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The study of the relationship between spectral and oscillation properties
of non-selfadjoint differential operators with block-triangular matrix coefficients
that increase at infinity [1] includes the study of the structure of the spectra of
these operators. For the case of an operator with decreasing at infinity triangular
matrix potential and a bounded first moment, the structure of the spectrum in
the context of the inverse scattering problem was established in [2–4].

In [5, 6], V.A. Marchenko introduced a notion of the generalized spectral
function R for a Sturm–Liouville operator with arbitrary complex valued poten-
tial on the semiaxis. This result was generalized to the case of non-selfadjoint
systems [7, 8]. The distribution (the matrix one in the case of systems) acts on
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the topological space of test functions. It determines the formulas of expansion
in eigenfunctions and also allows one to solve the inverse problem of spectral
analysis for the non-selfadjoint case. In the case of selfadjoint problems, the dis-
tribution is generated by a non-negative measure (either a scalar or a matricial
one in the case of systems). We are interested in analyzing a specific form of a
spectrum and spectral matricial distribution R for some classes of non-selfadjoint
systems. In [3], while solving the inverse scattering problem on the semiaxis for
the case of triangular matrix potentials, the Parseval equality was established,
and thus a form of spectral matrix distribution of V.A. Marchenko type was
found (for the selfadjoint case, see [9]). We obtain conditions which guarantee
the discreteness of spectrum for a broad class of Sturm–Liouville operators on
the semiaxis with block-triangular matrix potentials, whose diagonal blocks are
Hermitian matrices. For these potentials, a form of V.A. Marchenko type spectral
matricial distribution is found. Note that this distribution, under the presence
of multiple poles for the resolvent, does not reduce to a matrix measure even in
the non-selfadjoint case. These results are applied to extending the Sturm type
oscillation theory from selfadjoint systems [10] to systems with triangular matrix
potentials [1].

Consider the equation with a block-triangular matrix potential

l [y] = −y′′ + V (x)y = λy, 0 ≤ x < ∞, (1)

where

V (x) = v(x)Im + U(x), U(x) =




U11(x) U12(x) . . . U1r(x)
0 U22(x) . . . U2r(x)

. . . . . . . . . . . .
0 0 . . . Urr(x)


 , (2)

v(x) is a real scalar function such that 0 < v(x) →∞ monotonically, as x →∞,
with monotonic absolutely continuous derivative. Also, U(x) is a relatively small
perturbation, e.g., |U(x)|v−1(x) → 0 as x → ∞ or |U |v−1 ∈ L∞(R). The diago-
nal blocks Ukk(x), k = 1, r, are assumed to be mk ×mk Hermitian matrices with
mk ≥ 1 (in particular, with mk = 1 these blocks are just real scalar functions).

Let
r∑

k=1

mk = m, and denote by Im the unit m×m matrix.

Denote by Hm the m-dimensional Hilbert space. A vector h ∈ Hm will be
written in the form h = col

(
h1, h2, . . . , hr

)
, where hk, k = 1, r, is a vector from

Hmk
. Thus we have y = col (y1, y2, . . . , yr), where yk ∈ Hmk

.

I. Let us start with considering the case when

v(x) ≥ Cx2α, C > 0, α > 1. (3)
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(The spectral properties of one-dimensional Schrödinger operator with polyno-
mial potential is the subject of [11]).

Assume that the coefficients of (1) satisfy the conditions

∞∫

0

|U(t)|v− 1
2 (t)dt < ∞, (4)

∞∫

0

v′2(t)v−
5
2 (t)dt < ∞,

∞∫

0

v′′(t)v−
3
2 (t)dt < ∞. (5)

Rewrite equation (1) in the form

−y′′ + (v(x) + q(x))y = ((λ + q(x)) Im − U(x)) y, (6)

where q(x) is given by (cf. [12, 13])

q(x) =
5
16

(
v′(x)
v(x)

)2

− 1
4

v′′(x)
v(x)

. (7)

Consider the functions

γ0(x, λ) =
1

4
√

4v(x)
exp


−

x∫

0

√
v(u)du


 , (8)

γ∞(x, λ) =
1

4
√

4v(x)
exp




x∫

0

√
v(u)du


 . (9)

It is easy to see that with x →∞, one has

γ0(x, λ) → 0, γ∞(x, λ) →∞.

