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General concepts of cluster phase transitions are reviewed as well as the cluster behavior near the melt-

ing point. Configuration excitation determines the nature of the cluster phase transitions, but a significant

contribution to the entropy jump is given by thermal motion of atoms that allows one to characterize the

phase transition through thermal atom motion in the Lindemann and other criteria. The phase coexistence

near the melting point is the peculiarity of not large clusters. The void concept of phase transitions with a

void as an elementary configuration excitation allows one to describe the phase transition for clusters and

macroscopic atomic systems. Phase transitions in metal clusters resemble those in clusters with pairwise

atomic interactions, but their numerical parameters are other because of a large number of isomers and an ad-

ditional electron degree of freedom. Cluster models are convenient for the analysis of macroscopic atomic

systems. They allow us to understand the nature of glassy transitions and the reason of absence of a stable in-

finite crystal lattice for gases at zero temperature and high pressure.

PACS: 36.40.Ei Phase transitions in clusters;
61.72.J– Point defects and defect clusters;
64.70.D– Solid–liquid transitions;
64.70.P– Glass transitions of specific systems.

Keywords: phase transitions, thermal motion, clusters, macroscopic atomic systems.

1. Introduction

According to the thermodynamic definition [1,2], the

aggregate state of a macroscopic atomic system is a uni-

form space distribution of atoms restricted by a boundary,

and the phase transition is a transition between two aggre-

gate states. In thermodynamic terms, an aggregate state of

a macroscopic system of atoms is described by thermody-

namic parameters, as the temperature T , the entropy S, the

internal energy E, the free energy F, and other thermody-

namic potentials. A phenomenological character is a lack

of the thermodynamic description, and the universality is

its advantage.

Transferring from macroscopic atomic systems to

clusters, systems of a finite number of identical atoms,

causes a question, is it possible to use for clusters a ther-

modynamic description with ignoring the fluctuations.

Along with the thermodynamic description, clusters ad-

mit a dynamic description with the analysis of motion of

each atom, while this description is cumbrous. Hence, the

analysis of clusters gives the understanding the nature of

macroscopic atomic systems whose models are clusters.

Especially, it is of importance in a range of the phase

transition. The most striking property distinguishing clus-

ters from bulk matter is their dynamic phase coexistence

[3–7]. This means that such systems have a tempera-

ture-pressure domain of coexistence, in which, part of the

time, the cluster resides in one aggregate state, and the re-

mainder, in the other (in a two-phase domain; there can be

other domains with more coexisting phases).

Thus, basing on different methods of the cluster analy-

sis, one can understand various aspects of cluster phase

transitions by comparison of different methods. This al-

lows us to understand the nature of phase transitions in

clusters and macroscopic atomic systems.

© R.S. Berry and B.M. Smirnov, 2009



2. Types of cluster excitations

The analysis of the cluster potential energy surface

(PES) is used along with the dynamic and thermodynamic

cluster descriptions where thermodynamics is applicable

if typical cluster times are large compared to times of en-

ergy exchange between neighboring cluster atoms. This is

fulfilled for clusters that are both microcanonical and ca-

nonical atom ensembles, i.e., if a cluster is found under

isothermal or adiabatical external conditions. It is of im-

portance for clusters where interaction between nearest

neighbors dominates. These clusters have the PES with

many local minima [8–13]. In particular, for Len-

nard-Jones clusters, the number of local minima of the

PES rises rapidly with the number n of component atoms,

to become of order of a thousand even for n of 13 [8,9,14].

This property of the PES determines a specific cluster be-

havior at low temperatures [8,15]. In the course of evolu-

tion a typical time for a cluster to remain near a given lo-

cal minimum considerably exceeds a typical oscillation

time. This allows one to treat the residence in the basin

around each local minimum as a specific configurational

excitation state, albeit transient. In this way one can sepa-

rate the oscillation and configurational degrees of free-

dom of the cluster atoms [16]. This character of cluster

evolution is the basis of the understanding of cluster be-

havior. Then the phase transition may be considered as a

result of configuration transitions.

