РАДИОСПЕКТРОСКОПИЯ

УДК 539.184.2

А.С.КУЦЕНКО

Харьковский национальный университет имени В. Н. Каразина, пл. Свободы, 4, г. Харьков, 61022, Украина E-mail: a.kutsenko@rian.kharkov.ua

ЛАЗЕРНО-МИКРОВОЛНОВАЯ СПЕКТРОСКОПИЯ СИНГЛЕТНЫХ *F*-ТЕРМОВ АТОМА MG I

В работе представлены результаты измерений частот девяти двухфотонных ридберговских микроволновых $3 \operatorname{snf}^{1}F_{3} \to 3 \operatorname{s}(n+1) \operatorname{f}^{1}F_{3}$ переходов атома Mg I с помощью лазерно-микроволнового спектрометра. Переходы наблюдались в частотном диапазоне $56 \div 117$ ГГц и в диапазоне изменения главного квантового числа $n = 30 \div 40$. Из полученных данных была определена первая константа квантового дефекта, составившая $E_{ij} = 0.0517019(91)$. Ключевые слова: магний, микроволновый спектр, ридберговские атомы, лазерное возбуждение

1. Введение

Несколько десятков ридберговских рекомбинационных линий Mg I обнаружено в спектре излучении Солнца [1]. Линии наблюдались в дальнем инфракрасном диапазоне и были идентифицированы как переходы между состояниями с квантовыми числами $n = 5 \div 8$ и l < 8, но идентификация не представлялась надежной. Это побудило провести ряд работ по микроволновой спектроскопии состояний с большим І. Авторы работы [2] в лабораторных условиях измерили частоты ридберговских микроволновых переходов Mg I для $n = 17 \div 23$ между f, g, h, i состояниями и определили дипольную поляризуемость Mg^+ . В работе [3] для n = 17были измерены частоты переходов между состояниями с $6 \le l \le 11$. После того как в 1980 г. для базы данных NIST [4] были проанализированы имеющиеся на тот момент данные о спектре Mg I, было проведено немало спектроскопических исследований магния в оптическом диапазоне. Методом высокоточной инфракрасной лазерной спектроскопии были записаны 23 ридберговских перехода Mg I в инфракрасном диапазоне, 740÷1126 см⁻¹, [5]. Было установлено, что тонкая структура f состояний в диапазоне главного квантового числа $n = 5 \div 7$ инвертирована. Кроме того, работа [5], а также проведенные в [1] расчеты позволили © А. С. Куценко, 2012

идентифицировать некоторые ранее неизвестные линии в излучении Солнца. В [6] авторами методом бездоплеровской лазерной спектроскопии было проведено исследование ридберговских F состояний магния для $n = 14 \div 84$, что позволило им определить изотопические сдвиги и величину синглет-триплетного расщепления *F*-термов, а также расщепление сверхтонкой структуры изотопа ²⁵ Mg. В этом диапазоне главного квантового числа инверсия тонкой структуры уже не наблюдалась. В работе [7] в ходе оптического исследования были измерены энергии F-термов для $n = 14 \div 66$ и определены квантовые дефекты для s, p, d, f состояний. Эта работа может считаться одной из лучших по данной проблеме. Однако расчеты частот микроволновых переходов по константам из [7] и сопоставления их с экспериментально измеренными частотами дают расхождения, достигающие единиц гигагерц. Это и не удивительно, т. к. в работе [7] константы квантового дефекта получены с низкой точностью из-за особенностей измерения длин волн переходов с привязкой к одной из линий неоновой лампы.

Цель настоящей работы – измерение частот микроволновых $n^1F_3 \rightarrow (n+1)^1F_3$ синглет-синглетных ридберговских переходов Mg I и определение квантового дефекта *F* состояния с точностью, обычной для радиоспектроскопии, где измеряется не длина волны, а частота.

