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The influence of the inhomogeneity on the macroscopic thermal pairwise entanglement for the system of 
coupled spins 1/2 (qubits) has been studied. The most important effect of the inhomogeneity on the thermal en-
tanglement is in the new role of the external potential (magnetic field), which can produce nonzero entanglement 
for qubits, situated not far from the inhomogeneity. 
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Entanglement is the fundamental aspect for a quantum 

many-body system, additional to correlations, which its' 
classical counterpart possesses [1]. It shows the nonlocal 
nature, in which the entangled system contains correlations 
that cannot be attributed to its' subsystems alone. The main 
subject of the theory of the quantum computation is the 
two-level quantum system, a qubit, which plays the role of 
the elementary cell containing information. It is the entang-
lement between qubits, which, due to the very heart of 
quantum mechanics [2,3], permits to manipulate with ma-
ny qubits simultaneously, manifesting the main advantage 
of a quantum computer, the quantum coherence [4]. Ma-
croscopic entanglement demonstrates that nonlocal corre-
lations persist even in the thermodynamic limit, where the 
number of particles in the system (the number of qubits in 
a quantum computer) tends to infinity. The majority of 
theoretical results for entangled multi-qubit systems was 
obtained for = 0T  case [1]. However, physics of the real 
world ever deals with nonzero temperatures, hence, it is 
very important to study the thermal entanglement. The 
thermal entanglement for spin systems was studied recent-
ly theoretically (however, mostly for few-spin systems, not 
the macroscopic entanglement) [1,5]. Moreover, several 
experimental groups recently reported the observation of 
the thermal entanglement in real magnetic systems [6]. 

The aim of our work is to calculate analytically the cha-
racteristics of the macroscopic thermal entanglement for a 
model system consisting of interacting two-level subsys-
tems (qubits) with an inhomogeneity. We attack the prob-
lem by the investigation of the thermal entanglement of 
a semi-infinite chain with the interaction between neigh-
boring spins 1/2, which is coupled to an impurity, de-
scribed by two independent parameters. The general in-
terest to the entanglement in one-dimensional critical sys-
tems is due to universal predictions for the scaling of the 
entanglement entropy [7], caused by the conformal inva-
riance [8]. A particulary important result, which the con-
sidered model permits us to obtain, is the influence of local 
levels, caused by the impurity, on the thermal entang-
lement. This result is impossible to obtain within the boun-
dary conformal field theory, which is mostly used for the 
studies of the entanglement of critical chains with impu-
rities, or Kondo impurities in metals [9,10]. It is worth 
mentioning that the characteristics of the ground-state en-
tanglement were calculated numerically for similar models 
for a finite number of qubits in Refs. 11 and 12, Ref. 13 
studied the influence of a local level caused by the inho-
mogeneous field on the ground-state entanglement, and 
Ref. 14 studied the thermal entanglement of a system con-
sisted of two qubits with an inhomogeneous field. 
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In this paper we find exactly that the thermal entangle-
ment is very sensitive to the presence of the inhomogeneity 
in a system of coupled qubits. The temperature range, at 
which one can use the quantum macroscopic entanglement 
between qubits is dependent on the distance to the inho-
mogeneity and on the applied field. We show that one can 
govern that range for the thermal entanglement by apply-
ing an external homogeneous potential to the system (in 
the case of the spin chain it is the external magnetic field). 
Usually it is believed that such a field destroys the quan-
tum entanglement: Two antiferromagnetically coupled 
spins 1/2 without the field are in the most entangled Bell 
(singlet) state [2], while a large field transforms their wave 
function to the one, which is the product of wave functions 
of each spin, i.e., the entanglement between those spins be-
comes minimal for high values of the field. Surprisingly, 
our exact results suggest that the field can cause the onset 
of a nonzero macroscopic thermal entanglement, absent 
without such a field. 

The standard measure for the entanglement between 
subsystems A and B of a quantum system is the von Neu-
mann entropy. For a subsystem A/B it is defined as 

/ / /2= tr logA B A B A BS − ρ ρ , where /A Bρ  is the reduced 
density matrix for the subsystem A (B). If the subsystem 
consists of only one qubit (spin 1/2), a simple measure for 
the entanglement, related to the von Neumann entropy, 
is the tangle [15], (1)= 4 detj jτ ρ , where (1) 0= (1/ 2) jjρ σ +

z z
j jS+ 〈 〉σ  is the 2 2×  matrix, 0

jσ  is the identity matrix, 
2z zSσ ≡ , and brackets denote averaging in the ground 

state or at nonzero temperature, so that 2= (1/ 4) .z
j jSτ −〈 〉  

The von Neumann entropy is related to the tangle as 
(1) = [(1/ 2)(1 1 )],S h + −τ  where 2( ) = (1 )logh x x x x− − − ×  

