

WELDING and CUTTING (Германия) 2006. — № 1 (англ. яз.)

Права на интеллектуальную собственность в Китае, с. 2–3.

Современное защитное снаряжение сварщиков, с. 6.

16-я Международная сварочная ярмарка «Сварка и резка» — статут и тенденции развития, с. 14–30.

Клорр N., Killing R. Высокотемпературная пайка оцинкованных листовых материалов, с. 31–35.

Hawley D. Перспективный новый инструмент для термического напыления, с. 38–42.

Jasnau U. Области применения мобильных лазеров в судостроении — от ручной резки до гибридной сварки с помощью трактора, с. 42–43.

Dilthey U., Willms K. Variowire — новый вариант дуговой сварки алюминия плавящимся электродом в среде защитного газа с использованием тонких проволочных электродов, с. 44–48.

Jenicek A. et al. Испытания по сквозной приварке шпилек к стальным листам с разными покрытиями, с. 54–58.

Block B. et al. Влияние карбидных порошков как модификаторов и термомеханической правки сварных швов на структуру и механические свойства швов, выполненных на титане, с. 64–67.

WELDING and CUTTING (Германия) 2006. — № 2 (англ. яз.)

Восстановление мирового рынка промышленных роботов продолжается, с. 76.

Официальное открытие Центра по неразрушающим испытаниям в Уэльсе, с. 78.

Применение лазера в микротехническом производстве, с. 82.

Клеевое соединение без клея, с. 83.

Системный интегратор для трубопроводов, выбранный для цифровой технологии сварки, с. 86.

Smulczynski U. Ремонт треснувшей поворотной детали гибочного пресса, с. 92–93.

Wesling V., Schram A., Rekersdrees T. Высокочастотная сварка мартенситной горячекатаной ленты, с. 96–99.

Spiegel-Ciobanu V.-Е. Болезнь Паркинсона и воздействие марганца в процессе сварки, с. 106–111.

Ralph B., **Yeo G.** Усовершенствованное планирование при выполнении полуавтоматических и автоматических сварных соединений. с. 112.

Bach F.-W. et al. Ультразвуковая пайка с нагревом пламенем алюминиевых сплавов, с. 124–127.

WELDING JOURNAL (США) 2006. — Vol. 85, № 2 (англ. яз.)

Morrett B., Giese B. Устранение неисправностей при дуговой сварке плавящимся электродом в среде защитного газа, с. 26–27.

Cullison A. et al. Выставка FABTECH International & AWS Welding Show, c. 28–35.

Woodward H. M. Памятники в металле — олимпийская сказка, с. 36–39.

Chang Y. H. Усовершенствование процессов дуговой сварки плавящимся и вольфрамовым электродом с подачей разных защитных газов, с. 41–43.

Woodward H. M. Молодой сварщик из Техаса получил известность благодаря своим художественным изделиям из металла, с. 44–46.

^{*} Раздел подготовлен сотрудниками научной библиотеки ИЭС им. Е. О. Патона. Более полно библиография представлена в Сигнальной информации (СИ) «Сварка и родственные технологии», издаваемой в ИЭС и распространяемой по заявкам (заказ по тел. (044) 287-07-77, НТБ ИЭС).

Rowe M. D. Систематизация стойкости деформируемых суперсплавов к образованию трещин при деформационном старении, с. 27–34.

Wahab M. A. et al. Экспериментальное и численное моделирование допустимых сил в сварных соединениях, выполненных дуговой сваркой металлическим электродом в среде защитного газа, с. 35–43.

WELDING JOURNAL (CIIIA) 2006. — Vol. 85, № 3 (англ. яз.)

Arbegast W. J. Сварка трением с перемешиванием после десятилетнего развития, с. 28–35.

Hou Z. et al. Анализ контактной точечной сварки, с. 36–40.

Defalco J. Сварка трением с перемешиванием по сравнению со сваркой плавлением, с. 42–44.