These solutions constitute a fundamental system of solutions of the scalar diffe-
rential equation

−z′′ + (v(x) + q(x))z = 0 (10)

in such a way that for all x ∈ [0,∞) one has

W (γ0, γ∞) := γ0(x, λ)γ′∞(x, λ)− γ′0(x, λ)γ∞(x, λ) = 1.
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Theorem 1. Under conditions (3), (4), (5), equation (1) has a unique de-
creasing at infinity m×m matrix solution Φ(x, λ), satisfying the conditions

lim
x→∞

Φ(x, λ)
γ0(x, λ)

= Im (11)

and

lim
x→∞

Φ′(x, λ)
γ′0(x, λ)

= Im. (12)

Also, there exists a unique increasing at infinity m×m matrix solution Ψ(x, λ),
satisfying the conditions

lim
x→∞

Ψ(x, λ)
γ∞(x, λ)

= Im (13)

and

lim
x→∞

Ψ′(x, λ)
γ′∞(x, λ)

= Im. (14)

P r o o f. 1. Equation (6) allows one to derive the integral equation

Φ(x, λ) = γ0(x, λ)Im +

∞∫

x

K(x, t, λ)Φ(t, λ)dt, (15)

where
K(x, t, λ) = C(x, t)[(λ + q(t))Im − U(t)], (16)

C(x, t) = γ∞(x, λ)γ0(t, λ)− γ∞(t, λ)γ0(x, λ), (17)

with C(x, t) being the Cauchy function that in each variable satisfies equation
(10) and the initial conditions

C(x, t)|x=t = 0, C ′
x(x, t)|x=t = 1, C ′

t(x, t)|x=t = −1.

Set
χ(x, λ) =

Φ(x, λ)
γ0(x, λ)

to rewrite equation (15) in the form

χ(x, λ) = Im +

∞∫

x

R(x, t, λ)χ(t, λ)dt, (18)

where
R(x, t, λ) = K(x, t, λ)

γ0(t, λ)
γ0(x, λ)

.

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 1 47



A.M. Kholkin and F.S. Rofe-Beketov

In view of
∣∣∣∣C(x, t)

γ0(t, λ)
γ0(x, λ)

∣∣∣∣ =
∣∣∣∣γ2

0(t)
γ∞(x, λ)
γ0(x, λ)

− γ0(t, λ)γ∞(t, λ)
∣∣∣∣

=

∣∣∣∣∣∣
1

2
√

v(t)
exp


−2

t∫

0

√
v(u)du


 exp


2

x∫

0

√
v(u)du


− 1

2
√

v(t)

∣∣∣∣∣∣

=
1

2
√

v(t)

∣∣∣∣∣∣
exp


−2

t∫

x

√
v(u)du


− 1

∣∣∣∣∣∣

and since with x ≤ t one has exp
(
−2

t∫
x

√
v(u)du

)
≤ 1, we deduce that

∣∣∣∣C(x, t)
γ0(t, λ)
γ0(x, λ)

∣∣∣∣ ≤
1√
v(t)

. (19)

Hence

|R(x, t, λ)| =
∣∣∣∣C(x, t)

γ0(t, λ)
γ0(x, λ)

[(λ + q(t))I − U(t)]
∣∣∣∣

≤ 1√
v(t)

(|λ|+ |q(t)|+ |U(t)|).

By virtue of (3)–(5), (7),

1√
v(t)

(|λ|+ |q(t)|+ |U(t)|) ∈ L(0,∞), (20)

which implies that the integral equation has a unique solution χ(x, λ), and
|χ(x, λ)| ≤ const. By (18), one has that lim

x→∞χ(x, λ) = Im, which already im-

plies (11).
Differentiate (15) to get

Φ′(x, λ)
γ′0(x, λ)

= Im +

∞∫

x

S(x, t, λ)χ(t, λ)dt, (21)

where

S(x, t, λ) = K ′
x(x, t, λ)

γ0(t, λ)
γ′0(x, λ)

= C ′
x(x, t)

γ0(t, λ)
γ′0(x, λ)

[(λ + q(t))Im − U(t)].
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Since
∣∣∣∣C ′

x(x, t)
γ0(t, λ)
γ′0(x, λ)

∣∣∣∣ =
∣∣∣∣γ2

0(t)t
γ′∞(x, λ)
γ′0(x, λ)

− γ∞(t, λ)γ0(t, λ)
∣∣∣∣

=
1

2
√

v(t)

∣∣∣∣∣∣
exp


−2

t∫

0

√
v(u)du




1
4v−

5
4 v′ −√v

1
4v−

5
4 v′ +

√
v

exp


2

x∫

0

√
v(u)du


− 1

∣∣∣∣∣∣

≤ 1
2
√

v(t)


exp


−2

t∫

x

√
v(u)du


 + 1


 ≤ 1√

v(t)
,

one has
|S(x, t, λ)| ≤ 1√

v(t)

[|λ|+ |q(t)|+ |U(t)|] ∈ L(0,∞).