One can simplify the PES concept by introducing the el-

ementary configurational excitation, a void [17] or empty

internal space, so that a certain configuration cluster exci-

tation includes the formation of some number of voids in a

cluster as it is shown in Fig. 1 for a 13-atom cluster where

interaction between nearest neighbors dominate. Then

configuration excitation results from formation of one

void that is a perturbed surface vacancy. In terms of voids,

an aggregate cluster state is a group of configuration clus-

ter states which correspond to local minima of the PES

with nearby energies. In addition, this combination of

configuration excitations must be realized with a remark-

able probability (up to one) under some conditions. At a

large number of voids, this definition transfers to the defi-

nition of an aggregate state of a bulk atomic system. In

contrast to macroscopic atomic systems, one elementary

excitation is possible for an excited cluster aggregate

state as it takes place for a 13-atom cluster.

3. Phase transition in 13-atom cluster

It is convenient to demonstrate the above cluster pro-

perties for a 13-atom cluster with dominating interaction

between nearest neighbors that includes also the Len-

nard-Jones cluster. The ground configuration state (the

solid aggregate state) corresponds to the icosahedral atom

structure, and the first excited configuration state respects

to transition of one atom to the cluster surface (Fig. 1). We

connect this configuration state with the liquid aggrega-

tion state. The latter includes a group of atom configura-

tions that are separated from the ground configuration

state by barriers or saddle points, and the energies of these

transitions at zero temperature are shown in Fig. 2 [18].

At higher temperatures the barriers between configuration-

ally excited states with one atom transition disappears, and

they are combined in one (liquid) aggregate state.

We postulate above that a cluster is located a long time

in a certain aggregate state and transfers fast in other

state. This is confirmed by the distribution on the total ki-

netic energy of cluster atoms [3] under adiabatic condi-

tions that has a bimodal form (Fig. 3), so that the cluster is
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Fig. 1. Configuration excitation of a cluster consisting of 13

atoms where interaction between nearest neighbors dominates.

A transferring atom is shown by a cross, and an arrow indi-

cates its transition.
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Fig. 2. The excitation and barrier energies for the lowest con-

figuration excitations of the 13-atom Lennard-Jones cluster

[18] are expressed in units D, the dissociation energy of break-

ing of one bond. Structures of the solid cluster: Hex — hexag-

onal, fcc — face-centered cubic, Ico — icosahedral.



found in the solid or liquid aggregate state, and the proba-

bility of an intermediate state is very small.

This determines the character of phase coexistence

that relates to conditions of a microcanonical [3] and ca-

nonical [19] atom ensemble. Such a form of phase coexis-

tence together with relatively large times of location in

each aggregate state allows one to consider a cluster as a

thermodynamic object.

Treating the results of computer simulation with sepa-

ration of aggregate states, one can obtain various thermo-

dynamic information about a cluster. Note that within the

framework of thermodynamic description we neglect

fluctuations and the time dependence for the total kinetic

energy of cluster atoms has the form Fig. 4,a [15] while a

typical real dependence for a cluster as a microcanonical

atom ensemble is given in Fig. 4,b [20].

Hence in transition to thermodynamics we average over

a large time. Then the average total energy E of cluster at-

oms that is a sum of the total kinetic energy K of atoms and

their total potential energy U on the basis of formula

E U K� � . (1)

Therefore, defining a configurationally excited aggregate

state as a kinetically linked group of states near local min-

ima of PES of similar excitation energies [15,21], we ap-

ply formula (1) to the total energies of the solid Esol and

liquid E liq aggregate states separately, so that this for-

mula takes the form

E E K U

E E E K U

sol 0 sol sol

liq 0 liq liq

� � �

� � � �

,

,�
(2)

where E0 is the total energy of atoms in the solid state at

zero temperature, �E is the energy of configurational ex-

citation for the liquid state; K sol and K liq are the total ki-

netic energies of atoms for the solid and liquid aggregate

states; U sol and U liq are the total potential energies of at-

oms measured from the global minimum atomic configu-

ration. Based on formula (2) and restricted to two aggre-

gate states, we obtain as the parameters to describe the

cluster the energy �E for configuration excitation, the

temperature of atoms, and the anharmonicity parameter �
introduced as

�

�

sol
sol

sol sol

liq
liq

liq liq

�
�

�
�

K

K U

K

K U

,

.

