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Bubble nucleation in a superfluid 3He–4He mixture
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We report the nucleation dynamics of bubbles induced by an acoustic wave pulse in 3He– 4He liquid mix-

tures. The experiment was performed for the mixture with 3He fixed concentrations of about 4% and 25%

and the pure superfluid 4He. When a pulse of 1 ms duration was applied to the mixture at the saturated vapor

pressure, a spherical bubble was nucleated on the active area of a piezoelectric transducer. For the case of

pure 4He, not a spherically shaped bubble, but an irregularly shaped, larger one was observed. We took pic-

tures with a high speed CCD camera of the bubble expansion and contraction motions after the nucleation.

We also investigated the temperature dependence of the bubble nucleation by changing the acoustic wave

power. The results show that the nucleation and growth dynamics of a cavitation bubble depend greatly on

the 3He concentration and temperature.

PACS: 67.60.G- Solutions of
3
He in liquid

4
He;

67.60.Fp Bose–Fermi mixtures;
62.60.+v Acoustical properties of liquids.
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1. Introduction

The dynamics of a spherical bubble in a normal liquid

has extensively been studied both theoretically [1,2] and

experimentally [3,4]. Such a bubble can be produced by

focusing a pulsed laser beam in normal liquids such as

water and liquid nitrogen. For a bubble in liquid 4He, a

focused acoustic wave produced by a hemispherical pi-

ezoelectric transducer is used to generate a negative pres-

sure in the small central part of the liquid bulk. The cavi-

tation of bubbles is detected by light scattering [5,6].

Recently a visual observation of the boiling bubble nu-

cleation in liquid 3He was also reported [7]. In a liquid
3He– 4He mixture, however, bubble nucleation has not

been studied yet.

This paper reports the visual observation of the dy-

namics of a bubble cavitation generated by an acoustic

wave pulse on the surface of a single-mode piezoelectric

transducer immersed in a superfluid 3He– 4He mixture.

There are several unique properties of superfluid mix-

tures propelling the study of bubble dynamics. Since the

viscosity of a superfluid is considerably lower than that of

an ordinary liquid, it is possible to observe a bubble mo-

tion at a large Reynolds number which is an important

parameter in fluid dynamics. The viscosity in a liquid
3He– 4He mixture can be varied over a wide range by

changing the 3He concentration and the temperature.

Compared with a single-component liquid, the binary liq-

uid mixture has one more attractive aspect. This is associ-

ated with the possible nucleation of the 3He-concentrated

phase from the supersaturated 3He-dilute phase as a

result of acoustic pulse. The growth kinetics of the
3He-concentrated phase droplet in the 3He-dilute phase

has been studied in Refs. 8, 9. Thus the tensile strength

of a liquid 3He– 4He mixture can be manifested, depend-

ing on the conditions, in at least three ways as: boiling

bubbles, cavitation bubbles, and the formation of 3He-

concentrated droplets.
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2. Experimental details

Figure 1 shows a schematic of the experimental setup.

A 3He– 4He dilution refrigerator is used for the experi-

ment [10,11]. The inside of the cell can be observed

through several infrared filters and infrared absorption

glass from the outside. The cell has two LiNbO 3 trans-

ducers spaced about 10 mm apart and facing each other.

The volume between the transducers is filled with the

mixtures, 3He concentration being either about 4%

or 25%. The shadowgraph images were taken by a

high-speed camera at 1000 fps [12]. The fundamental

frequency of the transducer is 9.3 MHz, its diameter

is 10 mm and that of the effective area is 4 mm. A com-

mercial RuO 2 resistance thermometer is placed in the cell

and the pressure in it is monitored by a capacitive strain

gauge.

3. Results and discussion

Figure 2 shows images of the bubble motion observed

at 300 mK in the mixture with the 3He concentration of

about 4%. The duration of a acoustic wave pulse was 1 ms

and the voltage applied to the transducer was about 10 V.

Once the bubble was generated, it expanded explosively

on the transducer surface within the time of 1–24 ms after

the pulse was turned off. Then the bubble detached from

the surface while contracting during 24–30 ms, collapsed

with the upward jet flow at 30–36 ms, re-expanded, and

ascended at 36–42 ms.

In the previous paper [13,14], we reported a liquid jet

flow which pierced the center of the bubble in the 3He-di-

lute phase at about 200 mK when the bubble detached

from the transducer surface. From the flow patterns we

proposed that the vortex ring was generated due to the jet

flow. In the 4% 3He mixture we also observed the liquid

jet-like flow at 30–35 ms but we could not as clearly iden-

tify that the vortex ring had been formed at 36 ms in Fig. 2

as in the phase separated 3He-dilute phase.

Figure 3 shows the images of the bubble motion ob-

served at 680 mK in the 4% 3He mixture. The acoustic

pulse duration was 1 ms and the voltage applied to the

transducer was about 6.14 V. The bubble showed similar

behavior as in Fig. 2. Figure 4 shows the images of the

bubble induced at 5.65 V voltage at 750 mK in the mix-

ture with the 3He concentration of 25%. The bubble ex-

392 Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5

H. Abe, Y. Saitoh, T. Ueda, R. Nomura, Y. Okuda, and S.N. Burmistrov

1

2
3

4

Fig. 1. A schematic of the experimental setup. Halogen light

(1), cryostat (2), sample cell (3), CCD camera ( 4).
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Fig. 2. Images of a sound-induced bubble on the surface of the

piezoelectric transducer in a liquid 3He–4He mixture with the
3He concentration of 4% at 300 mK. The applied voltage was

10.0 V and acoustic pulse duration was 1 ms. The frame width

was 10 mm.
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Fig. 3. Images of a sound-induced bubble on the surface of the

piezoelectric transducer in a liquid 3He–4He mixture with the
3He concentration of about 4% at 680 mK. The applied voltage

was 6.14 V and acoustic wave pulse duration was 1 ms. The

frame width was 10 mm.



perienced a small expansion and ascended without con-

traction. Figures 3 and 4 show that the collapse time for

the bubble in Fig. 4 was longer than that in Fig. 3; this dif-

ference seems to depend on the 3He concentration.

