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Introduction

Optimal packing problem is a part of operational research and computational geometry [1]. It has a
wide spectrum of applications in modern biology, mineralogy, medicine, materials science, nanotechnology,
robotics, pattern recognition systems, control systems, space apparatus control systems, as well as in the
chemical industry, power engineering, mechanical engineering, shipbuilding, aircraft construction, civil en-
gineering, etc. At present, the interest in finding effective solutions for packing problems is growing rapidly.
This is due to a large and growing number of applications and an extreme complexity of methods used to
handle many of them.

These problems are NP-hard [2], and, as a result, solution methodologies generally employ heuristics
e. g., [3—13]. Some researchers develop approaches based on mathematical modeling and general optimiza-
tion procedures; e. g., [14-19].

We consider a practical problem of packing a collection of a given non-identical convex polytopes
into a rectangular container of minimal volume.

In the paper [16] authors present an efficient solution method for packing polytopes within the
bounds of a polytope container. The central geometric operation of the method is an exact one-dimensional
translation of a given polytope to a position which minimizes its volume of overlap with all other polytopes.
The translation algorithm is used as part of a local search heuristic and a meta-heuristic technique, guided
local search, is used to escape local minima. Additional details are given for the three-dimensional case and
results are reported for the problem of packing polytopes in a rectangular parallelepiped. Utilization of con-
tainer space is improved by an average of more than 14 percentage points compared to previous methods
proposed in [20]. However, in the experiments the largest total volume of overlap allowed in a solution cor-
responds to one percent of the total volume of all polytopes for the given problem.

Our approach is based on mathematical modeling of relations between geometric objects and thus
reducing the packing problem to a nonlinear programming problem. To this end we use the phi-function
technique (see e. g. [21]) for analytic description of objects placed in a container taking into account their
continuous rotations and translations. At present phi-functions for the simplest 3D-objects, such as paral-
lelepipeds, convex polytopes and spheres are considered in [22, 23]. Some of phi-functions (especially for
3D-objects, i.e. polytopes) happen to be rather complicated, analytically (involve a lot of radicals, operations
of maximum), and difficult in practical use (to apply NLP-solvers).

In this paper we apply the concept of phi-functions, extending their domains by including auxiliary
variables. The new functions, called quasi-phi-functions, can be described by analytical formulas that are
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substantially simpler than those used for phi-functions, for some types of objects, in particular, for polytopes.
In addition we construct an adjusted phi-function for describing distance constraints for a pair of polytopes.

One way to tackle the packing problem is use the existing phi-functions for rotating polytopes
described in [22]. In the paper we propose alternative way to solve the problem which is based on quasi-phi-
functions [24], is capable of finding a good local-optimal solution in reasonable computational time. The use
of quasi-phi-functions, instead of phi-functions, allows us to simplify non-overlapping, as well as, to
describe distance constraints, but there is a price to pay: now the optimization has to be performed over a
larger set of parameters, including the extra variables used by our new functions, but this is a small price. We
believe our quasi-phi-functions and our optimization algorithm described below are more flexible and
efficient than other techniques.

The paper is organized as follows: in Section 2 we formulate the polytope packing problem. In Sec-
tion 3 we define our quasi-phi-functions (adjusted-quasi-phi-functions) for an analytical description of non-
overlapping, containment and distance constraints in the problem. In Section 4 we propose a mathematical
model as a nonlinear programming problem by means of quasi-phi-functions. In Section 5 we develop a so-
lution algorithm, which involves a fast starting point algorithm and efficient local optimization procedures.
In Section 6 we present our computational results for some new instances and several instances studied be-
fore. In Section 7 we give some conclusions.

2. Problem formulation

We consider here a packing problem in the following setting. Let € denote a rectangular domain
Q={(x,y,2)€ R:0<x<[0< y<w,0<z<h}. It should be noted that each of the three dimensions (/ or
w or i) may be fixed. In particular three of dimensions of /, w, h may be variable. Suppose a set of polytopes
Ki,ie {1,2,...,n} =1, is given to be placed in Q without overlaps. Each polytope K; is defined by its verti-
ces pij, Jj=1,....,m;, whose values are fixed. With each polytope K; we associate its local coordinate sys-
tem whose origin is called a pole of the polytope. Without loss of generality, we assume that the pole of a
polytope K; coincides with the center point of its circumscribed sphere S; of radius r,. We also use a fixed
coordinate system attached to the container €.