Gould J. E., Chuko W. Обзор разработок оборудования для точечной сварки качающихся рычагов, с. 46–53.

Ding J. et al. Сварка трением с перемешиванием была выбрана в NASA для соединения многочисленных компонентов, с. 54–59.

Dally J. Установки для точечной сварки качающихся рычагов, с. 60–61.

Abson D. J. et al. Обзор исключения из норм для термообработки после сварки, с. 63–69.

Cho Y. et al. Расчет экспериментального анализа и оценка лепестков швов, выполненных контактной точечной сваркой, с. 45–51.

Harwig D. D. et al. Характеристики дуги и скорость плавления в процессе дуговой сварки металлическим электродом в защитном газе переменной полярности, с. 52–62.

Chang J. et al. Моделирование методом конечных элементов для прогнозирования влияния раковин на теплостой-кость силового устройства, с. 63–70.

WELDING JOURNAL (США) 2006. — Vol. 85, № 4 (англ. яз.)

Stol I. et al. Возврат к старому — применение сварки плавящимся электродом в защитном газе погруженной дугой при выполнении роликовых швов в нахлесточных соединениях. с. 28–33.

Johnsen M. R. et al. Устройства подачи проволоки с микропроцессорным управлением, с. 34–36.

Okamoto K. et al. Сварка трением с перемешиванием для соединения разнородных алюминиевых сплавов, с. 38–41.

Wilsdorf R. et al. Сварка алюминиевых труб малого и большего диаметра на переменном токе, с. 42–43.

Borchert N. Повышение квалификации специалистовсварщиков, которые будут привлечены к строительству крупной установки по переработке ядерных отходов, с. 77–80.

Starkey E. Краткий исторический обзор по алюминию, с. 81–83.

Sudha C. et al. Микроструктура и микронеоднородность твердой зоны в разнородных соединениях из хромомолибденовой стали, с. 71–80.

Chang S. Y. et al. Исследование пайки покрытий из оксидов индия и олова на медные подложки, с. 81–83.

Wang G., Barkey M. Е. Рентгенографическое исследование процесса роста усталостных трещин точечных швов, с. 84–87.

ZVARANIE-SVAROVANI (Словакия) 2005. — Roc. 54, № 10 (слов. яз.)

Bosansky J. et al. Основные физико-металлургические механизмы ухудшения свойств 3ТВ стальных сварных соединений. с. 269–279.

Pilous V. Промежуточные слои, плакированные высокопрочной сталью, с. 274–279.

Mucha M. Производительность дуговой сварки под флюсом и ее влияние на некоторые аспекты качества швов, с. 280–284.

Eckhart E., Zatko M. Определение твердости с помощью портативного оборудования, с. 285–289.

ZVARANIE-SVAROVANI (Словакия) 2005. — Roc. 54, № 11–12 (слов. яз.)

Janota M. Плотность сварочного тока и рекомендуемые параметры точечной контактной сварки низкоуглеродистых стальных листовых материалов, с. 301–304.

Kalna K. Проектирование стальных конструкций с точки зрения предельного состояния усталостного разрушения — недостатки стандартов EN 1993-1-9 и EN 1993-1-10, с. 304–311.

Bartos M. Применение сварки ТИГ в энергетике, с. 312–314.

Vrbensky J. et al. Ремонтная сварка компонентов оборудования давления без термообработки после сварки. Ч. 2. Ухудшение свойств основного металла в ЗТВ и средства их восстановления, с. 315–319.

ZVARANIE-SVAROVANI (Словакия) 2006. — Roc. 55, № 1 (слов. яз.)

Declercq F. Испытания по сварке с целью сравнения обычного пневмопривода с электромеханическим сервоприводом с датчиком регулирования усилий, с. 3–7.

Janota M. Анализ применения сварочных роботов в промышленности Словакии, с. 8–10. Vitasek M., Vrbensky J. Ремонтная сварка компонентов оборудования давления без термообработки после сварки. Ч. 3. Ремонт сварных соединений, с. 11–15.