(3)

This parameter is introduced separately for the solid and

liquid aggregate states. Because the liquid configuration

corresponds to a looser atomic structure, � �liq sol� , and

in the case of harmonic cluster oscillations we obtain

� �1 2/ . Expressing the atom temperature through the to-

tal kinetic energy of atoms, we represent formula (2) in

the form
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Fig. 3. The distribution function on the total kinetic energy of atoms Ekin for the 13-atom Lennard-Jones cluster at some excitation

energies [3] where the energy of breaking of one bond is taken as the unity. The excitation energies Eex: 7.59 (a), 11.01 (b), 12.88

(c), 14.13 (d), 16.23 (e).
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where n is the number of cluster atoms. In reality, the

anharmonicity coefficients are close to 1/2, but their dif-

ference is important. The values of the anharmonicity pa-

rameter �as a temperature function are given in Fig. 5 for

the Lennard-Jones cluster.

The energy of configuration excitation of the 13-atom

Lennard-Jones cluster does not depend on the tempera-

ture in a range of phase coexistence and equals [15,22,23]

�E D� �( . . )2 47 0 03 , (5)

where D is the dissociation energy of the Lennard-Jones

diatomic.

Let us introduce wsol and w liq , the probabilities that

the cluster be located in the solid and liquid states corre-

spondingly, and under conditions of configuration transi-

tions in a cluster, w wsol liq� �1. The ratio of these values

is expressed through thermodynamic parameters, which

under isothermal conditions (a cluster is a canonical

atomic ensemble) has the form

p
w

w

E

T
S� � � �	



�

�



�

liq

sol

exp
�

� , (6)

where �S is the entropy change resulting from the phase

transition. As is seen, the entropy jump may be deter-

mined at a given cluster temperature on the basis of com-

puter cluster simulation with separation the aggregate

states. The same operation may be done [15,21] for a clus-

ter as a microcanonical ensemble of atoms with account-

ing for different atom temperatures for each aggregate

state. Below, we analyze the temperature dependence for

the entropy jump at the phase transition.

Let us represent the cluster entropy in the form

�S S S� �conf term, (7)

where Sconf corresponds to configuration cluster excita-

tion, and S term is determined by a different character of

thermal atom motion in the transition states. The first part

is for a 13-atom cluster

Sconf ln� �( )15 12 � 5.2,

where 15 is the number of surface faces that do not border

a newly-formed vacancy at configuration excitation, and

12 is the number of final atomic positions from which an

atom can be promoted to create the vacancy. This value is

independent of the temperature. One can determine the

total entropy jump on the basis of dynamic cluster simula-

tions using formula (6). This operation was done on the

basis cluster simulations where the 13-atom Lennard-Jo-

nes was a microcanonical [3] and canonical [19] ensem-

ble of atoms. The results are reduced to the canonical

case and are given in Fig. 6. One can see that the value

S term that follows from formula (7) and Fig. 6, is compa-
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Fig. 4. Time variation of the total potential energy of cluster

atoms as a time function, averaged over fluctuations (a) and

according to computer simulation [20] for the isolated 13-atom

Lennard-Jones cluster at the excitation energy 10.8D that is

below the melting energy (13.8D) (b).
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Fig. 5. The anharmonicity parameter for the solid and liquid

aggregate states of the isolated 13-atom Lennard-Jones cluster

as a function of cluster temperature [15,21] constructed on the

basis of the computer simulation data [3] for the solid (1) and

liquid (2) aggregate states.



rable to Sconf at the melting point. This fact cannot be ex-

plained by different Debye temperatures for cluster oscil-

lations with the harmonic oscillations of cluster atoms.

One can connect it with transition from locked state of a

transferring atom on the cluster surface to a free motion of

this atom when the cluster temperature increases. In addi-

tion, Table 1 contains some thermodynamic parameters of

the 13-atom Lennard-Jones cluster [24,25] obtained on

the basis of results of computer simulation [3]. In this ta-

ble, Eex is the excitation energy of this cluster as a

microcanonical ensemble of atoms, �T T T� �sol liq is the

temperature difference for aggregate states, other nota-

tions are explained for the above formulas.

