Перегляд за автором "Nesmelova, O.V."

Сортувати за: Порядок: Результатів:

  • Gutlyanskii, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2018)
    We study semilinear partial differential equations in the plane, the linear part of which is written in a divergence form. The main result is given as a factorization theorem. This theorem states that every weak solution ...
  • Gutlyanskii, V.Y.; Nesmelova, O.V.; Ryazanov, V.I. (Український математичний вісник, 2016)
    Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem ...
  • Gutlyanskii, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2018)
    We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², ...
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2019)
    We study the Dirichlet problem for the semilinear partial differential equations div (A∇u) = f (u) in simply connected domains D of the complex plane C with continuous boundary data. We prove the existence of the weak ...
  • Gutlyanskii, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Праці Інституту прикладної математики і механіки НАН України, 2017)
    We study the Dirichlet problem for the quasilinear partial differential equations of the form Δu(z) = h(z)·f(u(z)) in the unit disk D ⊂ C with functions h : D → R in the class Lp(D), p > 1, and continuous functions f : R ...
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2018)
    We study the Dirichlet problem for quasilinear partial differential equations of the form Δu(z) = h(z)f(u(z)) in the unit disk D ⊂ C with continuous boundary data. Here, the function h : D→R belongs to the class L^p(D), ...
  • Gutlyanskiĭ, V.Ya.; Nesmelova, O.V.; Ryazanov, V.I. (Доповіді НАН України, 2017)
    We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. ...