but as mechanical

beam resonators become smaller, i.e., nano-electrome-

chanical systems (NEMS), their linear dynamic range de-

creases [26]. Since it is relatively straightforward to drive

such small systems into a nonlinear regime [27] another

experimental approach makes use of these nonlinear pro-

perties in driving and sensing techniques [28,29]. The

nonlinear vibrational properties of single cantilevers are

well understood [30] but the dynamical properties of non-

linearly coupled cantilever arrays with their associated

ILMs is under continuing investigation [24].

We have been exploring both by experiment and with

simulations the nonlinear excitations of micromechanical

cantilever arrays. Their fabrication is fairly straightfor-

ward and their oscillation frequencies are in a convenient

range: higher than for coupled pendula [31], but lower

than other man-made lattices such as Josephson junction

arrays [32,33]. A 1D CCD camera is used to observe the

dynamical behavior of such an array. Under different

steady state excitation conditions we have succeeded in

producing and observing ILM vibration, in manipulating

its position in the lattice and in producing running ILMs.

Key components of our findings are described below.

2. Experimental procedure

For the mono-element cantilever array modeled as

lumped ball and spring elements in Fig. 1,a, the zone

boundary mode has the highest linear resonant frequency

and is characterized by a � phase change between vibrat-

ing elements. Because our experimental driving arrange-

ment relies on uniform excitation, such a mode is hard to

excite. To overcome this coupling problem di-element

cantilever arrays have been constructed, composed of

long and short cantilevers, as shown in Fig. 1,b. This can-

tilever array is made from a thin silicon nitride film

(~300 nm thick) resting on a silicon substrate. Each canti-

lever has a transverse vibrational mode and the coupling

between cantilevers is provided by thin nitride overhang

region. Resonance frequencies are from 60 to 150 kHz,

and the Q factor is ~10.000 in vacuum. The number of

cantilevers is on the order of 150 and their lengths and

pitch is about 50 �m. Both the cantilever itself and the in-

terconnecting overhang have «hard» or «positive»

nonlinearity, i.e., the restoring force becomes larger with

increasing amplitude so the resonant frequency increases

with increasing amplitude.

The sample is attached to a piezo-electric transducer

(PZT) situated in a vacuum chamber to eliminate air

damping. For the resonance experiments the array is

shaken up and down uniformly. The vibration of each

cantilever is recorded by a 1D CCD camera as shown in

Fig. 1,c. A laser beam is line focused along the cantilever

tips, and the reflected beam is imaged on the camera using

a lens (not shown). As the amplitude of a cantilever in-

creases the overlap of the reflected ray with detector ele-

ment decreases hence the cantilever image darkens. The

array and measuring method are described in more detail

in Ref. 24.

The first application of our imaging technique was to

measure the linear vibrational dispersion curve of the

di-element cantilever array. This experimental informa-
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tion, crucial for the simulations, can be obtained by excit-

ing each linear mode and measuring its wavelength. Since

the boundaries at both ends are fixed, the mode shapes are

standing waves; one half of the available modes can be

excited by the uniform driver. The wavelength of the

standing wave can be determined directly from the image.

Several images of standing waves at a low PZT excita-

tion level for a 152 cantilever array were acquired, then

Fourier transformed, and the results plotted as a function

of the driver frequency. The frequency results as a func-

tion of wave number are shown in Fig. 2. By operating the

laser in a pulse mode coupled to the driver frequency, the

camera integrates images at a fixed phase of oscillation.

The fact that the darkness produced by a cantilever is

slightly different for the up and down position, enhances

the final FFT results so that the modes appear as dark

spots. From this figure, we see that the lower branch

ranges from 73 to 120 kHz, while the narrower upper

branch is from 132 to 137 kHz. This asymmetry in band-

width is due to the long-range interaction between canti-

levers produced by the overhang. The small bandwidth of

the upper branch helps with the creation of spatially nar-

row ILMs.

Calculated acoustic and optic-like dispersion curves

for the di-element array are shown in Fig. 3. The two

bands stem from the high and low resonant frequencies of

the two cantilevers. The highest frequency mode located

at k = 0 (uniform) can be excited by the uniform driver,

because of the imbalance in mass for this mode shape.