Table 1. Parameters of the Lennard-Jones cluster (consisting of 13

atoms as a microcanonical ensemble of atoms) following from

computer simulation [3]

Eex/D 11 12.9 14.1 16.2

Ksol/D 4.63 5.11 5.44 6.00

Kliq /D 3.56 4.15 4.48 5.07

Tsol/D 0.285 0.310 0.330 0.363

Tliq/D 0.216 0.252 0.272 0.307

� 0.42 0.40 0.39 0.37

p 0.1 0.4 1.8 4.0

�E/D 2.5 2.4 2.5 2.5

�T/D 0.059 0.058 0.058 0.056

�S(Tliq) 6.9 � 0.4 7.5 � 0.4 8.5 � 0.3 8.6 � 03

The peculiarities of metal clusters consist in a large num-

ber of excited atom configurations (see Fig. 7) which are

close by energy and an additional electron degree of free-

dom. At low temperatures one can ignore the electron de-

gree of freedom, and then 13-atom metal clusters have the

icosahedral structure in the solid state that is separated from

configurationally excited states by some energetic gap.

Lowest configurationally excited Lennard-Jones and

metal clusters consisting of 13 atoms have a different

atom configuration. Besides that, an additional cluster ex-

citation in metal clusters opens new atom configurations

in contrast to Lennard-Jones clusters. This means that the

structure of the liquid state varies in the course of cluster

excitation. As a result of these peculiarities of metal clus-

ters, the entropy jump at melting is larger for them then

that for Lennard-Jones clusters. Table 2 contains parame-

ters of melting for some metal clusters followed from the

results of computer simulation [26]. Note that melting pa-

rameters resulted from cluster simulation, depend on the

interaction potential taken between cluster atoms. In ad-

dition, the computer simulations fulfilled for metal clus-

ters do not separate cluster aggregate states in the range of

phase coexistence. Therefore results for metal clusters are

less informative and reliable than that for Lennard-Jones

clusters. Nevertheless, the above qualitative comparison

of metal and Lennard-Jones clusters is valid.
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Fig. 6. The entropy jump at melting of the isothermal 13-atom

Lennard-Jones cluster. Closed circles are obtained from the re-

sults of computer simulation of the isolated 13-atom

Lennard-Jones cluster [3], and close circles relate to the iso-

thermal 13-atom Lennard-Jones cluster [19].
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Fig. 7. Projections of PES on a sphere in a many-dimensional

coordinate space for a 13-atom cluster of an inert gas (a) and

for a 13-atom metal cluster (b).



Table 2. Parameters of the phase transition for 13-atom metal

clusters

Parameter Ni13 Ag13 Au13

Tm, K 860 420 440

�E, eV 1.5 1.5 0.68

�S0 6.4 7.1 7.2

�Sm 20 41 18

�S0/�Sm��� 32 17 40

4. Criteria of cluster melting

Melting as a phase transition is a collective phenome-

non with participation of many atoms, and hence the solid

and liquid states differ by the nature of large-scale coop-

erative behavior of atoms in these aggregate states. In

practice, it is convenient to use the Lindemann criterion

[27] as a diagnostic for this phase transition. According to

this rule, the phase transition occurs at the temperature at

which the relative amplitude of atomic oscillations

reaches a characteristic value; specifically, melting is said

to occur when the ratio of the root-mean-square amplitude

of atomic oscillations to the equilibrium distance between

nearest neighbors is 0.10–0.15. Typically, in the range of

this temperature, the ratio of distances increases sharply.

Of course, the Lindemann criterion [27] is the simplest

criterion to characterize the solid or liquid aggregate state.