2. Детали эксперимента

Работа выполнена с использованием спектрометра, созданного на кафедре квантовой радиофизики Харьковского национального университета имени В. Н. Каразина. Ранее с помощью этого спектрометра проводились исследования атомов Na, Al, Cu, Au, Ag в ридберговских состояниях, и их результаты опубликованы в [8–12]. В этих же работах представлено детальное описание спектрометра. Ниже приводятся только детали, касающиеся особенностей исследования атома Mg I.

Возбуждение атомов в ридберговские *F* состояния проводилось по различным двухступенчатым схемам (рис. 1):

$$\begin{split} &3s^{2} {}^{1}S_{0} \xrightarrow{2\hbar\omega} 3s3d {}^{1}D_{2} \xrightarrow{\hbar\omega} 3snf {}^{1}F_{3}, \\ &3s^{2} {}^{1}S_{0} \xrightarrow{\hbar\omega} 3s3p {}^{1}P_{1} \xrightarrow{2\hbar\omega} 3snf {}^{1}F_{3}. \end{split}$$

В первой схеме для двухфотонного возбуждения состояния $3s3d^{1}D_{2}$ использовался лазер на красителе кумарин-540, который работал на фиксированной длине волны 431 нм. Для возбуждения ридберговских $3snf^{1}F_{3}$ состояний использовался лазер на красителе DCM, перестраиваемый в диапазоне 660÷680 нм. Оба лазера на красителях возбуждались импульсным XeCl лазером (308 нм), работавшим с частотой повторения импульсов 10 Гц. Энергия импульса XeCl лазера составляла 15 мДж, а длительность импульса – 40 нс. Время жизни уровня $3s3d^{1}D_{2}$ составляет 81 нс [7], что в два раза превышает длительность лазерных импульсов, поэтому временная задержка между импульсами возбуждения не подбиралась.

Рис. 1. Использованные схемы возбуждения $3snf^{1}F_{3}$ состояний атома Mg I: пунктирными стрелками обозначена первая схема возбуждения, сплошными стрелками – вторая

Ультрафиолетовое излучение для возбуждения первой ступени во второй схеме получалось путем удвоения частоты излучения лазера на красителе R6G в кристалле KDP. Для двухфотонного перехода в ридберговские состояния (вторая ступень) использовался ИК лазер на красителе LDS 751. Лазеры на красителях возбуждались второй гармоникой Nd: YAG лазера. Этот лазер работал с частотой повторения импульсов 12.5 Гц, имел длительность импульса 15 нс и энергию импульса зеленого света 10÷15 мДж. Все использованные в работе лазеры на красителях были с поперечной накачкой, работали в режиме скользящего падения луча на дифракционную решетку. Промежуточный уровень $3s3p^{1}P_{1}$ имеет время жизни 2 нс [13], поэтому оптическая разность хода была выбрана таким образом, чтобы импульсы лазера второй ступени поступали с задержкой не более 1 нс после окончания действия первого лазера.

Пучки обоих лазеров на красителях совмещались в параллельный пучок с помощью дихроичного зеркала и вводились в область взаимодействия излучения с атомным пучком. Поскольку в обеих схемах возбуждения использовались двухфотонные переходы, требовалась фокусировка лазерного луча соответствующей ступени в области взаимодействия. Для этой цели использовалась длиннофокусная СаF линза. Излучение вводилось в камеру через кварцевое окно перпендикулярно атомному пучку. Между двумя электродами, представляющими собой ионизационный конденсатор, формировалась область взаимодействия. Электроды имели диаметр 40 мм и находились на расстоянии 6.5 мм. За одним из электродов с отверстиями располагался каналотрон, напротив входного окна которого и формировалась область взаимодействия. С противоположной стороны в камеру вводилось микроволновое излучение. Его источником служил синтезатор микроволнового излучения на лампе обратной волны с несколькими петлями фазовой автоподстройки частоты, перекрывающий диапазон 59÷117 ГГц.