The ILM can appear above the upper branch (horizontal

thick line in Fig. 3). Since the localized mode is a wave

packet, it has a spread in values along the k axis in this

dispersion curve picture, the more localized the excitation

the larger the spread in k space. The localized shape of the

ILM and its relation to the linear dispersion curve has

been confirmed by simulations.

The large bandwidth of the lower branch implies a

larger spacing between adjacent resonant frequencies,

since there are only 152/2 = 76 modes for each branch.

Although the two modes that can be most strongly excited

are the highest and lowest frequencies at k = 0, many of

the modes couple to the uniform driving excitation be-

cause of the fixed boundary condition. Thus we can excite
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Fig. 1. (a) Coupled ball and spring model. Nonlinear oscillator

springs and/or coupling springs are used. (b) The cantilever ar-

ray is made from a 300 nm silicon nitride layer. Each cantile-

ver behaves as a nonlinear oscillator coupled together via

overhang region. The length and pitch of the cantilevers are

about 50 �m. (c) The observational technique of the cantilever

dynamics consists of a line shaped laser beam focused on and

reflected from the cantilever tips. This reflected beam is im-

aged on a 1D CCD camera. When a cantilever acquires a large

vibrational amplitude its image darkens.

140

130

120

110

100

90

80

70

F
re

q
u
en

cy
,
k
H

z

0 /2a�k

Upper branch

Lower branch

Fig. 2. Experimentally measured dispersion curve of the di-

element array. This figure is made from the FFT of images

taken as a function of the driver frequency. The upper and

lower branches are seen as curves of dark spots. The other

curves are the ghosts of the two branches due to nonlinearity in

the darkness-response as a function of cantilever displacement.



a single mode throughout the lower branch by simply ad-

justing the driver frequency. The dotted horizontal lines,

labeled (a) and (b) in Fig. 3, indicate typical driver frequ-

ency location.

3. Experimental result on intrinsic localized modes

We have confirmed by experiment that the instability

associated with a strongly excited uniform mode causes

it to break up into ILMs. This modulation instability

[34,35] is seeded by noise, and grows catastrophically re-

placing the uniform mode with ILMs. Even when the

same experimental conditions are maintained, the local-

ization results are different in each run. This result is con-

sistent with the criteria that ILMs do not require impuri-

ties and can be located anywhere in the lattice.

A prominent feature of the ILM is its stability at a lat-

tice site. This is related to the energy dependent position

in a unit cell [36]. The ILM in this di-element array has

the lowest energy state when it is centered at the short

cantilever site and hence, it is stable at this site. In at-

tempting to move to the next short cantilever site, the ILM

has to pass over the long cantilever site which requires a

higher energy. The energy difference between the two

states increases with increasing amplitude. The very sta-

ble, stationary ILM seen in Fig. 4,a. The dark region near

the center of the frame is due to large amplitude cantile-

vers associated with the ILM. It is obtained by first in-

creasing the driver frequency with respect to the top of

the band (up to 1.1% in a few ms), then maintaining a

fixed frequency. Increasing the frequency with time from

the highest frequency linear mode is a very effective way

to obtain a modulational instability. After a number of

ILMs are formed, a few remain locked to the driver and

grow in strength with time. Such a large amplitude ILM

becomes strongly pinned at a lattice site and is very sta-

ble. Figure 4,b shows that the presence of a weak cantile-

ver heating beam does not modify the ILM because of the

locking of the ILM to the driver [37,38]. The vertical

white lines are images of cantilevers at rest.

Our success in imaging ILMs leads directly to the pos-

sibility of manipulation. The key idea here is to make use

of an ILM–impurity interaction. Such an impurity mode

can be produced by local heating of a few cantilevers with

a focused IR laser beam. Heated cantilevers have a lower

resonant frequency due to the temperature dependence of

Young’s modulus. We have found that an impurity mode

produced below the optic-like band repels a nearby ILM,

as shown in Fig. 4,c. The IR laser spot is the large white

region shown. We have demonstrated that ILMs can be

moved in a stepwise manner across the lattice by succes-

sive application of this mechanism. In addition, an attrac-

tive interaction between a nearby impurity mode and an

ILM for an array with negative nonlinearity has also been

confirmed [39].
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Fig. 3. Dispersion map of the di-element cantilever array. Thin