Therefore, (21) now implies (12).
2. Denote by

Ψ̂(x, λ) =




Ψ11(x, λ) Ψ12(x, λ) . . . Ψ1r(x, λ)
0 Ψ22(x, λ) . . . Ψ2r(x, λ)

. . . . . . . . . . . .
0 0 . . . Ψrr(x, λ)




the matrix solution of (1) that increases at infinity. The diagonal blocks Ψkk(x)
are the mk ×mk-matrices with mk ≥ 1, k = 1, r. Equation (6) is equivalent to
the integral equation

Ψ̂(x, λ) = γ∞(x, λ)Im −
x∫

0

K(x, t, λ)Ψ̂(t, λ)dt, (22)

where, just as in (15), the kernel K(x, t, λ) is given by (16). Now set

χ(x, λ) =
Ψ̂(x, λ)
γ∞(x, λ)

to rewrite equation (22) in the form

χ(x, λ) = Im −
x∫

0

R(x, t, λ)χ(t, λ)dt, (23)

where
R(x, t, λ) = C(x, t)

γ∞(t, λ)
γ∞(x, λ)

[(λ + q(t))Im − U(t)].
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Since t ≤ x, one has

∣∣∣∣C(x, t)
γ∞(t, λ)
γ∞(x, λ)

∣∣∣∣ =
∣∣∣∣γ0(t, λ)γ∞(t, λ)− γ2

∞(t, λ)
γ0(x, λ)
γ∞(x, λ)

∣∣∣∣

=
1

2
√

v(t)

∣∣∣∣∣∣
1− exp


−2

t∫

0

√
v(u)du


 exp


−2

x∫

0

√
v(u)du




∣∣∣∣∣∣

=
1

2
√

v(t)


1− exp


−2

x∫

t

√
v(u)du





 ≤ 1√

v(t)
,

and therefore

|R(x, t, λ)| ≤ 1√
v(t)

[|λ|+ |q(t)|+ |U(t)|] ∈ L(0,∞).

It follows that integral equation (23) has a unique solution χ(x, λ), and |χ(x, λ)| ≤
const.

Pass in (23) to a limit as x →∞ to get

lim
x→∞χ(x, λ) = Im + C̃(λ),

where C̃(λ) is a triangular matrix, that is,

lim
x→∞

Ψ̂(x, λ)
γ∞(x, λ)

= Im + C̃(λ). (24)

Now consider another matrix solution that increases at infinity

Ψ̃(x, λ) =




Ψ̃11(x, λ) Ψ̃12(x, λ) . . . Ψ̃1r(x, λ)
0 Ψ̃22(x, λ) . . . Ψ̃2r(x, λ)
. . . . . . . . . . . .

0 0 . . . Ψ̃rr(x, λ)


 ,

where

Ψ̃kk(x, λ) = Φkk(x, λ)

x∫

a

Φ−1
kk (t, λ)(Φ∗kk(t, λ))−1dt, k = 1, r, (a ≥ 0),

Φkk(x, λ) are the diagonal blocks of the matrix solution Φ(x, λ) as in Section 1.
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In view of (11) and the definitions of γ0(x, λ), γ∞(x, λ), one has

Ψ̃kk(x, λ) = γ0(x, λ) (Imk
+ ox (Imk

))

x∫

0

Imk
+ ot (Imk

)
γ2

0(t, λ)
dt

= γ0(x, λ)

x∫

0

dt

γ2
0(t, λ)

(Imk
+ o (Imk

)) = γ∞(x, λ) (Imk
+ o (Imk

)) . (25)

Hence

lim
x→∞

Ψ̃kk(x, λ)
γ∞(x, λ)

= Imk
, k = 1, r. (26)

Since Ψ̂(x, λ) and Ψ̃(x, λ) are the matrix solutions of (1) that increase at
infinity,

Ψ̂(x, λ) = Ψ̃(x, λ) + Φ(x, λ)C0(λ), (27)

where C0(λ) is a block-triangular matrix. Additionally, one has

lim
x→∞

Ψ̂(x, λ)
γ∞(x, λ)

= lim
Ψ̃(x, λ)
γ∞(x, λ)

.