With the development of numerical methods to simulate

cluster dynamics, more precise criteria for the phase transi-

tion were introduced, which are based on pair correlations

of positions of the cluster atoms. In particular, this corre-

lation function can use the Etters–Kaelberer parameter

[28–30] or the Berry parameter [4,31]. These parameters

are proportional to the fluctuations of the interatomic dis-

tances. These fluctuations give a somewhat more precise

insight into how the solid and liquid states differ, and how

the transition between them occurs over the range of their

coexistence. Among the correlation parameters, the root

mean square of the bond length fluctuation � is used widely

as the melting parameter. It is given by the expression [3]

� �
�

� � �

� �

�

�

�
�
�

�

�

�
�
��

�2

1

2 2

2

2

n n

r r

r

ij ij

iji j
( )

, (8)

where rij is a distance between atoms i and j. For the solid

state, in which atoms are fixed in lattice sites, this param-

eter is typically smaller than 0.1, less than that for the liq-

uid state with its mobile atoms. This parameter is given in

Fig. 8 for the 13-atom Lennard-Jones cluster with the ar-

gon pair interaction parameters [3]. One can see that it has

a jump at the melting point, and this jump may be as a def-

inition of the melting point.

We have that the nature of the aggregate states and

phase transitions is connected with configuration cluster

excitations, while all the above criteria are based on

parameters of thermal atom motion. This contradiction is

solved by Eq. (7) that exhibits an essential contribution of

the difference in thermal motion of cluster atoms in states

of transition to the transition entropy. Just this part of the

entropy is governed by the above criteria, and because the

part S term is approximately one half of the total transition

entropy, the above criteria are valid. Table 3 contains ther-

modynamic parameters of Lennard-Jones clusters consist-

ing of 13 and 55 atoms, and bulk inert gases [15,25].

Table 3. Parameters of melting for Lennard-Jones (LJ) clusters

and macroscopic inert gases

Parameter LJ
13
� )

LJ
55
� )

Bulk inert gases

Tm /D 0.29 0.31 0.58

�E/D 2.5 16 � 1 0.98n

(Tsol – Tliq)/Tm 0.22 0.31 � 0.02 0.56

�S0 5.2 31 � 2 0.73n

�Sm 8.6 48 � 4 1.68n

�S0/�Sm��� 60 65 � 10 44

5. Cluster phase coexistence

Dynamic coexistence of cluster phases that takes place

near the melting point, results from a restricted entropy

jump at melting of small clusters and influences their be-

havior near the melting point. In analyzing the phase co-
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Fig. 8. Averaged over a long period the square length of fluc-

tuations of the relative bond length defined by formula (8) for

the 13-atom Lennard-Jones argon cluster [3].



existence, we take for definiteness that the range of phase

coexistence is given by

01 10. � �p , (9)

where p is given by formula (6). Introducing the width of

the coexistence range as �T T T� �1 2, where p T( ) .2 01� ,

and p T( )1 10� , we obtain

�T
S

�
5

�
. (10)

From this it follows that the phase coexistence for the

13-atom argon cluster with the Lennard-Jones interaction

between atoms (the melting point is Tm � 37 K) proceeds

in the range 28–46 K according to formula (10). In the

same manner, we obtain that the phase coexistence in the

55-atom Lennard-Jones cluster with argon parameters

(Tm � 44 K) proceeds in the temperature range 40–48 K.

Next, for the nickel cluster consisting of 13 atoms with

parameters near the melting point according to the Table 2

data, the phase coexistence takes place in the temperature

range 740–980 K. One can see that a range of phase coex-

istence for metal clusters is narrower than that for dielec-

tric clusters, and for small clusters is wider than that for

large clusters. As it follows from these estimations, phase

coexistence is of importance for small clusters when a

number of cluster atoms is below 100.

The possibility to extract different aggregate states

from dynamic computer simulations is determined by

fluctuations of melting parameters. In particular, the fluc-

tuation of the total kinetic energy of cluster atoms is

�E T nmkin � , where n is the number of cluster atoms,

and the relative fluctuation of this quantity is

 � � ��

� � �

E

E

T n

E

n

S

mkin . (11)

For the 13-atom Lennard-Jones cluster this formula gives

 � 0 4. , and for the 55-atom Lennard-Jones cluster we

have on the basis of this formula  � 0 16. . Seemingly,

from this it follows that separation of aggregate states is

possible for large clusters, though in a narrow range. In

reality, it turns out well for the 55-atom Lennard-Jones

cluster [6], where caloric curves are extracted for three

aggregate states. For larger clusters different configura-

tion states are overlapped on the time dependence for

cluster parameters (e.g., the total kinetic energy of cluster

atoms, the total potential energy of atom interaction). The

reason is a large number of configuration excitations. For

example, for the Lennard-Jones cluster of 55 atoms the

liquid aggregate states includes formation 5–7 voids on

the cluster surface [15,21]. Hence, excitations with for-

mation of a different number of voids are overlapped with

each other, as well as with the ground state. This is absent

for a 13-atom cluster. Nevertheless, aggregate states of

13-atom metal clusters may be separated.