The temperature dependence of the bubble nucleation

threshold in the 4% and 25% mixtures is plotted in Fig. 5.

The temperature range varies from 150 mK to 850 mK in

the 4% mixture, and from 500 mK to 800 mK in the 25%

mixture. For the 25% mixture, data points are terminated

at around 500 mK, since the mixture experiences phase

separation below that temperature.

For both mixtures, the threshold voltage increased gra-

dually as the temperature decreased. For the 4% mixture,

the voltage at the minimum temperature was 2.5 times

larger than that at the highest temperature. The same ten-

dency was observed for the 25% mixture. This appears to

be thermally activated type of nucleation, but at the mo-

ment, it is difficult to estimate the activation energy, since

the experimental data are insufficient. As the temperature

goes down, the viscosity of both mixtures increases with

the Fermi degeneracy. It would be interesting to investi-

gate how the viscosity affects the nucleation in a mixture

in the lowest temperature region.

Another interesting feature is that the threshold volt-

age goes down as the 3He concentration increases. 3He

does make it easier for the bubble to be nucleated. This is

consistent with the concentration dependence of the sur-

face tension of the mixture.

We also examined the bubble nucleation in pure super-

fluid 4He (see Fig. 7). In order to induce an inception of

bubbles in the superfluid 4He, larger acoustic power and

longer duration of a pulse were required. The duration of

the pulse applied to the transducer was 5 times as longer.

To compare the threshold of nucleation in the mixture, we

plotted a threshold voltage multiplied by the pulse width

as a function of temperature in Fig. 6. It can easily be seen

how difficult it was to nucleate the bubble in pure 4He. In
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Fig. 4. Images of a sound-induced bubble on the surface of the

piezoelectric transducer in a liquid 3He–4He mixture with the
3He concentration of 25% at 750 mK. The applied voltage was

5.65 V and acoustic wave pulse duration was 1 ms. The frame

width was 10 mm.
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Fig. 5. Threshold of the bubble nucleation with an acoustic

pulse. The pulse duration was 1 ms in 3He–4He mixtures.
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Fig. 6. The threshold times pulse width for the bubble nucle-

ation. The pulse duration was 1 ms for 3He–4He mixtures and

5 ms for the pure superfluid 4He.
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Fig. 7. Bubble nucleation in superfluid 4He. The applied vol-

tage was 8.5 V at T = 140 mK. Acoustic pulse duration was

5 ms. The frame width was 10 mm.



contrast to mixtures, the threshold voltage in the super-

fluid 4He is almost constant within the whole tempera-

ture range.

These distinctions can be understood as follows. First,

the tensile strength of liquid 4He against bubble nucle-

ation is noticeably larger than that of liquid 3He. The nu-

merical estimates [15] for zero temperature yield approxi-

mately –9 bar for 4He and –3 bar for 3He, respectively.

Thus one can expect that the threshold for the bubble nu-

cleation decreases gradually with the growth of the 3He

concentration.

The growth of the nucleation threshold voltage in mix-

tures with decreasing the temperature is likely to be asso-

ciated with the energy dissipation effect due to the pre-

sence of viscosity which grows as the temperature lowers.

In superfluid 4He the effect of energy dissipation and vis-

cosity plays, apparently, negligible role and thus the tem-

perature influences the nucleation conditions insignifi-

cantly.

Note that the similar temperature behavior of the nu-

cleation threshold voltage is observed in the experiments

where the negative pressure is produced by focusing an

acoustic wave in the liquid bulk. In spite of the different

sound frequency of about 1 MHz the cavitation threshold

voltage was approximately temperature-independent in

superfluid 4He. In its turn, in normal liquid 3He the

threshold voltage is smaller and temperature-dependent,

increasing at lower temperatures. For details, see Re-

view 16. Therein one can also find the discussion of such

temperature dependences from the point of possibility for

the thermal-quantum crossover in the nucleation mecha-

nism.

In addition, the bubble dynamics in superfluid 4He

is quite different from that in liquid 3He– 4He mixtures.

Figure 7 shows images of the observation in the pure

superfluid 4He at an amplitude of 8.5 V and 5 ms duration

at 140 mK. It turned out that we did not succeed in pro-

ducing bubbles of the spherical shape in pure 4He. The

string-like shape was initially seen at the corner of the ac-

tive area of the transducer at 5 ms. Next, this tip expanded

at 7–10 ms. Obviously, as compared with the bubbles ob-

served in the mixture, it behaved quite differently. When

higher voltage was applied to the transducer, the size of

the bubble became larger and the shape proved to be

highly irregular with an ill-defined surface [13].

4. Conclusions

We observed a single bubble nucleation by acoustic

waves in a liquid 3He– 4He mixture at the 3He concentra-

tion of about 4% and 25%. The shape of the bubble was

quite different in the mixtures and pure superfluid 4He.

The dynamics of the nucleated bubble became tempera-

ture and 3He concentration dependent. In particular, the

concentration affected the difference in collapse time of

the bubble. We also investigated the temperature depend-

ence of the bubble nucleation threshold. In the superfluid

mixture the threshold became smaller as the temperature

increased. While, in the superfluid 4He the nucleation

threshold was almost temperature-independent. The in-

troduction of 3He impurity facilitates the nucleation of

bubbles. The results demonstrate distinctly that 3He im-

purity in superfluid 4He plays a significant role both in

the nucleation of a bubble and in its dynamics.
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