Hence, by virtue of (26),

lim
x→∞

Ψkk(x, λ)
γ∞(x, λ)

= Imk
, k = 1,m,

and in (24) one has

C̃(λ) =




0 C12(λ) . . . C1r(λ)
0 0 . . . C2r(λ)

. . . . . . . . . . . .
0 0 . . . 0


 .

The solution Ψ(x, λ) given by Ψ(x, λ) = Ψ̂(x, λ)
(
I + C̃(λ)

)−1
is subject to con-

dition (13).
Use (11), (12) to differentiate (27), then find the asymptotics of Ψ̃′(x, λ) as

x →∞ similarly to (25) to obtain (14). Theorem 1 is proved.

II. Now consider the case when v(x) = x2α, 0 < α ≤ 1. Suppose that the
coefficients of equation (1) satisfy the condition

∞∫

0

|U(t)|t−αdt < ∞. (28)
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Rewrite (1) in the form

−y′′ +
(
x2α − λ + q(x, λ)

)
y = (q(x, λ)Im − U(x))y, (29)

where q(x, λ) is defined similarly to q(x) in (7):

q(x, λ) =
5
16

(
v′(x)

v(x)− λ

)2

− 1
4

v′′(x)
v(x)− λ

,

i.e.,

q(x, λ) =
5α2

4

(
x2α−1

x2α − λ

)2

− α (2α− 1)x2α−2

2 (x2α − λ)
. (30)

Consider the functions

γ0(x, λ) =
1

4
√

4 (x2α − λ)
exp


−

x∫

a

√
u2α − λdu


 ,

γ∞(x, λ) =
1

4
√

4 (x2α − λ)
exp




x∫

a

√
u2α − λdu


 .

These solutions form a fundamental system of solutions for the scalar differential
equation

−z′′ +
(
x2α − λ + q(x, λ)

)
z = 0, (31)

such that for all x

W (γ0, γ∞) := γ0(x, λ)γ′∞(x, λ)− γ′0(x, λ)γ∞(x, λ) = 1.

We are about to establish the asymptotics? of γ0(x, λ) as x →∞:

γ0(x, λ) = (2xα)−
1
2

(
1− λ

x2α

)− 1
4

exp


−

x∫

a

uα

(
1− λ

u2α

) 1
2

du


 .

After expanding here the integrand, we obtain the exponential as follows:

exp


−

x∫

a

uα

(
1− 1

2
λ

u2α
−

∞∑

k=2

1 · 3 · . . . · (2k − 3)
k!2k

(
λ

u2α

)k
)

du


 .

?With α = 1 and α = 1
2
, that is, with v(x) = x2 and v(x) = x, the asymptotics of γ0(x, λ)

and γ∞(x, λ) are already known. See the monograph [12], where the Langer method is applied
to obtain the asymptotics in a different form by using the Hankel function.
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In the case
α + 1
2α

= n ∈ N, i.e., α =
1

2n− 1
, after integration this expression has

the form

c exp
(
− x1+α

1 + α
+

λ

2
x1−α

1− α

+
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)

× exp
(

1 · 3 · . . . · (2n− 3)
n!

(
λ

2

)n

ln x + o(1)
)

= c exp
(
− x1+α

1 + α
+

λ

2
x1−α

1− α

+
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)
x

1·3·...·(2n−3)
n! (λ

2 )n

(1 + o(1)).

The asymptotics of γ0(x, λ) as x →∞ is as follows:

γ0(x, λ) = c exp
(
− x1+α

1 + α
+

λ

2
x1−α

1− α

+
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)
x

1·3·...·(2n−3)
n! (λ

2 )n−α
2

× (1 + o(1)). (32)

With α = 1 (n = 1), γ0(x, λ) has the following asymptotics at infinity:

γ0(x, λ) = c x
λ−1

2 exp
(
−x2

2

)
(1 + o(1)). (33)

In the case
α + 1
2α

/∈ N, set n =
[
α + 1
2α

]
+ 1, with [β] being the integral part

of β, to obtain the following asymptotics for γ0(x, λ) at infinity:

γ0(x, λ) = c x−
α
2 exp

(
− x1+α

1 + α
+

λ

2
x1−α

1− α

+
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)

× exp
(
−1 · 3 · . . . · (2n− 3)

n!