Dynamic phase coexistence reflects on some cluster

properties in the vicinity of the melting point. We con-

sider this for the heat capacity of a cluster that is a

microcanonical ensemble of atoms. In this case tempera-

tures are different for the solid Tsol and liquid T liq aggre-

gate states, but if the cluster is studied during a large time

with many transitions between aggregate states, one can

introduce the average cluster temperature. In particular,

the average kinetic cluster temperature has the form

T w T w T� �sol sol liq liq , (12)

where w wsol liq, are the probability of cluster location in

the solid and liquid states, correspondingly. Let us con-

struct the caloric curves for the cluster aggregate states in

absence of the phase transition by straightforward lines as

it is used in Fig. 9. If a cluster is heated starting from low

temperatures, its temperature is T T� sol at low tempera-

tures and T T� liq at high temperatures. The transition be-

tween these temperatures near the phase transition can

give «S-form» [8,34] for the caloric curve that gives the

negative heat capacity in the vicinity of the melting point.

The analysis [8,15] shows the reality of this character of

the caloric curve.

Note that the negative cluster capacity near the melting

point does not violate general physical principles. Indeed,

the heat capacity is expressed through the derivative from

the total kinetic energy of cluster atoms, and the negative

heat capacity means that an increase of the total energy of

cluster atoms induces an increase of configuration excita-

tion owing to a decrease of the total kinetic energy of

cluster atoms. In particular, in the case

1
1

!!
�

!!
T T

T n

sol liq

sol

, (13)

Phase transitions in clusters

Fizika Nizkikh Temperatur, 2009, v. 35, No. 4 345

�E

E

Tm
T

Tliq

T

Tsol

dE

dT
= C0

dE

dT
= – C0

Fig. 9. Caloric curves of an isolated cluster with two aggregate

states in the one-temperature approach [35].



where n is the number of cluster atoms, the heat capacity at

the melting point is �C 0, where C 0 is the cluster heat ca-

pacity far from the melting point [15,35]. The criterion

(13) is not fulfilled for the 13-atom Lennard-Jones cluster.

6. Phase transitions in macroscopic atomic systems

The concepts developed in the analysis of the cluster

phase transitions may be applied to bulk atomic systems,

and then they give a more deep understanding of some as-

pects of this phenomenon compared to a thermodynamic

description. Let us show this for condensed atomic sys-

tems with a pair interaction. In reality, this corresponds to

condensed inert gases, and we below analyze the phase

transition in them from the standpoint of the void concept.

Note that in contrast to the cluster case, in the analysis of

the phase transition in condensed inert gases we will be

based on their measured parameters. First of all, we ascer-

tain the character of interaction between atoms that has a

pair character because typical values of interaction poten-

tials inside condensed inert gases are small compared the

atom ionization potential or compared to other values of

the order of an atomic value.

Table 4. Parameters of interaction of two inert gas atoms (Re, D)

and the reduced parameters of the solid aggregate state at the triple

point [32]