2(1 ).log x× −  However, the von Neumann entropy (and, 
hence, tangle) is used only if the state of the total system 
A+B is pure. To analyze the pairwise entanglement, which 
provides more information about the quantum coherence, 
we need to consider the subsystem consisting of two qubits 
(two spins 1/2). The pairwise entanglement of two spins 
1/2 situated at the sites n  and m  of the quantum system 
can be studied using the reduced density matrix (2)

nmρ . 
The latter can be expressed as a 4 4×  matrix (2) =nmρ

,= n m n mS Sμ ν μ ν
μ ν 〈 〉σ ⊗σΣ , where , = 0, , ,x y zμ ν , and ⊗  

denotes the direct product. The concurrence of the entan-
glement of two qubits (spins 1/2) is determined [16] as 

1 2 3 4= max(0, )nmC μ −μ −μ −μ . Here 1,2,3,4μ  (with 1μ  
being the largest value) are the square roots of the eigen-
values of the matrix (2) (2)

nm nmρ ρ� , where (2)
nmρ�  is the spin-

flipped matrix of (2)
nmρ , *(2) (2)= ( )y y y y

nm n m n mρ σ ⊗σ ρ σ ⊗σ� . 
Then the entanglement of formation is = ( )fE h x , where 

2 1/2= (1/2) [1 ( /2)]nmx C+ − . fE  is a monotonous function 
of the concurrence with ( = 0) = 0f nmE C  and ( =1) =f nmE C
= 1. This is why, for simplicity we study the concurrence 
in what follows. For the uniaxial spin system in the ab-
sence of the antisymmetric interactions one can take 
the advantage of the knowledge of the symmetries. The 

concurrence can be calculated using the function 
2 2 1/2= 2 max (0,| | [([1/4] ) (1/4)( ) ] ),nmC X Z M Mn m− + − +  

where for the spin model we have = ,z
n nM S〈 〉  = ,z z

n mZ S S〈 〉  
and = 2 = 2 = =x x y y

n m n m n m n mX S S S S S S S S+ − − +〈 〉 〈 〉 〈 〉 〈 〉  ( =nS±  
= ;x y

n nS iS± = = 0x y y x
n m n mS S S S〈 〉 〈 〉 ). 

To set the stage let us consider the Hamiltonian of the 
inhomogeneous semi-infinite spin 1/2 chain [17] 

 
1

1 1
=1 =1

= ( )
N N

yx x y z
n n n nn

n n
J S S S S H S

−

+ +− + − γ −∑ ∑=H   

 0 1 00 1( ) ,y yx x zJ S S S S HS′ ′− + − γ=  (1) 

where J  ( J ′ ) describes the strength of spin–spin interac-
tions between neighboring spins in the host chain (between 
the chain and impurity situated at the site 0), γ  ( )′γ  de-
notes the gyromagnetic ratio for the host (impurity), 
H is the external magnetic field, and N  is the number of 
sites in the chain (we consider N  odd; in the thermodyna-
mic limit we have N →∞ ). It is known [17] that ther-
modynamic properties of the host chain do not depend 
on the sign of .J  After the Jordan–Wigner transforma-
tion [18] †2 =1 2 ,z

n n nS a a−  †
<= (1 2 ) ,Пn m n m m nS a a a+ −  =nS−

† †
<= (1 2 ),Пn m n m ma a a−  where na  and †

na  are Fermi 
operators of creation and destruction, the above Hamilto-
nian is exactly transformed to the quadratic form 

 
1

†† †
1 1

=1 =1
= ( )

2

N N

n n n n nn
n n

J a a a a H a a
−

+ +− + + γ −∑ ∑=H   

 † † †
1 0 00 1 0( ) ( ) .

2 2
J Ha a a a Ha a N
′

′ ′− + + γ − γ + γ
==  (2) 