The location and orientation of polytope K; is defined by a variable vector of its placement
parameters (v;, 0;). Here v; = (x;, y;, z;) is a translation vector, 0; = (8;', 07 67) is a vector of rotation
parameters, where 8';, 6%, 0°; are appropriate angels from axis OX to OY, from axis OY to OZ and
from axis OX to OZ from axis OX to OY, from axis OY to OZ and from axis OX to OZ in the local
coordinate system of polytope K;.

The translation of polytope K; by vector v;, the rotation of polytope K; by vector ; is defined
by Kiu)={pe R :p=v,+M®)p°, vp’e K}, K denotes the non-translated and non-rotated
polytope K; with A; = 1, M(6;) = M,(8;")-M,(8)-M(0,;’) is a rotation matrix, where

cos® —sinG, 0 1 0 0 cos8 0 sin®’
M,(0)=|sin®} cosB, 0}, M,(0)=|0 cos®’ —sin6’ |, M,®)=| 0 1 0
0 0 1 0 sin®; cosd’ —sing, 0 cosf’

Between each pair of polytopes K; and K;, as well as, between polytope K; and the walls of domain €
appropriate minimal allowable distances p;; and p; may be given.

Polytope packing optimization problem. Pack the set of polytopes Ki(u;), i € I,, within a rec-
tangular domain Q of minimal volume F = [-w-h taking into account minimal allowable distances.

3. Mathematical modeling of placement constraints

To describe non-overlapping and containment constraints we use quasi-phi-functions and phi-
functions. To describe distance constraints we apply adjusted quasi-phi-functions and adjusted phi-functions.
Clear definitions of a phi-function (a quasi-phi-function), an adjusted phi-function (an adjusted quasi-phi-
function) one can find in papers [21, 24].
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To describe non-overlapping constraint intK, (intK, =, we

use quasi-phi-function ®"**2 for two convex polytopes K; and K.

Let K;(u;) and K,(u,) be convex polytopes, given by their verti-
cesp,i=1,...,m,and p’j=1,...,m.

Let P(up)={(x,y,2):¥Yp=0-x+P-y+7vy-2+U, <0} be a half-

space, where o0=sin® ,, p=-sin®,, cos0 ,, yY=cos0,, cos8 , (note

that o +B°+y* =1) and u, =(6,,,0, .1u,).

Suppose ®*1* (u,,up) is the normalised phi-function for K;(u;)

and a half-space P(up) [21] and ®*** ) (u,,up) is the normalised phi- Fig. 1. A separating plane for
two convex polytopes K; and K;

function for  Ky(u,) and P (u p) = R \int P(u »)s where

" w,up) = min y,(p) and " (uy,u,) = min (<Y (p}))
A function defined by
&K w1y up) = min{ D5 (1), @5 (uy, 1)), (1)
is a quasi-phi-function for K,(u;) and K,(u,) [24].
Figure 1 shows that if two convex polytopes K; and K, do not have common points then there is al-
ways exist additional variables u, =(6,,.0, ,1L,) such that max oMK 50,

up

Thus, max ®51*: >0 & int K, Nint K, =@ . We follow here the important characteristic of a quasi-

phi-function: if ®%%2 > () for some up, then int K, NintK, =2 .
Let dist(K,,K,)= min d(a,b), where d(a, b) stands for the Euclidean distance between points

aeK,,beK,
a,be R® and let p1, >0 denote minimal allowable distances between polytopes K;(u;) and K>(u,).

To describe distance constraint dist(K,,K,)>p;,, we use adjusted quasi-phi-function @', for poly-
topes K;(u;) and K»(u,).
An adjusted quasi-phi-function for convex polytopes K;(u;) and K,(u,) is derived by

R (uy,uy,up) = Pk (uy,uy,up) =0.5p; . @

Thus, max®“*: >0 o dist(K,,K,) > p;, .
u'eU

It follows from (2) that &2 (u,,u,,u,) —0.5p;, = 0= dist(K, K,) = p;, -

To describe containment constraint K, c Q < intK,1Q =& we use phi-function Pre for a
convex polytope K,(u,) and object Q" = R* \intQ.