Источником атомного пучка была печь Кнудсена, представляющая собой полый цилиндр из нержавеющей стали, в который помещались стружки магния. Металл нагревался нихромовой спиралью, обмотанной вокруг цилиндра, до температуры 600 °С. Атомный пучок проходил через щель шириной 2 мм и влетал в область взаимодействия между электродами.

Ридберговские атомы детектировались методом полевой ионизации. Через 1.5÷2 мкс после действия лазерного импульса на незаземленный электрод подавался отрицательный импульс с амплитудой 50÷1000 В и скоростью нарастания фронта не более 50 нс. Выходной сигнал каналотрона измерялся с помощью аналого-цифрового преобразователя. Для увеличения соотношения сигнал/шум проводилась многократная запись спектра в выбранном участке частотного диапазона.

Следует отметить, что в обеих схемах возбуждения появилась необходимость регулировать мощность импульса лазера первой ступени накачки. Дело в том, что даже при относительно небольшой энергии импульса возникала ионизация атомов в отсутствие возбуждения второй ступени и ионизирующего поля. Во второй схеме это может быть объяснено наличием ряда автоионизационных состояний магния вблизи порога ионизации [13, 14], сечение возбуждения которых значительны, и атом из первой ступени возбуждения переходит в автоионизационное состояние, поглощая еще один или два фотона излучения накачки первой ступени. Чтобы избавиться от вредного эффекта ионизации атомов в ходе возбуждения до включения ионизирующего импульса, мощность лазерного импульса первой ступени возбуждения уменьшалась до такого уровня, при котором паразитная ионизация была заметно меньше полезного сигнала и не превышала фон, обусловленный ионизацией ридберговских атомов, вызванной тепловым излучением печи и столкновениями с молекулами остаточных газов.

3. Результаты

Были измерены частоты девяти двухфотонных $3snf^{1}F_{3} \rightarrow 3s(n+1)f^{1}F_{3}$ ридберговских микроволновых переходов в диапазоне частот $53 \div 117$ ГГц и в диапазоне главного квантового числа $n = 30 \div 40$. Результаты измерений приведены в табл. 1. Типичные записи микроволновых переходов представлены на рис. 2. Ширина линий определялась несколькими факторами. Время нахождения ридберговских атомов в области взаимодействия с лазерным и микроволновым излучением составляло не менее 2 мкс, что приводило к пролетному уширению резонанса не более чем

Таблица 1. Частоты наблюдаемых двухфотонных микроволновых $n^1F_3 \rightarrow (n+1)^1F_3$ резонансов Mg I. В последнем столбце представлены разности наблюдаемых частот и частот, рассчитанных с помощью формул Ридберга (1) и Ритца (2)

Переход	Центральная частота, МГц	Разность частот, МГц	
$30^1 F_3 \rightarrow 31^1 F_3$	2.116603.0	-0.372	
$31^1 F_3 \rightarrow 32^1 F_3$	2.105826.5	0.513	
$32^1 F_3 \rightarrow 33^1 F_3$	2.96337.7	0.243	
$33^1F_3 \rightarrow 34^1F_3$	2.87950.3	0.023	
$34^1F_3 \rightarrow 35^1F_3$	2.80509.2	0.217	
$35^1F_3 \rightarrow 36^1F_3$	2.73884.2	-0.107	
$36^1F_3 \rightarrow 37^1F_3$	2.67966.8	-0.036	
$37^1F_3 \rightarrow 38^1F_3$	2.62664.6	-0.450	
$39^1 F_3 \rightarrow 40^1 F_3$	2.53606.0	-1.621	

Рис. 2. Типичные записи микроволновых двухфотонных $3snf^{1}F_{3} \rightarrow 3s(n+1)f^{1}F_{3}$ переходов Mg I: переходы $37^{1}F_{3} \rightarrow 38^{1}F_{3}$ (вверху) и $30^{1}F_{3} \rightarrow 31^{1}F_{3}$ (внизу). На верхней панели асимметрия контура вызвана смешением $n^{1}F_{3} \rightarrow (n+1)^{1}F_{3}$ и $(n+1)^{1}P_{1} \rightarrow (n+2)^{1}P_{1}$ резонансов (пояснения в тексте)