Notice that the fermionic form of the Hamiltonian can 
(approximately) describe such inhomogeneous systems as 
a linear chain of Josephson junctions, cavity QED systems, 
linear ion traps, coupled quantum dots, etc., which were 
proposed to model qubits in a quantum computer [19]. 
This quadratic form can be diagonalized by the unitary 
transformation =n na u aλλ λΣ , = 0,1, , .n N…  For the con-
sidered semi-infinite chain with the impurity in the ther-
modynamic limit we can exactly write the eigenfunctions 

nuλ  in the co-ordinate representation and eigenvalues λε . 
There are two contributions. The first one is related to the 
continuous spectrum (in the thermodynamic limit) of the 
chain = cosk H J kε γ −= , with the wave functions =k

nu
1/2 2= (2/ ) [2( cos ) sin sin (( 1) )]kA x k nk I n kπ + − −  for 0,n ≠  

1/2
0 = (2/ ) sin ,k

ku A I kπ  where we denote 2= 4( cos )kA x k+ +
4 24 cos ( cos )I I k x k+ − + , = /I J J′  measures the re-

lative strength of the impurity-host coupling, =x
= ( 1) /H Jγ α −= , and = /′α γ γ , which measures the rela-
tive difference between the local parameter of the impurity 
and the host (their gyromagnetic ratios). Extended states, 
associated with the continuous spectrum, are present, natu-
rally, in the homogeneous system, and the impurity renor-
malizes the parameters of extended states. This renormali-
zation can be taken into account using the boundary 
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conformal field theory. On the other hand, for 2 2 2I x> ∓  
local levels, caused by the impurity, are split off. These 
impurity levels have the energies 1,2 = Hε γ −=

2
1,2 1,2( 1)/2 ,J r r− +  with the wave functions in the co-ordinate 

representation 2 2 2 1/2
,1,2 1,2 1,2 1,2= [(1 ) / (1 [ 1] )] ,n

nu Ir r I r− + −  
and 2 2 2 1/2

0,1,2 1,2 1,2= [(1 ) / (1 [ 1] )]u r I r− + − , where 1,2 =r
2 2 21/2= [ ( 1) ] / ( 1)x x I I± + − − . Wave functions of the lo-

cal states can be characterized by their localization lengths 
2

1,2 1,2= ( 2 2 ) / ln ( )I x rξ −Θ − ∓ , where ( )aΘ  is the Hea-
viside step function. Figure 1 shows that the localization 
length depends on the applied field and can be very large. 

Let us denote ,= n mX g , and = (1/ 2)n nM h− . The 
tangle is equal to = 4 (1 )n n nh hτ − . Tangles for the impuri-
ty site and sites situated not very far from the impurity be-
have in a similar way, while for tangles for sites situated 
very far from the impurity the low-temperature jump at the 
critical value of the field is replaced by the kink, usual for 
the homogeneous chain, i.e., the main difference for tan-
gles is in the ground (pure) state. It is illustrated in Fig. 2, 
where the field behavior of the ground-state tangles is pre-
sented. Tangles in the vicinity of the impurity show jumps 
in the field behavior at the critical value of the field 

2 2
0 = /2 ( ).H I J Iγ α −α=  Jumps are caused by the local 

level 1ε , which exists if the following inequality holds 
2 > 2 /(1 )I ′γ + α . Tangles have jumps when arguments of 

the Heaviside functions vanish. On the other hand, at 
2 = 2 2I x+  we have 2

1 = 1r  (no local level) and there is 
no jump. The value of the jump exponentially decays with 

the distance from the inhomogeneity, and tangles for sites 
situated far from the impurity behave like the tangle, aver-
age over the chain (in that case we sum nh  with respect to 
n  and divide the sum by N, 1

av 0= kh n dkπ−π ∫ , where 
1= [1 exp ( / )]k kn T −+ ε  and we use units, for which Boltz-

mann's constant is equal to 1): Its field behavior reveals a 
kink at = / ,sH J γ=  characteristic for the second order 
quantum phase transition to the spin-polarized state. Ob-
viously, in the spin-polarized state > sH H , or 0> ,H H  
tangles are equal to zero. For comparison, in Fig. 3 we 
present the field dependencies of the ground-state tangles 

4τ  and 5τ , i.e. for qubits, situated not very far from the 
inhomogeneity. We can see that these tangles manifest 
jumps at 0= ,H H  however, the values of tangles (except 
of at = 0H ) are much smaller than the ones near the im-
purity. 

For any chain with interactions between only x and y 
components of neighboring spins 1/2 (which Hamiltonian 
can be transformed to the quadratic fermion form) we can 
use the Wick theorem, which implies 2 = (1/ 2) nZ h− −

2
,2 2 | |m n m n mh h h g− + −  for uniaxial systems without 

antisymmetric interactions. The concurrence in this case is 
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Fig. 1. (Color online) Localization length 1ξ  as the function of
the relative strength of the impurity-host coupling = /I J J′  and
the relative strength of the magnetic field, which affects the spin
of the impurity = ( ) / .x H J′γ − γ=  One can see that for some
values of the impurity-host stength and the field the correlation
length can be of order of 500 sites of the chain. 
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Fig. 2. (Color online) The ground-state tangles avτ  (dotted line), 

0τ  (solid line), and 1τ  (dashed line) as the function of the ap-
plied magnetic field H  (we use units in which Planck's and 
Boltzmann's constants, gyromagnetic ratio γ  and the exchange 
integral J  in the chain are equal to 1 for = 2.2I  and = 1.2α ). 

