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The dynamical structure factor of a two-dimensional electrons trapped to a helium film deposited on a

solid substrate is determined through molecular dynamics simulations for different film thicknesses and two

substrates. The phases of the system varying from the classical Wigner crystal to strong and intermedi-

ate-correlated electron liquid as well the influence of the film thickness and substrate are analyzed in the nu-

merical experiments.

PACS: 73.90+f Other topics in electronic structure and electrical properties of surfaces, interfaces, thin
films, and low-dimensional structures;
61.20.Ja Computer simulation of liquid structure.
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Since the pioneer work of Cole [1] and Shikin [2], sur-

face electrons deposited on cryogenic materials, mainly

liquid helium, have received considerable attention. For

reviews about the subject see Refs. 3 and 4. Despite se-

veral reported studies of the dynamical properties of this

interesting many-body electron two-dimensional (2D)

system [5–14] the dynamical structure factor S(q,�),

which is most relevant quantity to describe the collective

behavior of the system, has been evaluated using simplis-

tic approximations. Furthermore, S(q,�) is essential to

study many-body effects in the transport properties such

as the electron mobility [15]. Previous dynamical struc-

ture factors have been reported for the classical two-di-

mensional electron liquids [16,17] in the intermediate and

strong coupling regime, 2 < � < 70, where the plasma pa-

rameter for the strictly 2D liquid � � ( )e /Ta2 , with the

mean interparticle distance a determined by �a n2 1� , n is

the electron density and the temperature T is in energy

units. However, the results were obtained from molecular

dynamics simulations for a quite small system consisting

of 81 particles. In this paper we consider a larger system

with 784 particles and higher computational precision. Fur-

thermore, the dynamical structure factor is evaluated to the

more general system consisting of surface electrons floating

over a helium film with thickness d over a solid substrate

with dielectric constant �. By varying d, one can transform

the interaction potential from a bare Coulomb potential to a

dipolar one, making a system unique in this aspect. Several

many-body properties of this electronic system have been

analyzed in previous reports [5,6,15,18,19].

The electrostatic potential energy is written as [5]
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where N is the number of electrons, � �rij i j� �r r (position

vector in the xy plane), and � � �� � �( ) ( )1 1/ . The helium

dielectric constant is assumed to be one. In order to have

charge neutrality, a uniform positive background is con-

sidered. For this system the plasma parameter can be de-

fined as [8]
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The dynamical structure factor S(q,�) is defined by

S F t dti t( , ) =
1

2
eq q�

�
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with the intermediate scattering function given by

F t
N

t( , ) =
1

( , ) (– )q q q� � ,0 , (4)

where
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is the density fluctuation function [20]. The temporal av-

erage < > is taken over a finite time � defined as the total

time of the MD simulation run. By Fourier transforming

the Eq. (5) the dynamical structure factor can be rewritten

as
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q q�

� �
� �( , )

2
. (6)

Molecular dynamics simulations were performed for

a system consisting of 784 electrons and density n =

= 1.477�108 cm–2. The long range electron–electron inter-

action was handled using the Ewald method and the clas-

sical equations of motion integrated using the velocity

Verlet algorithm with a time step of 0.5 ps, which con-

serve the total energy of the system better than one part in

104 over the entire simulation. Periodic boundary condi-

tions are imposed. For all studied cases, the system is al-

lowed to be thermalized for at least 10.000 time steps,

with averages taken over additional 10.000 time steps.

The simulation starts with an electron lattice and succes-

sive heating and thermalization procedures lead to dis-

tinct phases at different temperatures.

The dynamical structure factor was calculated for wave

vectors in the range 0.12 < qa < 4.7, and frequencies in the

range 0 21 2� �� � �/ np [( ) ]/ , where � �p q ne q/m( ) ( ) /� 2 2 1 2

is the plasma frequency for the strictly 2D electron sheet

[16,17]. The smallest wave number considered is due to

the finite size of the system.

Figure 1 displays the map of the dynamical structure

factor S(q,�) for surface electrons on bulk helium (very

large d) in the very strong coupling � = 360.

In this case, the system is in the solid phase, the classi-

cal Wigner crystal, and the collective mode at low fre-

quencies can be clearly observed. In Fig. 2, we depict

S(q,�) for selected wave numbers. We note that by in-

creasing q, the plasmon mode shifts towards � �p n[( ) ]/1 2 .

With further increasing of q this mode still shifts to lower

values of frequency and a new peak closer to � �p n[( ) ]/1 2

appears. This peak corresponds to the transversal shear

mode which has been reported previously [5].

Figures 3 and 4 are plots of S(q,�) for a lower value of

(� = 90). A single collective mode at low q is clearly dis-

tinguished. Again by increasing q, the mode peak moves

to frequencies closer to � �p n[( ) ]/1 2 . One can see that at

still larger values of q the collective mode merges into a
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Fig. 1. S(q,�) for a 2D-electron system over bulk helium for

� = 360.
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Fig. 2. S(q,�) for a 2D-electron system over bulk helium for

� = 360 and three wave vectors.

Fig. 3. Same as Fig. 1 for � = 90.



continuum of excitations. The Rayleigh peaks are also

presented for low q, which evidences the diffusive nature

of the system characteristic of one particle excitations.

Now, we show in Fig. 5 the results of the dynamical

structure factor for surface electrons on a thin film with

d = 100 � over a vitreous substrate, � = 0.75, for two val-

ues of �. In this case, the collective mode appears at

smaller values of frequency for the same wave vector

when compared with the bulk spectrum.

Essential differences are found when one considers a

metal substrate. It has been shown [8] that the melting

temperature, for a given film thickness, decreases with in-

creasing the value of the dielectric constant, and the criti-

cal temperature reaches a minimum for a metal substrate

( )� � � . Figures 6 and 7 display the simulation results for

S(q,�) in the case of a film with thicknesses d = 100 and

250 � above a metal substrate (� = 1) for two different

values of the plasma parameter. For the smallest wave

vector, qa = 0.296, the peak in S(q,�) associated with the

plasmon mode appears at frequency much smaller than

� �p n[( ) ]/1 2 . We observe also that the plasmon peak de-

creases monotonically as the wave vector increases.

We have found that for a given film substrate, the

plasmon mode shifts to higher values of frequency when

the film thickness is increased. The dispersion relation

has a linear dependence with q, � � q, as it is shown in the

Fig. 8.

In summary, molecular dynamics simulations were

performed in order to determine the dynamical structure

factor for the two-dimensional electrons above a helium

film deposited over a solid substrate. Results for different

substrate and film thickness were obtained. These results

are quite useful once it allow us to incorporate in a more

accurate way many-body effects on the transport proper-

ties of the electrons following the method of the

force-balance equation in which an effective mobility is
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Fig. 4. Same as Fig. 2 for � = 90.
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Fig. 5. S(q,�) for a film thickness of d = 100 �, a substrate with � = 0.75 and � = 180 (left) and 90 (right).
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Fig. 6. Same as Fig. 5 for a metal substrate (� = 1) and Ã = 67 (left) and 33 (right).
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Fig. 7. Same as Fig. 6 for d = 250 � and Ã = 414 (left) and Ã = 207 (right).



obtained in terms of the dynamical structure factor of the

nondegenerate electron liquid [15].
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Fig. 8. Dispersion relation for electrons above a helium film

adsorbed on vitreous substrate for � = 90.