до 0.5 МГц. Доплеровское уширение, по нашим оценкам, не превышало 0.5 МГц. Наблюдаемая ширина резонансов составила 3÷4 МГц, что связано, по-видимому, с наличием паразитных электростатических и высокочастотных полей в камере, приводящих к уширению из-за эффекта Штарка и, частично, из-за эффекта насыщения микроволновых переходов при наблюдении двухфотонных резонансов, когда на атомы действует излучение гораздо большей мощности чем в ситуации, при которой наблюдаются однофотонные резонансы.

Магний с естественной концентрацией изотопов включает в себя три стабильных изотопа ²⁴ Mg (79 %), ²⁵ Mg (10 %), ²⁶ Mg (11 %), из которых только ²⁵ Mg имеет сверхтонкую структуру, обусловленную ядерным спиновым взаимодействием. Наиболее распространенный изотоп ²⁴ Mg, как и изотоп ²⁶ Mg, имеет ядерный спин I = 0и сверхтонкой структуры не проявляет. Расчеты сверхтонкого расщепления и изотопического сдвига, основанные на данных из [6], показали, что изотопический сдвиг для переходов с $n = 30 \div 40$ не превышает 0.1 МГц и приводит только к некоторой асимметрии наблюдаемых линий.

Резонансные частоты переходов, как правило асимметричных, определялась по максимуму ионизационного тока записанных частотных зависимостей. При этом погрешность составляла величину, не превышающую 10÷15 % ширины резонанса (не более 0.5 МГц).

Для обработки результатов эксперимента следовало бы пользоваться многоканальной теорией квантового дефекта из-за сложности электронного строения атома (два валентных электрона) и наличия возмущающей конфигурации $3p^{21}D_2$, которая наиболее сильно возмущает D состояние [15]. Однако, ряд работ [15, 16], а также анализ оптических измерений показали, что ридберговские (n > 8) F состояния мало подвержены возмущению, квантовый дефект изменяется плавно, поэтому для их анализа допустимо использовать одноканальную теорию квантового дефекта. Энергия терма для квантовых чисел n, l, j может быть найдена с помощью формулы Ридберга,

$$E(n,l,j) = \frac{-R_{\rm Mg}}{n^{*2}} = \frac{-R_{\rm Mg}}{(n-\delta_{n,l,j})^2},\tag{1}$$

где $R_{\rm Mg}$ – постоянная Ридберга для магния; квантовый дефект $\delta_{n.l.i}$ определяется формулой Ритца,

$$\delta_{n,l,j} = E_{l,j} + \frac{A_{l,j}}{n^{*2}} + \frac{B_{l,j}}{n^{*4}} + \cdots, \qquad (2)$$

(здесь $E_{l,j}$, $A_{l,j}$ и $B_{l,j}$ – константы).

Методом наименьших квадратов из экспериментальных данных было определено значение константы Е₁; (табл. 2). Разность измеренных частот и частот, рассчитанных с помощью этой константы по формулам (1), (2), приведены в табл. 1 в третьем столбце. Большая ошибка для перехода $39^1F_3 \rightarrow 40^1F_3$ связана с тем, что вместе с $3snf^{1}F_{3}$ состояниями также легко возбуждаются $3s(n+1)p^{1}P_{1}$ состояния. Разность между первой константой квантовых дефектов этих состояний близка к единице, поэтому разность частот двухфотонного перехода $39^1F_3 \rightarrow 40^1F_3$ и двухфотонного перехода $40^{1}P_{1} \rightarrow 41^{1}P_{1}$ меньше типичной наблюдаемой ширины линии. По этой причине в нашем эксперименте эти переходы не разрешены (так же, как на рис. 2, верхняя панель). Большая ширина и асимметрия интегрального контура не позволяют определить частоту перехода $39^1F_3 \rightarrow 40^1F_3$ точнее. Среднеквадратичное отклонение рассчитанных частот от измеренных составило 0.39 МГц. При расчете постоянная Ридберга для магния принималась равной R_{Mg} = 3289767.7064 ГГц. Для сравнения в табл. 2 приведены константы квантового дефекта, полученные с помощью измерений в оптическом диапазоне другими авторами.