Let K;(u;) be convex polytope, given in its local coordinate system by their vertices pil, i=1...m,
where p! =(pl. pyi. Pl)-

A phi-function for a convex polytope K,(u,) and object Q" may be defined as

pre (1) =min{ min ¢, i(ph.j=1,...6}. (3)
<i<m
011 (D)) =%+ Py P (p) =~(x + py) +1, ®(PD) =Y+ Py
(P14(P,'l)=—(y1+P;i)+W’ 05(p)) =2+ Pl Pi6(p)) =~z + pl)+h.
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To describe containment constraint taking into account minimal allowable distance dist(K,,Q")>p;
we use adjusted phi-function CBI for a convex polytope K,(u,) and object Q.
An adjusted phi-function for a convex polytope K,(u,) and object Q" is defined by
S (u) =@M (u)~py. )

4. Mathematical model
First we assemble a complete set of variables for our optimization problem. The vector u € R° of all

our variables can be described as follows: u = (I,w,h,u,,u,,...,u,,T)€ R°, where (I, w, h) denote the variable
dimensions (length, width and height) of the rectangular container Q and u, = (v,,0,) = (x;,,,7,,0,,087,07) is
the vector of placement parameters for the polytope K;, i € I,,. Here T = (ulP ,...,uf) denotes the vector of ad-
ditional variables, where u’; = (GX]; ,9},1; , u’; ), are additional variables for the k™ pair of polytopes, according

to (1)-4), k=1,...,m, m=0.5(n—1)n. Lastly we derive the number of the problem variables
6=3+6n+3m.
Now a mathematical model of the polytope packing optimization problem may be stated in the form

min F(u), )
ueWcR°®
W={ueR®:®;>0,®,20,i=12...n,j=12..nj>i}, (6)

where F(u) = l-w-h, CTD; is a radical free adjusted quasi phi-function (2) defined for the pair of polytopes K;
and K;, taking into account minimal allowable distance [ CIDZ is a radical free adjusted phi-function (4) de-

fined for the polytope K; and the object o (to hold the containment constraint), also taking into account
minimal allowable distance p, .

If p;=0 and p; =0 we replace the adjusted quasi-phi-function CE:.,. by a radical free
quasi-phi-function <I>;.j defined by (1) for each pair of polytopes to enforce the non-overlapping

constraint and the adjusted phi-function & with a radical free phi-function ®, defined by (3) for

each polytope and the object Q to enforce the containment constraint.

Our problem (5)—(6) is a constrained multiextremal optimization problem. Each quasi-phi-function
inequality in (6) is presented by a system of inequalities with infinitely differentiable functions. The frontier
of W is made of nonlinear surfaces containing valleys and ravines. Our model is non-convex and continuous
nonlinear programming problem. Problem (5)—(6) is an exact formulation for the polytope packing optimiza-
tion problem.

5. A solution strategy

Our solution strategy involves the following steps:

1) Generate a number of starting points from the feasible set of the problem (5)-(6). We employ a
new starting point algorithm (SPA). See Subsection 5.1.

2) Search for a local minimum of the objective function F(u) of problem (5)-(6), starting from each
point obtained at Step 1. We employ a special optimisation procedure — Local Optimization with Feasible
Region Transformation (LOFRT-3D). See Subsection 5.2.

3) Choose the best local minimum from those found at Step 2. This is our best solution of the prob-
Iem (5)—(6).

An essential part of our local optimization scheme (Step 2) is the LOFRT procedure that reduces the
dimension of the problem and computational time. The reduction scheme used by our LOFRT algorithm is
described below. The actual search for a local minimum is performed by a standard IPOPT algorithm [25],
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which is available at an open access noncommercial software depository (https://projects.coin-
or.org/Ipopt) .

5.1 Starting point algorithm (SPA)

In order to find a starting point «” that belongs to the feasible set W we apply the following algorithm
based on homothetic transformation of polytopes.

The algorithm consists of the following steps:

1. Choose starting dimensions (length and width) for the container Q° They must be sufficiently

large to allow for a placement of all our polytopes with required distance constraints within Q°. For example,
we can set

n
P=w'=1"=h"= 22’} +((m+p~, p~ =max{max p;, max p; }.
ol i,jel, iel,
2. Generate randomly, within Q°, a set of n randomly chosen center points (x,”,y,z"),

i=1,2, ..., nof circumbsribed spheres S; of radius Ar;. We assume here that A is a homothetic coefficient for
all our spheres S;and 0 <A < 1.

