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The equivalence is established between the one-dimensional (1D) Bose-system with a finite number of

particles and the system obeying the fractional (intermediate) Gentile statistics, in which the maximum oc-

cupation of single-particle energy levels is limited. The system of 1D harmonic oscillators is considered pro-

viding the model of harmonically trapped Bose-gas. The results are generalized for the system with power

energy spectrum.

PACS: 05.30.Ch Quantum ensemble theory;
05.30.Jp Boson systems;
05.30.Pr Fractional statistics systems (anyons, etc.).
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1. Introduction

The observation of Bose–Einstein condensation

(BEC) in ultracold trapped alkali gases [1,2] gave new

stimulus to the study of this quantum phenomenon. In

particular, the effects of a finite number of particles on

BEC of an ideal gas was discussed in theoretical works

[3–8], where the corrections to the bulk properties were

found.

The aim of the present study is to propose the descrip-

tion of a bosonic system with a finite number of particles

by means of finding such a model system, for which

the treatment might be mathematically simpler. To some

extent, such an approach has common features with find-

ing boson–fermion equivalence in ideal gases [9] or

Tonks–Girardeau gas [10] achieved experimentally in

2004 [11,12]. The anyon–fermion mapping is also known

in the application to ultracold gases [13].

Haldane’s exclusion statistics [14] was considered by

Berg�re [15]. The connection of the exclusion (anyon)

statistics parameter and the interaction in one-dimensi-

onal systems was studied in Refs. 16–18. Recently, a com-

binatorial interpretation of exclusion statistics was given

by Comtet et al. [19].

Another approach is seen in a different type of the frac-

tional statistics, which is formally understood as an inter-

mediate one between Fermi and Bose statistics. Namely,

the maximum occupation of a particular energy level is

limited to M, with M �1 corresponding to the fermionic

distribution and M �� being the bosonic one, respec-

tively. This statistics is known as the Gentile statistics

[20–22]. If the relation between the number of particles N

in the real system and the parameter M in the model one

can be found, the stated problem is solved.

For simplicity, a one-dimensional system is consid-

ered. The paper is organized as follows. Microcanonical

approach for harmonic oscillators with single-particle en-

ergy levels given by � �m m� � is considered in Sec. 2. The

oscillators, unlike classical particles, are indistinguish-

able reproducing thus a quantum case. Physically, this

corresponds to bosons trapped in a highly asymmetric

harmonic trap. In Sec. 3, the same system is treated within

canonical and grand-canonical approaches. Section 4

contains the generalization of obtained results for the sys-

tem with power energy spectrum �m
sm� . Short discus-

sion in Sec. 5 concludes the paper.

2. Microcanonical approach

The number of microstates Ã E( ) in the system of 1D

oscillators is the number of ways to distribute the energy

E n� �� over the (indistinguishable) particles. Such a

problem reduces to the problem in number theory known

as the partition of an integer [23–25]. An asymptotic ex-
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pression for (unrestricted) partition is given by the well-

known Hardy–Ramanujan formula [26]:
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Using the entropy S Ã� ln from the definition of the

temperature1/ /T dS dE� the following equation of state

is obtained:
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As the energy E is an extensive quantity, E N� , where N

is the number of particles, the thermodynamic limit

�N � const follows immediately from the above equation.

The same result also might be obtained from different

considerations [27].

If one considers a finite system of bosons or a system

of particles obeying fractional statistics the number of

ways to distribute the energy E n� �� over N particles is

the problem of restricted partitions of an integer number n

[25]. For convenience, hereafter �� is the unit of both

energy and temperature.

The expression for the finite system is given by the

number of partitions of n into at most N summands and

asymptotically equals [28]:
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The result reducing to the fractional statistics was con-

sidered by Srivatsan et al. [29], it corresponds to the num-

ber of partitions of n where every summand appears at

most M times:
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As one can see, Ã E( ) from Eq. (2) constitutes the lead-

ing factor both in Eqs. (4) and (5). The respective entro-

pies are

Sfin = ln Ãfin = ln Ã + �Sfin and Sfrac = ln Ãfrac = ln Ã + �Sfrac .

(6)

Comparing the corrections �S fin and �S frac , one finds the

equivalence condition linking the maximum occupation

parameter M and the number of particles N :
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3. Canonical and grand-canonical approach

It is straightforward to show that in the case of the de-

fined fractional statistics the occupation number of the

energy level � equals [20–22]
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where� is the chemical potential and T is the temperature.