(
λ

2

)n x−α

α

)(
1 + o

(
x−α

))
. (34)
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In particular, with α = 1
2 (n = 2) one has

γ0(x, λ) = cx−
1
4 exp

(
−2

3
x

3
2 + λx

1
2 −

(
λ

2

)2

x−
1
2

)(
1 + o

(
x−

1
2

))
. (35)

A similar procedure allows one to establish the asymptotics of γ∞(x, λ) as

x →∞. If
α + 1
2α

= n ∈ N, i.e., α =
1

2n− 1
, then

γ∞(x, λ) = c exp
(

x1+α

1 + α
− λ

2
x1−α

1− α

−
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)
x
−

(
1·3·...·(2n−3)

n! (λ
2 )n

+α
2

)

× (1 + o(1)). (36)

With α = 1 (n = 1), this becomes

γ∞(x, λ) = c x−
λ+1

2 exp
(

x2

2

)
(1 + o(1)). (37)

In the case
α + 1
2α

/∈ N, we set n =
[
α + 1
2α

]
+ 1 to get the asymptotics

γ∞(x, λ) = c x−
α
2 exp

(
x1+α

1 + α
− λ

2
x1−α

1− α

−
n−1∑

k=2

1 · 3 · . . . · (2k − 3)
k!

(
λ

2

)k x1−(2k−1)α

1− (2k − 1)α

)

× exp
(

1 · 3 · . . . · (2n− 3)
n!

(
λ

2

)n x−α

α

) (
1 + o

(
x−α

))
. (38)

In the case α = 1
2 (n = 2), one has

γ∞(x, λ) = cx−
1
4 exp

(
2
3
x

3
2 − λx

1
2 +

(
λ

2

)2

x−
1
2

)(
1 + o

(
x−

1
2

))
. (39)

Theorem 2. With 0 < α ≤ 1 and under condition (28), the claim of Theorem
1 is valid for equation (1).
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The proof goes similarly to that of Theorem 1. It should be observed in this
context that

∣∣∣∣C(x, t, λ)
γ0(t, λ)
γ0(x, λ)

∣∣∣∣ =
∣∣∣∣γ2

0(t, λ)
γ∞(x, λ)
γ0(x, λ)

− γ0(t, λ)γ∞(t, λ)
∣∣∣∣

=

∣∣∣∣∣∣
1

2
√

t2α − λ
exp


−2

t∫

a

√
u2α − λdu


 exp


2

x∫

a

√
u2α − λdu


 − 1

2
√

t2α − λ

∣∣∣∣

=
1

2
√

t2α − λ

∣∣∣∣∣∣
exp


−2

t∫

x

√
u2α − λdu− 1




∣∣∣∣∣∣
.

As x ≤ t, one has exp
(
−2

t∫
x

√
u2α − λdu

)
≤ 1, hence

∣∣∣∣C(x, t, λ)
γ0(t, λ)
γ0(x, λ)

∣∣∣∣ ≤
1√

t2α − λ
, (40)

and thus

|R(x, t, λ)| =
∣∣∣∣C(x, t, λ)

γ0(t, λ)
γ0(x, λ)

[q(t, λ)Im − U(t)]
∣∣∣∣

≤ 1√
t2α − λ

(|q(t, λ)|+ |U(t)|).

It follows from (28) and (30) that

1√
t2α − λ

(|q(t, λ)|+ |U(t)|) ∈ L(a,∞). (41)

Hence integral equation (18) has a unique solution χ(x, λ) and |χ(x, λ)| ≤ const.
By (18), we have that lim

x→∞χ(x, λ) = I, which implies (11).
The rest of the claims of Theorem 1 can be obtained in a similar way.
Theorem 1, together with asymptotic formulas (33) and (37), allows one to

deduce

Corollary 1. With α = 1, i.e., v(x) = x2, under condition (28), equation (1)
has a unique m×m matrix solution Φ(x, λ), which decreases at infinity, satisfies
the conditions

lim
x→∞

Φ(x, λ)
γ0(x, λ)

= Im, (42)

and

lim
x→∞

Φ′(x, λ)
γ′0(x, λ)

= Im,
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where γ0(x, λ) = x
λ−1

2 exp
(
−x2

2

)
. Also, the equation has a unique m×m matrix

solution Ψ(x, λ), which increases at infinity, satisfies the conditions

lim
x→∞

Ψ(x, λ)
γ∞(x, λ)

= Im

and

lim
x→∞

Ψ′(x, λ)
γ′∞(x, λ)

= Im,

where γ∞(x, λ) = x−
λ+1

2 exp
(

x2

2

)
.