4. Заключение

С помощью лазерно-микроволнового спектрометра были измерены частоты девяти двухфотонных ридберговских микроволновых $3snf^{1}F_{3} \rightarrow 3s(n+1)f^{1}F_{3}$ переходов атома Mg I. Переходы наблюдались в частотном диапазоне 56÷117 ГГц и в диапазоне изменения главного квантового числа $n = 30 \div 40$. На основе

Таблица 2. Константы квантового дефекта (выражения (1) и (2)) для $3snf^{1}F_{3}$ состояний Mg I, определенные с помощью метода наименьших квадратов из экспериментальных данных

	$E_{l,j}$	$A_{l,j}$	$B_{l,j}$
Настоящая			
работа	0.0517019(91)	-	-
Работа [7]	0.049(2)	-	_
Работа [16]	0.05274	-6.35048	-3.59136

экспериментальных данных было определено значение первой константы квантового дефекта $E_{l,j} = 0.0517019(91)$ с точностью на два порядка выше точности полученных ранее значений [7]. В дальнейшем мы планируем усовершенствовать наш спектрометр с целью записи частот переходов с низкими значениями главного квантового числа *n*, что позволит с высокой точностью найти коэффициенты $A_{l,j}$ и $B_{l,j}$ в выражении (2) и, соответственно, с высокой точностью рассчитать энергетический спектр синглетного *F* состояния магния.

Автор благодарен М. П. Перепечаю и Н. Л. Погребняку за помощь в подготовке эксперимента, В. А. Ефремову – за помощь в обработке результатов измерений и профессору С. Ф. Дюбко – за постановку задачи и постоянный интерес к выполняемой работе.

СПИСОК ЛИТЕРАТУРЫ

- Chang E. S. Solar Emission Lines Revisited: Extended Study of Magnesium // Phys. Scripta. – 1987. – Vol. 35. – P. 792–797.
- Lyon B. J. and Gallagher T. F. Mg 3snf-3sng-3snh-3sni intervals and the Mg⁺ dipole polarizability // Phys. Rev. A. - 1998. - Vol. 57, No. 4. - P. 2426-2429.
- Snow E. L. and Lundeen S. R. Determination of dipole and quadrupole polarizabilities of Mg⁺ by fine-structure measurements in high-L n=17 Rydberg states of magnesium // Phys. Rev. A. – 2008. – Vol. 77, No. 5. – P. 052501.1–052501.6.
- Martin W. C. and Zalubas R. Energy Levels of Magnesium, Mg I through Mg XII // J. Phys. Chem. Ref. Data. – 1980. – Vol. 9, No. 1. – P. 1–58.
- Lemoine B., Petitprez D., Destombes J. L., and Chang Edward S. High-precision infrared diode laser spectrum of Mg I // J. Phys. B.: At. Mol. Opt. Phys. – 1990. – Vol. 23., No, 13. – P. 2217S–2226S.
- Begang R. and Schimdt D. Doppler-free three photon spectroscopy of 3snf Rydberg states of Mg // Phys. Rev. A. – 1984. – Vol. 29, No. 5. – P. 2581–2585.
- 7. Rafiq M., Kalyar M. A., and Baig M A. Multi-photon excitation spectra of the 3snl (l = 0, 1, 2 and 3) Rydberg states of magnesium // J. Phys. B: At. Mol. Opt. Phys. 2007. Vol. 40, No. 15. P. 3181–3196.
- Dyubko S., Efimenko M., Efremov V., and Podnos S. Microwave spectroscopy of S, P, and D states of sodium Rydberg atoms // Phys. Rev. A. – 1995. – Vol. 52, No. 1. – P. 514–517.
- Dyubko S. F., Efremov V. A., Gerasimov V. G., and Mac-Adam K. B. Millimetre-wave spectroscopy of Au I Rydberg states: S, P and D terms // J. Phys. B. – 2005. – Vol. 38, No. 8. – P. 1107–1118.
- 10. MacAdam K. B., Dyubko S. F., Efremov V. A., Gerasimov V. G., and Perepechay M. P. Microwave spectro-