Parameter Ne Ar Kr Xe Average

Re, � 3.09 3.76 4.01 4.36

D, meV 3.64 12.3 17.3 24.4

a/Re 1.02 1.00 0.99 1.01 1.005 � 0.013

Ttr/D 0.581 0.587 0.578 0.570 0.579 � 0.007

�S 1.64 1.69 1.70 1.71 1.68 � 0.03

�Hfus"�S 0.955 0.990 0.980 0.977 0.98 � 0.02

ptr�V"�Hfus, 10
–4

2.8 2.1 2.1 2.0 2.2 � 0.4

#sub/D 6.1 6.5 6.5 6.5 6.4 � 0.2

#sol/D 6.2 6.5 6.5 6.5 6.4 � 0.2

Table 4 contains reduced parameters for solid inert

gases near the triple point that are based on the measur-

able data for parameters of solid inert gases and parame-

ters of the interaction potential of two atoms (Re is the

equilibrium distance between atoms of the diatomic mole-

cule, D is the depth of the potential well, or the dissocia-

tion energy of the classical diatomic molecule). As is

seen, the binding energy per atom is closer to the case of a

short-range interaction of atoms when interaction be-

tween nearest neighbors takes place, rather to the

Lennard-Jones interaction. Therefore, in considering

condensed inert gases, we restrict by interaction between

nearest neighbors.

Applying the void concept to condensed inert gases,

we construct the dependence of the specific internal en-

ergy E or the specific free energy F (per unit volume) on

the specific number of voids v that has the form of Fig. 10

[36] if two aggregate states (solid and liquid) exist.

Note that for condensed inert gases the volume term is

approximately three orders of magnitude less than the en-

tropy term near the triple point. Therefore, the internal en-

ergy E and the free energy F are equal practically, and we

used it. The condition of the second minimum of F v( ) and

coincidence of the free energies at the first and second

minima give equations for F v( ) with measured parame-

ters of condensed inert gases at the triple point. These

equations exhibit that two aggregate states are possible

only in a certain region of energetic parameters. For real

condensed gases these equations give the void parameters

at the triple point that are given in Table 5.

Table 5. Void parameters for the liquid aggregate state at the triple

point [15]

Parameter Ne Ar Kr Xe Average

gmin 1.9 1.0 2.0 2.0 2.0

gmax 1900 3700 4300 4100 3500 � 1000

g(vliq) 55 62 63 68 62 � 5

vliq/n 0.320 0.319 0.318 0.319 0.319 � 0.001

Vvoid/Vsol 0.49 0.49 0.49 0.49 0.48 � 0.02

#liq/D 3.00 3.09 3.05 3.05 3.05 � 0.04

If we use this operation in a wide range of tempera-

tures, one can construct the dependence of the free energy

for a solid and liquid states of condensed inert gases sepa-

rately, as it is given in Fig. 11 [37] for argon, and the calo-
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lnZ

vmin

1 2

vsol vliq v

Fig. 10. The logarithm of the partition function for an ensem-

ble of bound atoms with a pairwise atomic interaction as a

function of a number of internal voids; 1, 2 correspond to the

solid and liquid aggregate state, respectively.



ric curve for the liquid aggregate state finishes at the

freezing point (Fig. 12). As is seen, the liquid state as the

aggregate state does not exist at low temperatures below

the freezing point Tfr , that, for example, equals to approx-

imately 52 K for argon (the triple-point temperature is

83.4 K). In the case of fast cooling, a glassy state is

formed at temperatures below the freezing point. Because

of the activation character of decay of this state, it can live

at low temperatures very long, but the properties of this

condensed atomic system differ from those of the liquid

states. Note that the glassy state may be formed in another

way, by deposition of atoms on a target of a low tempera-

ture, as it was made in experiment [38] for argon with the

target temperature of 10 K. Subsequent heating of a formed

deposit can lead to formation of the crystal structure, as is

shown in Fig. 13.

Let us consider the system of identical repulsed parti-

cles, and examples of such systems are given in Table 6

[15]. Below we restrict ourselves mostly by inert gases at

high pressures. The repulsed interaction potential of two

inert gas atoms can be approximated by the formula

U R U R
R

R

k

( ) ( )�
	



�

�



�0

0 , (14)

and the parameter k of this formula in a range of repulsed

potentials 0.1–1 eV varies in limits 6–8 for atoms of inert

gases [39]. Since the condition

k
d U

d R
� !!

ln

ln
1 (15)

corresponds to the model of hard balls, we will consider

interaction of atoms in condensed inert gases under high

pressures within the framework of this model that simpli-

fies the analysis.