3. Take the starting point u = (xio, yio, zio,...,x;,o, y;lo, zf,?ﬁo =0) and solve the following auxiliary op-

timization problem, assuming that [ = ° w=w"and h = h"

max A, (7
u'ew'
W ={ueR™ :®% >0,0% >0,i<j=12,..n1-L>0,A>0}, (8)

where u” = (X, Y1, ZpssXps Vs 20N 5
O™ = (= x )+ (=¥ + (g —2) = (M +p +Ar)’,
is an adjusted phi-function for sphere S; of radius Ar; and sphere S; of radius Ar,
d5 =min{@,.k =1,....6},
@ =—x; +1° A5, —p;, 0= X =M =P, @5 ==y; +w' —Ai;=p;,
Q=Y —Ar,—p;, Qs5;=—z, +h’ = A, —p;, Q=2 —Ar,—p;
is an adjusted phi-function for sphere S; of radius Ar; and object Q.

We denote the point of global maximum of problem (7)—(8) by u' = (xi*, yi*, Zi*,...,x:, y:, z: ,X*) .

Remark. Note that if an optimal global solution point is found, then A" = 1. The solution automati-
cally respects all the non-overlapping and containment constraints.

Our use of homothetic transformations of spheres here is similar to the use of variable radii for opti-
mal packing of nD-spheres, which was proposed in [26].

4. Form feasible starting point u’ = (lo, wo,ho,uf,ug,...,ug,‘co) for problem (5)—(6):

— Form a vector of starting placement parameters ul.o :(xl.0 ,yl.0 ,zl.o ,9?) for each polytope K

i=1,...,n, where (x? , y,.0 , z,.o )= (x;*, y;*,z;.*) and 9? = (6?2,99 e?v) are randomly generated rotation parame-

ters.
— Find values for the vector of additional variables t° = u’".....u""), u® = (Gx(lk .0, %) by a

P

special optimization procedure that solves an auxiliary problem of searching for max CTDZJ (u?,u?,uk )
u,€ R® r
for each quasi-phi-function (or, respectively, adjusted phi-function) that is involved in (6), under
fixed parameters u? =(x?,y?,z?,9?) ,i=1,2,...,n.
To solve the above auxiliary problem we use the following model:
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Fig. 2. Illustration of steps 1)-4) in SPA:
a) —step 1; b) —step 2; ¢) —step 3; d) — step 4

max, s.t.u'e WH ,
where WL; = {(ul; W e R* :Cf);j (u?,u?,ui )y>u}, pe R', is a new auxiliary variable, ul; is the vector of auxil-
iary variables and (u?,u?) are fixed placement parameters for our adjusted phi-functions (respectively,
quasi-phi-functions), k=1, ..., m.

As a result we form a feasible starting point u” = (°,w’,h%,u),uj,....u’,7°). Thus all our adjusted

quasi-phi-functions (or quasi-phi-functions) and adjusted phi-functions (or phi-functions) for our polytopes
at the point u° take non-negative values.

Figure 2 gives illustrations to steps 1)—4) in our starting point algorithm SPA.

Lastly, our algorithm returns the vector u° as a starting point for a subsequent search for a local
minimum of the problem (5)—(6).

5.2 Algorithm of Local Optimization with Feasible Region Transformation for 3D packing

(LOFRT-3D)

The algorithm based on LOFRT procedure proposed in [27] for optimal ellipse packing problem. We
extended the algorithm to 3D case for packing of convex polytopes.

Let u’ € W be one of the starting points found by SPA. The main idea of the LOFRT-3D algorithm
is as follows.

First we take sphere S; of radius r; circumscribed around each polytope K;, i = 1, 2., ..., n. Then we

extend the radius of each sphere S; by 0.5p™ (derived above at step 1 of SPA) and for each extended sphere

S; construct an "individual" rectangular container €, > S, D K; with equal half-sides of length

r+0.5p" +¢€,i=1,2,...,n, so that §;, K; and Q, have the same center (xio, y?, z?). We take the epsilon pa-

rameter of the LOFTR-3D procedure as € = z r./n . Further we fix the position of each individual container
i=1

Q; and let the local optimization algorithm move the extended sphere S; (and the appropriate polytope K;)

only within the individual container Q. It is clear that if €; and Q; do not overlap each other (i.e.

®%? >0), then we do not need to check the non-overlapping constraint for the corresponding pair of poly-
topes K; and Kj, taking into account distance constraints. Here

&% = max{gf, k =1.....6},
where, assuming Rl.j:(r,.+rj)+p_+2£,
Oy =0 —xD=Ry =07y -R 9= -2 R,
0=l K. G =R, 6=k,
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By analogy if Q; and Q: do not overlap each other (i. e. D% > 0), then we do not need to check
the containment constraint for the corresponding polytope K; and
Q. ={(x,y,2)€e R :e<x<l-ge< y<w-g,e<z<h—¢}.

