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A model for an atomic impurity in an octahedral void of fullerite C60 is suggested. The problem is solved in 
the spherical oscillator approximation, which is appropriate for the larger rare gas atoms. It is shown that such 
impurities can contribute to the negative thermal expansions at low temperatures and produce a Schottky-like 
maximum at higher temperatures. 
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First low-temperature measurements of thermal expan-

sivities ( )Tα  of pure fullerite C60 using dilatometry [1] and 
x-ray diffractometry [2] did not reveal any deviations from 
the standard behavior of any crystal. However, high-
precision dilatometry group in Kharkov reported [3] that 
below 3.4 K the thermal expansivity of a compacted sample 
of pure C60 is negative. When doped with chemically 
neutral species (rare gas atoms [4,5] or simpler close-shell 
molecules like nitrogen [6], methane [7] and oxygen [8]), 
the C60 solid showed the same, albeit somewhat different, 
behavior. In some cases, especially when the dopant was a 
simple molecule, ( )Tα  exhibited a maximum. 

The negativity suggests that the underlying mechanism 
might be related with transitions between some tunneling 
states. Similar effects in low-temperature thermal expan-
sivity were previously documented by the same group in 
rare gas crystals with substitution molecular impurities (cf. 
Aleksandrovskii et al. [9] and references therein). These 
effects were explained and analyzed on the basis of the 
idea [10] that transitions between tunneling rotational 
states could render the expansivity negative at sufficiently 
low temperatures when the positive phonon related 
contribution is negligible. The relevant numeric evalua-
tions were based on Devonshire's [11] calculations of the 
spectrum of a rotor in a field of cubic symmetry. 

Since the energy spacing EΔ  between tunneling states 
increases with increasing volume V, the relevant Grüneisen 
parameter 

 ln=
ln

E
V

∂ Δ
γ −

∂
 (1) 

is negative. At low enough temperatures, when the «stan-
dard» phonon contribution to the thermal expansivity is 
small, the net thermal expansion coefficient  

 tun tun ph ph= ( / ) ,k V C C⎡ ⎤β γ + γ⎣ ⎦  (2) 

with k, the Boltzmann constant and C, the respective heat 
capacity contributions, may become negative (considering 
that both heat capacities C in Eq. (2) are positive). The 
current explanation [5] of the negative thermal expansivity 
effect in C60 is based on the assumption that the relevant 
states are due to tunneling rotations of the fullerene mole-
cules. The other phenomenon, namely, the maxima in the 

( )Tα  dependence was ascribed [5] to the so-called poly-
amorphic transitions between different orientational glass 
states. It seems rather unlikely that a C60 molecule with its 
huge mass can tunnel rotate through a barrier approxi-
mately 0.3 eV high with a probability of a few Kelvin in 
appropriate units. Understanding that, Loktev and co-
authors [12,13] put forward the idea that the main negative 
expansivity contribution comes from molecules in irregular 
areas of the crystal (grain boundaries, dislocations, orien-
tational domain walls [14], etc.), where the relevant energy 
barriers are considerably reduced. 

From the above-stated it follows that the possible role 
of dopant particles in C60 has been disregarded so far. At 
least, molecular dopants could easily contribute to both 
phenomena observed within the above-mentioned app-
roach of Devonshire [11], considering that the symmetry of 
the voids of both types is octahedral. However, atomic rare 
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gas impurity can also produce similar effects in the low-
temperature expansion and to show that is the aim of this 
paper. 

Let us consider a much simpler case of an atom (rather 
than a molecule, however simple) placed inside an octa-
hedral void of the face-centered cubic lattice of fullerite 
C60. Even though the surrounding molecules are shifted 
due to the presence of the dopant particle, the symmetry of 
the resulting crystal field felt by the dopant remains 
predominantly cubic. This crystal field ( )U R  as a function 
of the radius vector R  of the center of mass of the dopant 
particle, referred to the center of the octahedral cavity, can 
be represented by the function  

 ( ) = ( ) ( ),N N
N

U V R I∑R n  (3) 

where ,R≡R n  R  is the modulus of the radius vector, and 
( )NI n  is the cubic invariant of rank N, which runs over 

even values, except the value 2 (there is no rank-2 cubic 
invariants), i.e., = 0, 4, 6.N  The actual symmetry of the 
potential energy of an atom in an octahedral void of 
fullerite C60 slightly differs from octahedral if the discrete 
nature of C atoms on the «surface» of the C60 molecule is 
taken into account, especially in the orientational glass 
state. We will ignore this insignificant disturbance; more 
so, further computations will be based on the generally 
accepted model of uniform continuous density of carbon 
atoms on the surface of fullerene molecules using the 
Lennard-Jones (LJ) [9] potential. The shape of the 
potential ( )U R  for a rare gas atom depends essentially on 
the species. Thus, for the He atom [15], this potential has a 
bump at = 0R  and the overall shape resembles a spherical 
well rather than a parabola. This is because the van der 
Waals diameter of the He atom is appreciably smaller than 
the size of the octahedral void. In this paper we chose 
xenon in order to deal with a potential closer to that of a 
harmonic oscillator. The final numeric results depend 
somewhat on the choice of the LJ parameters; those of 
Vidali and Cole [16] were used in our computations. 