lines identify the linear dispersion curves. The upper branch

has a smaller bandwidth because of the effective long-range

interaction between cantilevers. The nonlinearity of the array

is positive, i.e., the resonance frequencies increase with in-

creasing amplitude. Horizontal dotted curves indicate two dif-

ferent driving frequencies for possible nonlinear excitation (a)

where stationary ILMs can appear above the top of the upper

branch and (b) where traveling ILMs can be generated. These

locked ILMs occur where the dispersion balances the

nonlinearity. The straight slanting line identifies the traveling

ILM wave packet.
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Fig. 4. Optical manipulation of an ILM. The dark patch in

frame a identifies a stationary ILM centered at cantilever site 76.

Frame b introduces a low power laser beam focused at site 78

which does not perturb the ILM. Frame c shows that when the

power of the laser beam is increased, the ILM is repelled by

the laser induced impurity mode and moves to site 72.



Figure 5,a shows a stationary ILM for the excitation

condition (a) identified in Fig. 3. Now the white line im-

ages of cantilevers at rest are horizontal. This picture is to

be contrasted with the results for the excitation condition

(b) in Fig. 3 that are presented in Fig. 5,b. The dark ILM

region traveling and reflecting at the boundaries results in

a zigzag pattern in a site versus time plot. Although the

lattice has 152 cantilevers, there is a fabrication fault-in-

duced boundary around site 130. The final state shown in

the figure is obtained by carefully tuning the driving fre-

quency. First, it resonantly excites a linear mode. The

mode pattern of this resonance is a standing wave because

of the boundary condition. Increasing the driver fre-

quency in small steps, causes the amplitude of the stand-

ing wave to grow. Similar to the modulation instability

observed in case (a) in Fig. 3, the standing wave pattern

breaks up into several traveling modes. The initial result

appears chaotic. By carefully increasing the driver fre-

quency, often a single traveling mode results. Since the

narrow dark region where the excitation level is largest

moves through the lattice, it is called a traveling ILM.

Figure 6 illustrates how different excitation patterns

may occur depending on the exact initial conditions. First

the generation procedure described above produces two

colliding ILMs shown panel (a). By increasing the driv-

ing frequency by ~1%, see panel (b), the pattern becomes

intermittent. A further increase by 0.2% produces the sta-

ble single traveling ILM pattern in panel (c), and finally

with another 0.2% increase, the driver frequency ap-
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Fig. 5. Experimental observation via site amplitude versus

time of two kinds of nonlinear localized excitations for a canti-

lever array. (a) Stationary ILM. White horizontal lines are im-

ages of stationary cantilevers. The ILM is recorded as a dark

thick region in the middle of the figure, spread over about

seven cantilever sites. It is created via a modulational instabil-

ity by increasing the driver frequency from the top of the band

within a few ms, and then fixing the driver frequency.

(b) Traveling ILM. It can be generated in a small system by

carefully increasing the driver frequency from a mid resonant

frequency toward its neighboring normal mode frequency in

the band. Once generated, the localized excitation is very sta-

ble. Driving frequency: 137.8 (a) and 115.41 (b) kHz.
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Fig. 6. Several localized excitation patterns for driving fre-

quency locations between two neighboring plane wave values.

(a) Two locked traveling modes collide with each other repeat-

edly, (b) an intermittent ILM pattern, (c) a clean, single locked

traveling mode and (d) unstable pattern showing the beating

of an ILM with a plane wave mode. Driving frequencies are

116.51 (a), 117.39 (b), 117.64 (c), and 117.88 (d) kHz. The ho-

rizontal stripe structure is due to a Moir� effect.



proaches that of the next plane wave mode of the same

symmetry, panel (d), and the pattern again becomes unsta-

ble. This series of images was obtained by incrementing

the driver frequency at 10 Hz step. Because of low resolu-

tion to reduce the data file, Fig. 6,c looks slightly differ-

ent from Fig. 5,b. These data were originally taken to

check for very long time stability.

We have observed that smoothly running ILMs can

only be produced when the monochromatic driver can be

tuned within the frequency gap between two modes of the

same symmetry suggesting that mobile ILMs are a prop-

erty of a system with a small number of modes. To check

this and other finding we have carried out numerical sim-

ulations for arrays of different sizes using the lumped ele-

ment ball and nonlinear spring model.