0τ  and 1τ  manifest jumps at 2 2 1/2
0 = /2 ( ( ))H I J Iγ α − α=

which take place in the region of the parameters for the impurity 
[20] 2 > 2 / (1 ),I ′γ + α  as the contribution of the local level. The 
average tangle shows no low-temperature jump at 0H  comparing 
to the ones for the impurity site and near the impurity; instead 

avτ  manifests the kink (due to the second order quantum phase 
transition) at the critical value = / ,sH J γ=  characteristic for the 
homogeneous system. 
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 2
, ,= 2 max 0,| | ( | | )nm n m n m n mC g h h g⎛ ⎡− − ×⎜ ⎢⎣⎝

  

 
1/22

,( | | 1 ) .n m n m n mh h g h h ⎞⎤× − + − − ⎟⎦ ⎠
 (3) 

Expressions are simplified for the case of zero magnetic 
field ( = = 1/ 2n mh h ), for which we obtain = 1nτ  and 

2
, ,= 2 max (0,| | | | 1 / 4)nm n m n mC g g+ − , i.e., the concur-

rence becomes nonzero for ,| | ( 2 1) / 2n mg ≤ −  at = 0H . 
From now on let us concentrate on the case of the pair-

wise entanglement between neighboring qubits (spins 1/2). 
Using the values for the wave functions and the energy 
spectra we obtain the impurity site 

 2 2
0

0

2= sink

k

n
h dk I k

A

π
+

π ∫   

 

2 2
1,21,2

2 2
1,2 1,2

(1 ) ( 2 2 )
,

1 ( 1)

r n I x

I r

− Θ −
+

+ −
∑

∓

 

(4) 

 2
0,1

0

2= 2 sin ( cos )k

k

n
g dk I k x k

A

π
+ +

π ∫   

 
2 2

1,21,2
1,2 2 2

1,2 1,2

(1 ) ( 2 2 )
,

1 ( 1)

r n I x
Ir

I r

− Θ −
+

+ −
∑

∓
 (5) 

where 1
1,2 1,2= [1 exp ( / )]n T −+ ε . For the characteristics 

of sites with 0n ≠  we get 

 2 2

0

2= 4( cos ) sink
n

k

n
h dk x k kn

A

π
⎡ + +⎣π ∫   

 4 2 2sin ( ( 1)) 4 ( cos )sin sin ( ( 1))I k n I x k kn k n ⎤+ − − + − +⎦   

 
2 2

1,2 1,22 2
1,2 2 2

1,2 1,2

(1 ) ( 2 2 )
,

1 ( 1)
n r n I x

I r
I r

− Θ −
+

+ −
∑

∓
 (6) 

 2
, 1

0

2= 4( cos ) sink
n n

k

n
g dk x k kn

A

π

+ ⎡ + ×⎣π ∫   

 4sin ( ( 1)) sin ( ( 1)) sink n I k n kn× + + − −   

 2 22 ( cos )[sin sin ( ( 1))sin ( ( 1))]I x k kn k n k n ⎤− + + + − +⎦   

 
2 2

1,2 1,22 2 1
1,2 2 2

1,2 1,2

(1 ) ( 2 2 )
.

1 ( 1)
n r n I x

I r
I r

+ − Θ −
+

+ −
∑

∓
 (7) 

We can average the concurrences for the total chain. In 
this situation the contributions from local levels can be 
neglected, and the average values are caused by only ex-
tended states: 1

av 0= cos kg k n dk
π−−π ∫ . Similar behavior 

is revealed by qubits of the chain, situated very far from 
the impurity site, at distances larger than the localization 
lengths. Obviously, the average concurrence (and tangle) 
does not depend on the impurity parameters: Those contri-
butions are of order of 1N − . The dependency of the aver-
age concurrence for the considered chain is shown in 
Fig. 4. 

We can see that the ground-state (and low-temperature) 
dependence of the average tangle on the field differs from 
the one at the impurity site: Instead of the jump, caused by 
the local level, there is a kink, usual for the second order 
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Fig. 3. (Color online) The ground-state tangles 4τ  (dashed line),
and 5τ  (solid line) as the function of the applied magnetic field
H  (parameters are the same as in Fig. 2). We can see the jump at

0,H  however the value of tangles are much smaller than in the
vicinity of the inhomogeneity. 