Theorem 2, together with asymptotic formulas (35) and (39), implies

Corollary 2. If α = 1
2 , i.e., v(x) = x, under conditions (28), equation (1)

has a unique m×m matrix solution Φ(x, λ), which decreases at infinity, satisfies
the conditions

lim
x→∞

Φ(x, λ)
γ0(x, λ)

= Im,

and

lim
x→∞

Φ′(x, λ)
γ′0(x, λ)

= Im,

where γ0(x, λ) = x−
1
4 exp

(
−2

3x
3
2 + λx

1
2

)
. Also, the equation has an m × m

matrix solution Ψ(x, λ) which increases at infinity, satisfies the conditions

lim
x→∞

Ψ(x, λ)
γ∞(x, λ)

= Im

and

lim
x→∞

Ψ′(x, λ)
γ′∞(x, λ)

= Im,

where γ∞(x, λ) = x−
1
4 exp

(
2
3x

3
2 − λx

1
2

)
.

R e m a r k 1. In the monograph [14], it was shown that the scalar equation

−φ′′ + x2φ = λφ, (43)

with λ = 2n + 1, has a solution

φn(x) = Hn(x) exp
(
−x2

2

)
,
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where Hn(x) is the Chebishev–Hermit polynomial. Note that this polynomial
has the following asymptotics as x →∞: Hn(x) = (2x)n(1 + o(1)), and thus the
asymptotics of the solution φn(x) of (43) as x →∞ is

φn(x) = (2x)n exp
(
−x2

2

)
· (1 + o(1)). (44)

In the case when in (2) one has U(x) = 0, v(x) = x2, matrix equation (1)
splits into m scalar equations of the form (43). The matrix solution Φ(x, λ) in
this case appears to be diagonal. Denote by φ(x, λ) the diagonal elements of the
matrix Φ(x, λ). Then by virtue of (42), the solution φ(x, λ) has the following
asymptotics at infinity:

φ(x, λ) = (x)
λ−1

2 exp
(
−x2

2

)
(1 + o(1)). (45)

In particular, with λ = 2n + 1 this allows one to derive a solution which is a
scalar multiple of φn(x).

III. Suppose at x = 0, we are given the boundary condition

By′(0)− Cy(0) = 0, (46)

where B and C are the commuting block-triangular matrices of the same structure
as the coefficients of the differential equation

B =




B11 B12 . . . B1r

0 B22 . . . B2r

. . . . . . . . . . . .
0 0 . . . Brr


 , C =




C11 C12 . . . C1r

0 C22 . . . C2r

. . . . . . . . . . . .
0 0 . . . Crr


 , (47)

Bkk, Ckk, k = 1, r, are mk ×mk Hermitian matrices and mk ≥ 1,
r∑

k=1

mk = m,

which satisfy the conditions det
(
B2 + C2

)
=

r∏
k=1

det
(
B2

kk + C2
kk

) 6= 0. It follows

from BC = CB that BkkCkk = CkkBkk, k = 1, r.

Lemma 1. The boundary condition (46) can be rewritten in the equivalent
form:

cosAy′(0)− sinAy(0) = 0, (48)

where A is a block-triangular matrix of the same structure as the matrices B, C
in (47).
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In fact, since B and C commute, each of the matrices commutes with the
matrix (B2 + C2) as well as with the matrix (B2 + C2)−

1
2 . It follows that there

exists a block-triangular matrix A such that

cosA = (B2 + C2)−
1
2 B, sinA = (B2 + C2)−

1
2 C.

After multiplying on the left by (B2 + C2)−
1
2 , the boundary condition (46) has

the form of (48).
Together with problem (1) with boundary condition (48), consider the split

system

lk [yk] = −y′′k + (v(x)Imk
+ Ukk(x))yk = λyk, k = 1, r,

with the boundary conditions

cosAkk · y′k(0)− sinAkk · yk(0) = 0, k = 1, r, (49)

where Akk are the diagonal elements of the matrix A, Akk, k = 1, r are mk ×mk

Hermitian matrices with mk ≥ 1,
r∑

k=1

mk = m.