It is convenient to characterize the state of the ensem-

ble of repulsed balls by the packing parameter $ [40] that

is introduced according to the formula

$
%

�
4

3

3n

V
r , (16)

Phase transitions in clusters

Fizika Nizkikh Temperatur, 2009, v. 35, No. 4 347

80

60

40

20

0
1.00 1.10 1.20 1.301.05 1.15 1.25

Reduced specific volume

S
p
ec

if
ic

fr
ee

en
er

g
y,

K

T = Tfr

T = Tm

Fig. 11. The dependence of the specific free energy of bulk ar-

gon on the volume per atom [37].
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Fig. 12. The caloric curves for bulk argon [37].
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Fig. 13. The temperature dependence of the saturated vapor pres-

sure above a heated amorphous argon formed by deposition of

the argon flux on a copper substratum at the temperature 10 K

[38,40] and referred to the glassy-like and crystal argon states.

Table 6. Ensembles of repulsed particles and boundary condi-

tions which allow one to concentrate the particles in a restricted

space region

Ensemble of particles Boundary condition

Inert gases under high pressure External pressure

Hard balls in a box Pressure under weight of upper particles

Colloid solution External pressure

Dusty plasma Electric traps



where r is a ball radius, n is a number of balls in the en-

semble, and V is the volume occupied by this ensemble.

In the most dense distribution of balls when they form the

crystal lattice of the face-centered cubic or hexagonal

structure, the packing parameter is$ � 0 74. ; in other cases

its value is less. According to computer simulation, the

packing parameter of an ensemble of identical balls at

zero temperature is $ �0.64. This value follows also from

filling of a container with hard balls [41–43]. As is seen,

the packing parameter for an infinite ensemble of repel-

ling hard balls is lower than that for a uniform infinite crys-

tal of the close packed structure. This means that particles

of this ensemble do not form a crystal lattice even at zero

temperature. The same result follows from the virial theo-

rem for particles interacted through the potential (14) with

k ! 3 [44], so that the structure of an uniform crystal is

unstable.

This unexpected result from the first glance causes

additional questions about the structure of an ensemble of

repelling particles at zero temperatures. Partially, the an-

swer follows from experiments with colloid suspensions of

insoluble particles. For example, in experiment [45] with a

size of an individual particle of 0.17 &m a particle ensem-

ble consisted of individual crystallites of size of approxi-

mately 100 &m, and each crystallite contained in average

4 10 7� monomers. Thus, at zero temperature the system of

repulsed particles consists of separate solid clusters (do-

mains) which size depends on the character of interaction.

Condensed inert gases (excluding helium) form a crys-

tal lattice of the face-centered cubic structure at atmo-

spheric pressure and low temperatures. A pressure in-

crease leads to formation of dislocations that results from

the stacking instability [46] due to mixing of the face-cen-

tered cubic and hexagonal structures. Unfortunately, we

do not know the size of individual crystallites in the struc-

ture of condensed inert gases at high pressure, as well the

dependence of parameters of their structure at high pres-

sure as the pressure increases.

In spite of an expected behavior at low temperatures,

the system of repulsed particles has two aggregate states,

as well as other simple systems of particles. In particular,

the equation of the melting curve for an ensemble of re-

pulsed balls according to computer simulations [47] has

the form

pV

T

sol �11,

where p is the pressure, Vsol is the specific volume for the

solid state, T is the melting point at this pressure. The re-

duced volume jump is �V/Vsol= 0.103, the entropy jump is

�S �116. , and p V T S� �� in this case [47].

As a demonstration of the phase transition in inert

gases at high pressure, in Fig. 14 we present the argon

melting curve, where the experimental curve [46] is ap-

proximated by the pressure dependence

dp

dT

T

T
� �

	



��

�



�� �

�

�

�
�

�

�

�
�

4 2 1 1

0 78

.

.

tr

. (17)

Here the derivative dp/dT is expressed in MPa/K, and

T tr � 83.8 K is the argon triple point.

7. Conclusion

The contemporary understanding of the nature of

phase transitions in clusters is based in a large degree on

cluster computer simulation with methods of molecular

dynamics. Combining the results of the dynamic behavior

of clusters with small number parameters for their de-

scription taken from thermodynamics, we obtain a more

deep description of clusters compared to thermodynamic

approach within the framework of thermodynamic terms.

This leads to some concepts for the phase transitions in

clusters which are represented above.
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