To make the task analytically solvable, we introduce the 
following simplifications, which cannot lead to basically 
erroneous results. First, we truncate the expansion in Eq. 
(3), leaving only two terms with = 0N  and 4. Second, the 
isotropic potential 0 ( )V R  is assumed to be that of a 
spherical oscillator:  

 2 2
0 ( ) = / 2,V R M Rω  (4) 

where ω  is the oscillation frequency and M  is the dopant 
mass. This approximation is validated by our calculations 
which yielded a value of 2.23 0.04±  for the exponent of 
R  in Eq. (4). 

The wave function of the atomic dopant particle, Ψ , 
and the corresponding energy eigen-values are found from 
the Schrödinger equation: 

2 2 2
4 4( / 2 ) ( / 2) ( ) ( ) = ,M M R V R I E− ΔΨ + ω Ψ + Ψ Ψn=  (5) 

where 

 4 40 44 44( ) = 7 /12 ( ) 5 / 24( ( ) ( )) .I Y Y Y+ +n n n n  (6) 

We note that the sign of this invariant is opposite to that 
used by Devonshire [11]. 

The third simplification will be our treating the = 4N  
term as a perturbation. Without the perturbation term, the 
solutions to this equation for the spherical oscillator, 
extensively employed in nuclear physics, are well known 
[17]. We will use the representation of the eigen-functions 
Ψ  in spherical coordinates: 

 = ( ) ( ) .lm l lmF R Yν νΨ n  (7) 

Here ( )lmY n  are the spherical harmonics and the radial 
functions ( )lF Rν  can be represented in the form 

1/2( = ( / ) )r R Mω =  

 2 2

=0
( ) = exp( / 2)l k

l lk
k

F R r r A r
ν

ν ν− ∑  (8) 

with 

1/2( 1) 2( !) ( 3 / 2)= .
! ( 3 / 2) ( )! ( 3 / 2)

k

lk
n lA

k l n k k lν
⎡ ⎤− Γ ν + +
⎢ ⎥Γ ν + + − Γ + +⎣ ⎦

(9) 

In Table 1 we give explicit expressions for normalized 
radial functions ( )lF zν  represented in the form  

 1/4 2( ) = exp ( / 2) ( ).l lf z z F Rν νπ  (10) 

Table 1. Quantum numbers and eigen-functions of the 
spherical oscillator eigen-states 

N ν l Degeneracy fνl (z) 

0 0 0 1 2 
1 0 1 3 8 / 3 z  

2 1 0 1 22 / 3 (3 2 )z−  

 0 2 5 216 / 15 z  

3 1 1 3 34 / 15 (5 2 )z z−  

 0 3 7 332 /105 z  

4 2 0 1 2 41 / 30 (15 20 4 )z z− +  

 1 2 5 2 48 / 105 (7 2 )z z−  

 0 4 9 464 / 945 z   

The energy spectrum is given by  

 = ( 3 / 2).lE Nν ω +=  (11) 

with = 2 = 0,1, 2,N lν + …  and the total degeneration of 
level N  is  

 ( 1)( 2)= .
2N

N NG + +  (12) 
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To demonstrate the main idea for the case of low 
temperatures (T ≤ ω= ), we calculate the energy for the 
four lowest states enumerated in Table 1. The radial 
dependence of 4 ( )V R  in Eq. (5) that follows from our 
computations for Xe–C60 interaction potential is very close 
to 4R ; our calculations give 4 ( ) , = 4.01 0.03V R Rα α ± . 
Thus the perturbation term was chosen in the form  

 4
4 ( ) = .V R Rγ ω=  (13) 

Applying now the standard procedure by treating the 
term with = 4N  as a perturbation up to the second order, 
we obtain for the energy pE  of the state | p〉  (here the ket 
vector | p〉  is a product of the radial and angular ket 
vectors: | =| , }| , )p l l m〉 ν 〉  

 
2

(0)
(0) (0)

| |
= .

' pq
p p pp

q p q

V
E E V

E E
+ +

−
∑  (14) 

Here (0)
pE  are the energy eigen-values Nω=  with N  as 

per Table 1 and  

 4 4= | ( ) ( ) | .pqV p V R I n q〈 〉
 (15) 

The energy landscape as a function of the angular variables 
depends on the sign of the perturbation. Our calculations 
show that γ  in Eq. (13) is positive, which means that there 
are six maxima on the unit sphere along the (00 1)± -type 
axes and eight minima along the (111)-type axes. As the 
corrugation parameter γ  increases, the eight wave 
functions tend to concentrate along the four (111) ( 1 1 1)−  
directions; the states in these wells become those of a two-
dimensional oscillator, and the respective energy vs. γ  
curves cling into ever narrowing bunches. Owing to 
tunneling through the angular barriers these states sweep 
over the whole θ–φ continuum. The resulting states can be 
named rotating oscillatory modes. The results of the 
corresponding calculations of the energy spectrum of a 
perturbed spherical oscillator as a function of the 
perturbation parameter are shown in Fig. 1. The main 
conclusion is that the general view of the spectrum closely 
reminds that of a symmetric rotor in a potential of cubic 
symmetry [11]. 

Transitions within the state of the octet with lowest 
energies are characterized by negative Grüneisen para-
meters, and at low enough temperatures the corresponding 
thermal expansion will be negative. Transitions between 
any state in the octet to the next-in-energy bunch of levels 
will produce a characteristic maximum both in thermal 
expansion and heat capacity. 

Detailed calculations for atomic and molecular 
chemically neutral dopants in C60 are pending. 

The authors thank V.G. Manzhelii and A.V. Dolbin for 
valuable discussions and constructive criticism. 
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Fig. 1. Energy levels as a function of γ. 
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