Denote by L0 the minimal differential operator generated by the differential
expression l [y] and boundary condition (48). Let also Lk, k = 1, r, stand for the
minimal symmetric operators in L2 (Hmk

, (0,∞)) generated by the differential
expressions lk [yk] and boundary conditions (49). By the assumptions on the
coefficients, along with the relatively small amount of the perturbations Ukk(x)
(|U(x)| · v−1(x) → 0 as x → ∞ or |U | · v−1 ∈ L∞(R)), we are in the case of
a limit point at infinity for each symmetric operator Lk, k = 1, r. Hence their
selfadjoint extensions? L̃k are given by the closures of Lk. The operators L̃k are
semibounded, and their spectra are discrete.

Denote by L the extension of the operator L0 given by the requirement that
the functions from the domain of L are in L2 (Hm, (0,∞)).

Theorem 3. Consider equation (1). If either conditions (3), (4), (5) with
α > 1 or condition (28) with 0 < α ≤ 1 are satisfied, then the discrete spectrum
of L is real and coincides with the union of spectra of the selfadjoint operators
L̃k, k = 1, r, i.e.,

σd(L) =
r⋃

k=1

σ
(
L̃k

)
. (50)

?The selfadjointness property for the general (4-term) Sturm–Liouville differential equations
with matrix coefficients was studied in [24].
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P r o o f. Recall that the matrix solutions Φ(x, λ), Ψ(x, λ), as in Theorems
1, 2, form a fundamental system of solutions of (1). It follows that every vector
solution y(x, λ) of (1) is representable in the form

y(x, λ) = Φ(x, λ)h + Ψ(x, λ)g,

with h and g being constant vectors. A solution y(x, λ) ∈ L2(Hm, (0,∞)) if and
only if g = 0, that is,

y(x, λ) = Φ(x, λ)h.

The eigenvalues of L coincide with zeros of the determinant ∆(λ) := detΩ(0, λ),
where

Ω(0, λ) = cosAΦ′(0, λ)− sinA Φ(0, λ). (51)

Since the matrices A, Φ(0, λ), Φ′(0, λ) are block-triangular, one has ∆(λ) =
r∏

k=1

∆k(λ), where ∆k(λ) := det Ωk(0, λ),

Ωk(0, λ) = cos Akk Φ′kk(0, λ)− sinAkk Φkk(0, λ).

On the other hand, zeros of ∆k(λ), k = 1, r, (cf. (49)) are the eigenvalues
of the selfadjoint operator L̃k and hence are real. It follows that the discrete
spectrum of L is real and coincides with the union of spectra of the operators L̃k,
k = 1, r. The Theorem is proved.

R e m a r k 2. In the case α = 1 under the absence of condition (28), the
claim of Theorem 3 can fail to be true.

E x a m p l e 1. Consider the equation

l [y] = −y′′ +
(

x2 q(x)
0 π2x2

)
y = λy, 0 ≤ x < ∞, y =

(
y1

y2

)
, (52)

with the boundary condition
y(0) = 0. (53)

The eigenvalues of the operators L̃1 and L̃2 generated by problem (52), (53) are
not the same. Let λ0 be an eigenvalue of L̃2, and y2(x, λ0) be the corresponding
eigenfunction. λ0 is an eigenvalue of L in the case when the solution y1(x, λ0) of
the equation −y′′1 + x2y1 + q(x)y2 = λ0y1, which satisfies the initial conditions
y1(0, λ) = y′1(0, λ) = 0, is in L2(0;∞). This solution is given by

y1(x, λ0) =

x∫

0

q(t)C(x, t, λ0)y2(t, λ0)dt,
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where C(x, t, λ0) is the Cauchy function of equation (43). With the coefficient
q(x) = y2(x)exµ

and µ > 2, one can prove (to be done in a subsequent work) that

the integral
∞∫
0

y2
1(x, λ0)dx diverges and hence λ0 /∈ σ(L).

It is to be shown in the separate paper that the (set of) poles of the Green
function G(x, t, λ) of L coincide with σ

(
L̃1

)⋃
σ

(
L̃2

)
. If some λ0 ∈ σ

(
L̃1

)
,

then λ0 ∈ σ(L). On the other hand, λ0 ∈ σ
(
L̃2

)
is an eigenvalue of L if and only

if y1(x, λ0) ∈ L2(0,∞). If λ0 ∈ σ
(
L̃2

)
and y1(x, λ0) /∈ L2(0,∞) as in Example 1,

then λ0 is a pole of the Green function G(x, t, λ) but not an eigenvalue. These
λ0 are called the spectral singularities of the operator L. The special features of
these points were initially discovered by M.A. Naimark in [15]. The term ‘spectral
singularity’ was coined later on by J. Schwartz [16] (see also the monograph by
M.A. Naimark [17], Supplement I by V.E. Ljance [18]).