Fig. 4. (Color online) The average concurrence avC  as the func-
tion of temperature T  and the applied magnetic field H  for =1.J
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quantum phase transition to the spin-polarized phase, cha-
racteristic for spin systems of such a symmetry. 

Figures 5 and 6 present the temperature and magnetic 
field dependencies of the concurrences 01C  (near the im-
purity) and 45C  (several lattice sites from the impurity). 
One can see the drastic difference between the magnetic 
field behavior of concurrences at the impurity site 12C  
behaves similarly, as well as the average concurrence 
(Fig. 4), and for sites, situated not very far from the im-

purity. The concurrence at the impurity site is maximal at 
zero field, and decays with the growth of the field. Pay 
attention that the concurrence at the impurity site is larger 
than the average concurrence, while the one for the sites, 
situated in several lattice sites from the impurity, is much 
smaller. The critical temperature, at which the concurrence 
becomes zero does not depend on H. Notice, however, that 
such critical temperatures are different for the concur-
rences at the impurity, nor very far from the impurity, and 
from the average over the chain (Fig. 4). Similar behavior 
(except of the scale and the low-temperature region) is 
manifested by average values of concurrences. In contrast, 
concurrences for spins, situated not very far from the im-
purity site, reveal a very different magnetic field behavior 
(cf. Fig. 6): They are zero at = 0,H  and become nonzero 
for large enough values of the field (of order of the coupl-
ing constant). 

Hence, the pairwise thermal entanglement for neighbor-
ing qubits with inhomogeneity can be caused by the homo-
geneous external field. Such a behavior is very unusual. As 
a rule, the homogeneous external magnetic field, which 
does not violate the uniaxial symmetry in the spin-1/2 
model of qubits is used for the initialization of qubit states 
to the state with the lowest entanglement. However, our 
results show that the same field can produce the macro-
scopic thermal entanglement for qubits, situated not very 
far from the inhomogeneity. 

We have also performed the systematic study of the 
temperature dependencies of concurrences with a distance 
from the inhomogeneity at the fixed value of the field 

= 0H . Figures 7 and 8 present such a dependencies as a 
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Fig. 5. (Color online) The concurrence 01C  at the impurity site
as the function of temperature T  and the applied magnetic field
H. Parameters are the same as in Fig. 2. The concurrence be-
comes smaller with the growth of the field. 
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Fig. 7. (Color online) The concurrence 01C  at the impurity qubit 
as the function of temperature T  and the parameter of the inho-
mogeneity I  at zero field = 0H . 
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function of the temperature and the inhomogeneity para-
meter I  for the pairwise concurrences at the impurity qu-
bit, 01C  and for the next to the impurity qubit 12C . 

We can see a very different behavior of the pairwise 
concurrences as a function of the inhomogeneity parameter 
for 01C  and 12C : while the pairwise concurrence for the 
impurity qubit is zero at small values of the impurity-host 
coupling, the pairwise concurrence for the qubit, situated 
next to the impurity, is nonzero for small values of the 
coupling, and becomes zero for the large values. Such a 

behavior is related to the different dependencies of consi-
dered concurrences on the coupling I, and, as the conse-
quence, on the localized levels, see Eqs. (3) and (4)–(7). At 
the same value of the field, = 0,H  the concurrences 23C , 

34C  and 45C  are zero in the same interval of parameters 
T  and I. For comparison, Fig. 9 shows the temperature 
behavior of the pairwise concurrence at the impurity qubit 
at = 0.5 /H J γ= . 

Our results can be applied for the infinite chain with an 
impurity, by the formal substitution 2 22I I→ , | |n n→ , 
hence the studied effects are caused by the impurity itself, 
and not by the free boundary of the considered above semi-
infinite chain. 

In summary, we have studied the influence of the in-
homogeneity (in particular, of the local levels, caused by 
that inhomogeneity) on the thermal macroscopic pairwise 
entanglement for the system of coupled spins 1/2 (qubits) 
with the interactions, which preserve the uniaxial symme-
try. The simple model has permitted to obtain exact analyt-
ic formulas for the characteristics of the macroscopic 
thermal entanglement. Our analytic 0T ≠  results support 
recent predictions based on numerical calculations mostly 
for finite systems, that the spatial inhomogeneity essential-
ly affects the entanglement in real systems [10–14,21]. The 
most important effect of the inhomogeneity on the macro-
scopic thermal entanglement is in the unexpected role of 
the external magnetic field, which can produce nonzero en-
tanglement for qubits, situated not very far from the inho-
mogeneity. 

I thank MPI PKS Dresden for kind hospitality. The sup-
port from the Institute of Chemistry of V.N. Karazin Khar-
kov National University is acknowledged. 
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