ISSN 1027-9636. Радиофизика и радиоастрономия. Т. 17, № 2, 2012

scopy of Ag I atoms in Rydberg states: S, P and D terms // J. Phys. B. - 2009. - Vol. 42, No. 8. - P. 085003.1-085003.6.

- MacAdam K. B., Dyubko S. F., Efremov V. A., Gerasimov V. G., and Kutsenko A. S. Laser-microwave spectroscopy of Cu I atoms in S, P, D, F and G Rydberg states // J. Phys. B. – 2009. – Vol. 42, No. 16. – P. 165009.1–165009.8.
- Dyubko S. F., Efremov V. A., Gerasimov V. G., and Mac-Adam K. B. Microwave spectroscopy of Al I atoms in l=0 to 4 Rydberg states: comprehensive quantumdefect analysis // J. Phys. B. – 2004. – Vol. 37, No. 9. – P. 1967–1978.
- Rafiq M., Hussain Sh., Saleem M., Kalyar M. A., and Baig M. A. Measurement of photoionization cross section from the 3s3p¹P₁ excited state of magnesium // J. Phys. B: At. Mol. Opt. Phys. – 2007. – Vol. 40, No. 12. – P. 2291–2305.
- Schinn G. W., Dai C. J., and Gallagher T. F. Mg 3pns and 3pnd (J = 1) autoionizing states // Phys. Rev. A. – 1991. – Vol. 43, No. 5. – P. 2316–2327.
- Beigang R. and Schmidt D. Two-photon spectroscopy of 3snd¹D₂ Rydberg states of Magnesium // Phys. Lett. 1981. Vol. 87A, No. 1, 2. P. 21–23.
- Zhi Miao-Chan, Dai Chang-Jian, and Li Shi-Ben. Stark structure of the Rydberg states of alkaline-earth atoms // Chinese Phys. – 2001. – Vol. 10, No. 10. – P. 929–934.

О.С.Куценко

Харківський національний університет імені В. Н. Каразіна, пл. Свободи, 4, м. Харків, 61022, Україна

ЛАЗЕРНО-МІКРОХВИЛЬОВА СПЕКТРОСКОПІЯ СИНГЛЕТНИХ *F*-ТЕРМІВ АТОМА MG I

Надаються результати вимірювання частот дев'яти двофотонних рідбергівських мікрохвильових $3snf \, {}^{1}F_{3} \rightarrow 3s(n+1) f \, {}^{1}F_{3}$ переходів атома Mg I за допомогою лазерно-мікрохвильового спектрометру. Переходи спостерігались у частотному діапазоні 56÷117 ГГц та в діапазоні зміни головного квантового числа $n = 30 \div 40$. З отриманих даних була визначена перша константа квантового дефекту, що становила $E_{ii} = 0.0517019(91)$.

A. S. Kutsenko

- V. Karazin National University of Kharkiv,
- 4, Svoboda Sq., Kharkiv, 61022, Ukraine

LASER-MICROWAVE SPECTROSCOPY OF SINGLET *F*-TERMS OF MG I

Results of frequency measurements of nine double-photon Rydberg-Rydberg microwave $3snf^1F_3 \rightarrow 3s(n+1)f^1F_3$ transitions of Mg I by means of a laser-microwave spectrometer are presented. The transitions were observed in the frequency range 56-117 GHz and in the range of the principal quantum number variation n = 30-40. Using the data obtained the first constant of Ritz quantum defect expansion has been determined as $E_{ii} = 0.0517019(91)$.

Статья поступила в редакцию 12.04.2012