4. Numerical simulations

To simulate the nonlinear array dynamics, the coupled

equations of motion for the nonlinear lumped element

model is used, namely,
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where mi is the mass, k i20 and k i40 are the coefficients of

the onsite harmonic and hard quartic potential terms

while k
I
j

2
( )

and k I4 identify the corresponding intersite

terms. More details about the di-element model are given

in Ref. 24. The number of lattice sites is 100 with fixed

boundary conditions. Model parameters are listed in the

second column of Table II in Ref. 24. The equations are

integrated forward in time using the fourth order

Runge–Kutta routine. At each time step of integration a

small amplitude noise field is introduced in order to simu-

late the effects of random vibrational noise. Figure 7,a

shows simulation results obtained with this model. When

comparing the experiment results in Fig. 5,b with the sim-

ulation in Fig. 7,a a similar time dependence is found. The

only difference is that the two ILM speeds are not quite

the same. This difference occurs because the slope of the

model dispersion curve at the driver frequency is some-

what larger than that observed in experiment. The differ-

ence comes about because the driver frequency is

10.6 kHz lower than the top of the lower branch in the

simulation, while it is 5.8 kHz from the top for the experi-

ment. A carefully tuning of the driver frequency in the

simulation, with sufficient resolution compared to the fre-

quency separation between neighboring plane wave

modes, is required to generate a traveling ILM. This ini-

tial condition agrees with that previously used in the ex-

periments.

Additional simulations show that if the array has an in-

sufficient number of elements such smoothly running ex-

citations are suppressed [40].

Figure 7,b presents a simulation result with the identi-

cal starting condition as that shown in Fig. 7,a, but now

the nonlinear terms have been removed so the array is har-

monic. The initial localized wave at t = 0 spreads into

many waves with different velocities with increasing

time. It is clear that the localized mode envelope is com-

ing apart after only one cycle through the lattice and is no

longer well defined after three cycles.

5. Discussion and conclusions

The spatial localization of the traveling ILM shown in

Fig. 5,b is similar to that found for the stationary ILM, in

Fig. 5,a. The simulations show that both types of modes

can be described by an envelope modulating a carrier

wave, but in the latter case the 
–k display appears as a

line tangent to the dispersion curve at the driver fre-
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Fig. 7. Simulation results based on a lumped element model.

(a) Equations include the nonlinear terms described in Ref. 19.

The observed running ILM pattern is quite similar to that

found in experiment. (b) Nonlinear terms removed from the

equations. Now the localized excitation established at t = 0 is

unstable and breaks up into many plane waves. Same initial

conditions for both cases and the driver frequency is fixed at

112.8 kHz.



quency position. Such a situation is represented by the

feature near the dotted line (b) in Fig. 3. The speed of the

traveling mode can be estimated from experiment, and

good agreement is found with the corresponding tangent

line. It is to be expected that all such running ILMs can be

represented in an 
–k picture as tangents to the linear dis-

persion curve, because the dispersion curve identifies the

positions of available plane wave modes. The existence of

such a traveling ILM depends on a balance between the

nonlinear and dispersive effects. Here, the negative cur-

vature of the dispersion balances the positive nonlinearity

as represented by the two arrows in Fig. 3. This balance is

reminiscent of the soliton stability condition in a continu-

ous nonlinear medium; but, unlike that case, where two

solitons can pass though each other with only a phase

change, for the lattice problem, in the absence of a driver,

energy is transferred between two ILMs during their col-

lision.

These experiments demonstrate that micromechanical

cantilever arrays provide a readily accessible technique

for exploring the properties of localized excitations in a

nonlinear lattice. Two kinds of nonlinear localized excita-

tions have been generated: stationary locked ILMs in the

region outside of the plane wave spectrum and traveling

ILMs, which appear in the plane wave spectrum. Station-

ary ILMs can occur for any size discrete system but be-

cause locked, smoothly running acoustic ILMs require

the driver frequency to occur in the frequency gap be-

tween neighboring plane wave modes, practically, they

are a property of a small discrete system. These traveling

ILMs show some similarities and some differences with

bright and dark solitons [41]. The good agreement be-

tween experiment and simulations demonstrates that the

nonlinear lumped element model captures the important

physical signatures that have been observed experimen-

tally.
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