Appropriate phi-function %% for polytope K; and Q: =R’ \intQ, has the form
&% = min{y!,k =1...6},

where assuming R, =r, +p~ +2¢,
“r’zl‘zxio_Ri’ ‘Vizzyl'o_Rw y; =z —R,
‘V?:_xio"'l_Rw \Vf:_)’,‘o"‘w_Rn W:’G:_Zio-'_h_Ri'
The above key idea allows us to extract subsets of our feasible set W of the problem (5)—(6) at each

step of our optimization procedure as follows.
We create an inequality system of additional constraints on the translation vector v, =(x;,y,,z;) of

each polytope K; in the form: 5 > 0,i=1,2,...,n, where
5 =min{—x, +x’ +&-y, + ' +€~7, + 2 +&x —x’ +&y, -y +&27 — 2z +¢€},
is the phi-function for the extended sphere S; and Q;; = R*\intQ,,.

We generate an “artificial” subset I} of the following form:

(0)

M ={ueR°% : —x,+x” +£20, -y, +yV +£>0, —z,+7” +£>0,

x,—x”+e2>0, y,—y ¥ +e>0, z,— 7z +£>0, i=1,..,n}.
Then we form a new subregion W, =W (NI} defined by

W, ={ue RO : @), 20,3, j)e B, @] 20,ic E,, @ 20,i=1,2,..,n,0 2 [y —&,w 2wy —€,h > hy— €},

where B, ={(i, j): @™ <0,i> j=12,.,n}, B, ={i: ®>® <0,i=12,...,n}.
In other words, we delete from the system, which describes feasible set W, quasi-phi-function ine-
qualities for all pairs of polytopes whose individual containers do not overlap and we add additional ine-

qualities 5 >0 , which describe the containment of the extended spheres S; in their individual containers
Q,i=1,2, ..., n Thus, we reduce the number of additional variables by &,. Then our algorithm searches

for a point of local minimum u:;l of the subproblem  min  F(u,, ).
u,, €W R

When the point ufvl is found, it is used to construct a starting point u'" for the second iteration of our

optimization procedure (note that the 6, previously deleted additional variables T, have to be redefined by a
special procedure used in SPA, assuming I” = 1).

At that iteration we again identify all the pairs of polytopes with non-overlapping individual contain-
ers, form the corresponding subset W, (analogously to W;) and let our algorithm search for a local minimum

”;2 e W, . The resulting local minimum usZ is used to construct a starting point «® for the third iteration,
etc.
On the k™ iteration we form starting point " from the local minimum u,, . and solve the

following k™ subproblem on a subset W, =W NII¢ :

min F (uwk ),

,, €W, R
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a) b) ) d)
Fig. 3. Placement of polytopes of LOFRT-3D procedure corresponding to feasible points:

a) — u(o) 5 b) — u;‘ = u(4) 5 C) — uf = u(s) 5 d) — u:)w = M(ZO)

Vg

W, ={ue R°® :®} 20,3, j)e Z, P 20,ie E},
@5 >0,i=1,2,...n,0 21V —g, w2 w* D —g h > p* D —g},
where Ef = {(i, j): @™ <0,i > j=12,...n}, X ={i : ®d™® <0,i=12,...n}.
If the point uka of local minimum of the k™ subproblem belongs to the frontier of an “artificial” sub-
set
I ={ue R™ :—x, +x* "V +£>0~y, + y* P +£>0,~z, + 75" +£>0,
X; —xl.(k_l) +€20,y, - yl.(k_l) +£20,z —z,-(k_l) +e20,i=1,..,n},

1
(.e. u;k € frI1} ), we take the point uka =u") as a center point for a new subset IT¢,, and continue our
optimization procedure, otherwise (i. e. u::k € intH’g ) we stop our LOFRT-3D procedure.

We note that dist(uka ,
accuracy of IPOPT (10™). Thus, we may conclude that the stopping condition of the LOFRT procedure is
always reached in a finite number of iterations.

We claim that the point u =u™" =(uka,12)e R° is a point of local minimum of the problem

ukaﬂ )ze, if ukaﬂ e frI1¥, and the value of € is considerably greater than the

(5)—(6), where uka € R°°* is the last point of our iterative procedure and ‘EZ is a vector of redefined values

of the previously deleted additional variables T, € R°* (the values can be redefined by the special procedure
used in SPA). The assertion comes from the fact that any arrangement of each pair of polytopes K; and K;
subject to (i, j)e Z\E{ guarantees that there always exists a vector T, of additional variables such that

&);j 20,3, j)e E\Ef at the point u®" . Here & = {(, j),i > j=12,...,n}. Therefore the values of additional
variables of the vector T, have no effect on the value of our objective function, i.e F (uka )=F (u(k)*) . That

is why, indeed, we do not need to redefine the deleted additional variables of the vector T, at the last step of

our algorithm.