IV. Suppose that in (1) one has v(x) ≡ 0, inf Ukk(x) → +∞ as x → ∞ for
all k, and Ujk(x) with j 6= k are compactly supported matrix valued functions
whose carrier is [0, b].

Denote by Φk(x, λ), Θk(x, λ) the matrix solutions of the equation

lk [yk] = −y′′k + Ukk(x)yk = λyk, k = 1, r, (54)

which satisfy the initial conditions

Φk(0, λ) = 0, Φ′k(0, λ) = Imk
,

Θk(0, λ) = −Imk
, Θ′

k(0, λ) = 0.

For all nonreal λ there exists a matrix Weyl function? Mk(λ) such that for
any hk ∈ Hmk

the solution

(Θk(x, λ) + Φk(x, λ)Mk(λ))hk

of equation (54) is in L2 (Hmk
, (0,∞)). The function Mk(λ) is meromorphic,

with its poles being on the real axis. These poles are just the points of spec-
trum of L̃k generated in L2 (Hmk

, (0,∞)) by the differential expression lk [yk]
and the boundary condition yk(0, λ) = 0. The matrix valued meromorphic func-
tion Mk(λ) admits a representation in the form

Mk(λ) = Mk(λ)(Nk(λ))−1,

?The theory of matrix Weyl functions is a subject for a large number of papers. An extended
bibliography on this topic can be found in the monograph [10]. Here we restrict ourselves to
referring to [19]–[23].
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where Mk(λ), Nk(λ) are entire matrix valued functions of λ. In fact, all the
matrix elements m

(k)
ij (λ) of Mk(λ) can be represented as ratios of entire functions

with no common zeros

m
(k)
ij (λ) =

µ
(k)
ij (λ)

ν
(k)
ij (λ)

.

We choose Nk(λ) =
(
n

(k)
ij (λ)

)mk

i,j=1
to be a diagonal matrix with n

(k)
jj (λ) =

mk∏
i=1

ν
(k)
ij (λ). In this case, the matrix Mk(λ) is also an entire function of λ.

Then the function

Yk(x, λ) = Θk(x, λ)Nk(λ) + Φk(x, λ)Mk(λ)

is a matrix solution of equation (54). For any vector hk ∈ Hmk
, the vector

function yk(x, λ) = Yk(x, λ)hk ∈ L2 (Hmk
, (0,∞)) and the matrix valued function

Yk(x, λ) are entire analytic in λ on the complex plane at every x ∈ [0,∞).
The matrix

Y (x, λ) =




Y1(x, λ) 0 . . . 0
0 Y2(x, λ) . . . 0

. . . . . . . . . . . .
0 0 . . . Yr(x, λ)




is a solution of equation (1) for all x ≥ b; given any vector h ∈ Hm, one has
y(x, λ) = Y (x, λ)h ∈ L2(Hm, (0,∞)). Denote by Φ(x, λ) the matrix solution of
equation (1) which satisfies the following initial condition at x = b:

Φ(b, λ) = Y (b, λ), Φ′(b, λ) = Y ′(b, λ).

Φ(x, λ) is a solution of equation (1) for all x ∈ [0,∞). It has a block-triangular
form

Φ(x, λ) =




Φ11(x, λ) Φ12(x, λ) . . . Φ1r(x, λ)
0 Φ21(x, λ) . . . Φ2r(x, λ)
. . . . . . . . . . . .
0 0 . . . Φrr(x, λ)


 ≡ Y (x, λ) with x ≥ b.

Hence, for any vector h one has y(x, λ) = Φ(x, λ)h ∈ L2(Hm, (0,∞)). This
solution Φ(x, λ) is an entire analytic function of λ.

The eigenvalues of L coincide with zeros of the determinant ∆(λ) := detΩ(0, λ),
with the matrix Ω(0, λ) being given by (51).

Now we are in a position to reproduce the final part of the proof of Theorem
3 in order to deduce
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Theorem 4. Suppose in (1) we have v(x) ≡ 0, inf Ukk(x) → +∞ as x →∞
for all k, and Ujk(x) (j 6= k) are compactly supported functions whose carrier is
[0, b]. Then the spectrum of L is discrete, real, and coincides with the union of
spectra of the operators L̃k, k = 1, r.
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