The chemical potential is related to the number of par-

ticles � as follows:
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and energy E equals
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However, the case of a finite system is much easier to

implement in the canonical approach. It is possible to

show that the partition function of N indistinguishable 1D

oscillators is given by (cf. [24])
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from which the energy EN can be calculated. In the limit

of large N the leading term is given by
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where EBose is the energy of an infinite bosonic system.

For the fractional-statistics system the grand-canoni-

cal approach is used. The fugacity z T� e� / is represented

as z z z� �Bose � with z Bose satisfying

� �


� 1

11z i T
i Bose e

� /
. (12)

It is found that �z M�1/ in the limit of large M, from

which the correction to the energy given by Eq. (9) fol-

lows:

E E
M

M 
 �Bose
1

. (13)

Comparing Eqs. (11) and (13) one obtains the following

relation between the parameters M and N :

M
N

N T�
1

e / . (14)

In the exponent, the temperature T is related to the energy

level n of (6) via Eq. (3) (with E n� ). Result (14) thus re-

produces the microcanonical one (6) up to the negligible

factor of 1/ N — it must be taken into account that
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only leading terms were preserved in the logarithms of (4)

and (5).

4. Power energy spectrum

In this section, a general power energy spectrum

� � ams (s � 0) is considered. By choosing appropriate en-

ergy units, one can set the constant a �1. In fact, only s �1

and s � 2 cases are realized in real physical systems [29],

but other values can effectively occur in some exotic

model systems or in the density of states of a system con-

fined by an external potential within a WKB approach.

To obtain Ã nfin ( ) for arbitrary s it is worth to recall

briefly the derivation of the expression for restricted par-

titions from [25].

Partition function Z( )� and the number of microstates

Ã E( ) are related via the Laplace transform:
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The entropy S( )� equals

S E Z( ) ln ( )� � �� � . (16)

For energy spectrum �m
sm� the partition function is
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Using the saddle-point method, one can evaluate Ã E( )

(15) as follows:
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The entropy S( )� , after applying the Euler–Maclaurin

summation formula, can be expressed in such a form
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�( )z and  ( )z being Euler’s gamma-function and Rie-

mann’s zeta-function, respectively.
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Thus, the number of microstates is

Ã E
s

s
E s Es

s

s

s
s

s( )
( )

exp ( )
( )/

( )�
�

�
"

�



�

� �!

�
!

2 1
1

1 2

3 1

2 1

1

1

#

$
$

%

&

'
'

.

(22)

Substituting E with n one can obtain the well-known

Hardy–Ramanujan formula [26] for the number of parti-

tions of an integer n into the sum of sth powers.

When the number of particles N in the system is finite,

the correction to the above formula must be found. In this

case, the partition function equals

ln ( ) lnZN
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and for the entropy one has
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After simple transformations it is easy to obtain the fol-

lowing:
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where �( , )a x is incomplete �-function. Thus,
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Applying the asymptotic expansion for �( , )a x [30,

Eq. (6.5.32)], we finally arrive at the following:
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Substituting E with n one obtains the result for re-

stricted partitions
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cf. also Eq. (17) from [31]. For this function, the notation

p nN
s ( ) is traditionally used, note, however, that in the

problem of integer partitions s must be integer. For s �1

the obtained expression reduces to that of Erd�s and

Lehner [28], see Eq. (4).

The fractional-statistics result can be directly taken

from [29]
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To obtain the relation between the parameters M and

N , one can again consider the entropies S Ãfrac frac� ln

and S Ãfin fin� ln :
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where S Ã� ln .

Dropping the constants, the following result is ob-

tained:
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It is interesting to find in this general case the connec-

tion between energy E and temperature T from the defini-

tion 1/ /T dS dE� :
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Thus, the leading contribution in the relation of M and N

(31) is

M
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which is compatible with (14).

5. Discussion

To summarize, the equivalence is established between

the finite bosonic system and the system obeying frac-

tional (intermediate) Gentile statistics in the case of

one-dimensional harmonic trap. This approach is ex-

tended to a general power energy spectrum. While the ex-

pressions for two-dimensional (2D) partitions are also

known [23], the application to asymmetric (elliptical)

traps as well as the generalization for arbitrary 2D

systems needs additional study.

Interacting systems are of special interest now. Weak

interactions are known not to change the properties of a

Bose-system drastically. Thus, one can use, e.g., a slight-

ly modified excitation spectrum [32] and, upon calculat-

ing the properties of a model fractional-statistics system,

obtain the results for a finite one from the established

equivalence.
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