So, while there are O(n®) pairs of polytopes in the container, our algorithm may in most cases only
actively controls O(n) pairs of polytopes (this depends on the sizes of polytopes and the value of &), because
for each polytope only its “e-neighbors” have to be monitored.

The epsilon parameter provides a balance between the number of inequalities in each nonlinear pro-
gramming subproblem and the number of the subproblems which we need to generate and solve in order to
get a local optimal solution of problem (5)—(6). The LOFTR-3D procedure allows us to reduce considerably
computational costs (time and memory).

Thus our LOFRT-3D algorithm allows us to reduce the problem (5)—(6) with on’) inequalities and a
O(n*)-dimensional feasible set W to a sequence of subproblems, each with O(n) inequalities and a O(n)-

62 ISSN 0131-2928. Ilpoon. mawunocmpoenus, 2015, T. 18, Ne 2



[MTPUKIIAAHASI MATEMATUKA

Fig. 4. Local optimal placement Fig.5. Local optimal placement
of polytopes in Example 1: of polytopes in Example 2:
a)—p =0;b)-p =15 a)—-p =0;b)—p =15

dimensional solution subset W,. This reduction is of a paramount importance, since we deal with nonlinear
optimization problems.

6. Computational results

Here we present a number of examples to demonstrate the efficiency of our methodology. We have
run our experiments on an AMD Athlon 64 X2 5200+ computer, and for local optimization we used the
IPOPT code (https://projects.coin-or.org/Ipopt) developed by [25]. We take sizes of polytopes from paper
[20] and set € = 5 for LOFRT-3D procedure in our examples.

Example 1. We consider the collection of polytopes of example 1 given in [20]. Figure 4 shows the
local optimal placement of n=7 convex polytopes. The container has dimensions and volume: a)
(I',w', i) = (14.875640, 7.000000, 16.322287) and F(u')=1699.63 with p =0 (Fig.4,a); b)
(', w', h’) = (12.214109, 22.585451, 10.119288) and F(u") = 2791.52 with p_ = 1.5 (Fig. 4, b).

Example 2. We consider the collection of polytopes of example 2 given in [20]. Figure 5 shows the
local optimal placement of n =12 convex polytopes. The container has dimensions and volume: a)
(', w', 1) = (19.062599, 11.588046, 14.178271) and F(u')=3131.96 with p =0 (Fig.5,a); b)
(I',w', i) = (16.474352, 18.375541, 16.930069) and F(u') = 5125.15 with p~ = 1.5 (Fig. 5, b).

Example 3. We consider the collection of polytopes of example 3 given in [20]. Figure 6 shows the
local optimal placement of n =25 convex polytopes. The container has dimensions and volume: a)
(I',w', h") = (17.215330, 18.020337, 18.542389) and F(u')=5752.33 with p =0 (Fig. 6,a); b)
(I',w', h) = (21.794149, 22.043191, 20.602907) and F(u") = 9897.9 with p~ = 1.5 (Fig. 6, b).

For each the example the minimal volume of the container found by our method happens to be
smaller than the best solution reported in [20]. The improvement is 65%, 43.7% and 30.3% in Examples 1, 2
and 3 respectively.

Example 4. We generate a collection of n = 98 convex polytopes, consisting of the 7 types of poly-
topes of example 1 given in [20] and taken by 14 of each type. Figure 7 shows the local optimal placement of
n=98 convex polytopes. The container
has dimensions (I, w', k") = (30.932420,
28.189778, 26.506470) and  volume
F(u') =23113.06.

7. Concluding remarks

Now, using our radical free
quasi-phi-functions and phi-functions we
can develop exact nonlinear program-
ming model for optimal packing of con-
vex polytopes taking into account dis-
tance constraints and applied our meth-
odology to search for “good” local opti- Fig. 6. Local optimal placement of polytopes in Example 3:
mal solutions. The values of the objective a)-p =0;b)-p =1.5
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function, as well as, the computational time reported in Section 6 for
several examples is achieved presently, but we expect that it will be re-
duced in the future. The methodology may be extended for a case of
non-convex polytopes.
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