# ТРИПЛЕКСНАЯ ОБРАБОТКА ПОКРЫТИЙ ИЗ Al-Ni

Б.П. Гриценко, Н.А. Погребняк<sup>\*</sup>, М.К. Кылышканов<sup>\*\*</sup>, А.Д. Погребняк<sup>\*</sup>, С.М. Дуванов<sup>\*\*\*</sup>, В.В. Понарядов<sup>\*\*\*\*</sup>

Институт физики прочности и материаловедения РАН, Томск Россия

\*Сумской институт модификации поверхности, Сумы Украина \*\*Восточно-Казахстанский университет, Усть-Каменогорск Казахстан \*\*\*Институт прикладной физики НАН Украины, Сумы Украина \*\*\*\*Белорусский государственный университет, Минск Беларусь Поступила в редакцию 02.08.2005

В работе исследовались покрытия из Al-Ni, нанесенные высокоскоростной плазменной струей на подложку из технической меди с помощью Резерфордовского и обратного рассеяния ионов (POP и OP), ядерных реакций, растровой электронной микроскопии (PЭM) с микроанализом, рентгенофазового анализа (PФA), микротвердости и адгезии. Было обнаружено в нанесенном покрытии концентрация Ni около 85%, остальные 15% относятся к Ni<sub>3</sub>Al, Ni<sub>3</sub>C и, возможно, NiO. Адгезия покрытия к подложке составляет от  $28 \pm 2,2$  до  $45 \pm 3$  MPa, а микротвердость различается очень сильно, от  $65 \pm 3,5$  кг/мм<sup>2</sup> до  $(3 + 4,2)x10^2$  кг/мм<sup>2</sup>. Показано, что в результате имплантации W в поверхностном слое обнаружено до 7,11 at%. После облучения электронным пучком W проникает вглубь покрытия и в результате плавления поверхностного слоя покрытия концентрация уменьшается. Определены эффективные коэффициенты диффузии W в покрытии.

### введение

В конце прошлого столетия значительное развитие получили лучевые технологии (лазерное изучение облучения с помощью пучков электронов, ионов, а также потоков плазмы), что позволило эффективно повысить надежность и долговечность конструкционных материалов. Одним из перспективных путей решения проблемы является нанесение на поверхность изделия достаточно толстых покрытий – от десятков до сотен микрон – из порошковых материалов [1-5]. К одному из основных классов порошковых материалов, дающих возможность защиты поверхности от коррозии и износа, относят порошки на основе никеля [1, 6, 7]. С целью формирования поверхности с широким комплексом требуемых характеристик часто применяют импульсные потоки плазмы, дающие возможность нагревать как напыляемый материал, так и подложку до нужной для хорошей адгезии температуры [1-3]. Поэтому очевиден научный и практический интерес к результатам исследования покрытий на основе никеля, нанесенных импульсно-плазменным потоком на более дешевые материалы. В данной работе ставилась цель получить покрытия с образованием интерметаллидов никеля и алюминия, имеющих достаточно высокие служебные характеристики, а также исследовать влияние имплантации ионов и последующего плавления покрытия электронным пучком.

## МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве исходного материала для получения коррозионно-стойких покрытий использовали порошок ПТ-НА-001 (95% Ni, 5% Al). Размер частиц порошка в исходном состоянии составлял 47 ÷ 89 мкм. Для нанесения покрытия использовали модифицированный вариант плазмотрона "Импульс-5". Расход компонентов горючей смеси составлял 2 м<sup>3</sup>/ч при частоте инициирования детонации 4 Гц. Скорость плазменного потока достигала 8 км/ч при температуре плазменной струи 3·10<sup>4</sup> K, по плазменной струе пропускался ток до 2 кА для увеличения температуры. В ка-

честве эродирующего электрода в плазмотроне использовали электрод из нихрома [2]. Толщина сформированного покрытия, нанесенного с помощью высокоскоростной импульсно-плазменной струи на подложку Си, составляла 100 – 120 мкм.

Имплантация ионов *W* проводилась на ускорителе "Диана" при ускоряющем напряжении 60 кВ дозой 5·10<sup>17</sup>см<sup>-2</sup> в вакууме ≈10<sup>-3</sup> Па. Облучение электронами проводили на установке "У-112" при ускоряющем напряжении 30 кВ в режиме частичного плавления и полного проплавления покрытия. [7].

Исследование морфологии поверхности покрытия проводилось в сканирующем электронном микроскопе РЭММА-102. Качественный и количественный микроанализ поверхности выполняли с помощью рентгеновского волнового спектрометра WDS-2 [8]. Были проведены исследования элементного состава с помощью Резерфордовского обратного рассеяния (РОР) на ускорителе в ОИЯИ, Дубна, Московская область [8]. Анализ легких примесей, в первую очередь углерода, а затем кислорода был проведен методом упругого резонанса ядерных реакций (УРЯР). Фазовый состав поверхности проводился методом рентгеноструктурного анализа с помощью рентгеновского дифрактометра ДРОН-2 в медном излучении [9]. Были сделаны поперечные шлифы и с помощью микротвердомера ПТМ-3 при нагрузках от 20 до 100 г/мм<sup>2</sup> были проведены механические испытания модифицированных образцов [10]. Адгезию измеряли путем скрабирования алмазной пирамидкой поверхности покрытия к подложке. После имплантации ионов Ши обработки электронным пучком использовали обратное рассеяние ионов с энергией 1,5 МэВ для анализа диффузии Ши исследования стехиометрии.

### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Так как свойства материала во многом зависят от состояния его поверхности, нами были проведены исследования морфологии покрытий. Полученные результаты свидетельствуют о формировании типичного рельефа поверхности покрытия, наблюдаемого при осаждении порошка высокоскоростной импульсно-плазменной струей на подложку (рис. 1а). Получаемые таким образом покрытия имеют очень развитый рельеф с высокой степенью шероховатости. На поверхности наблюдается чередование серебристо-серых участков с вкрапленными в них мелкими серыми буграми, напоминающими слипшиеся и не полностью оплавленные порошинки. Переходя к большим увеличениям (рис. 1б),



Рис. 1. Структура поверхности порошкового покрытия, нанесенного импульсно-плазменной струей: а) – общий вид поверхности; б) – участок поверхности с большим разрешением (цифрами указаны участки, в которых проводился микроанализ).

можно четко видеть присутствие на поверхности множества впадин неопределенной формы и ярких светящихся участков. Согласно данным микроанализа, доминирующим элементом в этих областях является алюминий, причем на этих участках его концентрация примерно на порядок выше концентрации основного компонента порошка – никеля. На рис. 2 приведены спектры, полученные с поверхности покрытия в точках, указанных на рис. 1б. Интегральная характеристика этой области (рис. 2а) свидетельствует о том, что основными составляющими покрытия являются Ni и Al. Кроме них на поверхности имеются такие элементы, как Fe, Cr, Cl, Ca и Si (табл. 1). Fe, Cr и Si могли осесть на поверхность в камере сгорания плазмотрона, а Санеконтролируемая примесь, вероятно попавшая на поверхность покрытия на воздухе.

Соотношение концентраций Ni и Al заметно меняется на разных участках поверхности: на темных и серых участках концентрация Ni значительно выше, чем концентрация Al. На рис. 26, в приведены спектры, подтверждающие данное соотношение. По результатам, представленным в таблице, можно сказать, что доминирующим элемен-

ТРИПЛЕКСНАЯ ОБРАБОТКА ПОКРЫТИЙ ИЗ AI-Ni



Рис. 2. Спектры элементного анализа состава участка порошкового покрытия рис. 16: a) – интегральная характеристика; б) – локальный элементный анализ поверхности покрытия в точке 5; в) – локальный элементный анализ поверхности покрытия в точке 7.

Таблица 1

| Al     | Si     | S     | Cl     | Ca    | Ti    | Cr    | Fe    | Ni     |
|--------|--------|-------|--------|-------|-------|-------|-------|--------|
| 43,444 | 0,000  | 0,014 | 0,191  | 0,570 | 0,000 | 0,460 | 0,670 | 54,651 |
| 21,411 | 24,729 | 0,830 | 0,671  | 2,682 | 1,226 | 0,131 | 1,468 | 46,852 |
| 22,451 | 2,403  | 0,000 | 0,141  | 0,132 | 0,000 | 0,293 | 0,472 | 74,109 |
| 60,291 | 0,000  | 0,000 | 0,000  | 0,101 | 0,000 | 0,268 | 1,506 | 37,834 |
| 19,548 | 2,435  | 0,000 | 0,170  | 0,094 | 0,000 | 0,252 | 0,324 | 77,177 |
| 61,780 | 2,867  | 0,000 | 0,096  | 0,151 | 0,068 | 0,259 | 0,352 | 34,427 |
| 71,524 | 2,109  | 0,000 | 0,127  | 0,000 | 0,396 | 0,259 | 0,352 | 34,427 |
| 41,107 | 9,360  | 5,214 | 5,920  | 4,097 | 2,177 | 0,139 | 1,574 | 30,412 |
| 42,048 | 2,205  | 0,000 | 0,152  | 0,130 | 0,000 | 0,233 | 0,318 | 54,915 |
| 83,515 | 0,000  | 0,000 | 0,102  | 0,064 | 0,393 | 0,231 | 1,697 | 13,999 |
| 39,18  | 1,730  | 0,236 | 0,235  | 0,348 | 0,233 | 0,705 | 0,769 | 56,726 |
| 48,936 | 0,000  | 0,000 | 0,374  | 0,149 | 0,078 | 0,338 | 0,456 | 49,670 |
| 82,840 | 0,000  | 0,000 | 0,115  | 0,040 | 0,111 | 0,157 | 0,469 | 16,267 |
| 19,245 | 11,301 | 9,337 | 11,130 | 6,247 | 7,597 | 0,072 | 5,959 | 29,112 |

Элементный состав поверхности покрытия (ат.%)

том в приповерхностной области толщиной до 1 мкм является Ni. Дополнительный элементный анализ покрытий был проведен методами POP и УРЯР.

На рис. 3 представлены энергетические спектры упругого резонанса ядерных реакций с начальной энергией α-частиц 1,768 МэВ (а) и обратного рассеяния протонов с начальной энергией протонов 2,02 МэВ (б). Судя по энергетическим спектрам, тонкий приповерхностный слой покрытия состоит из основных составляющих исходного порошка – алюминия и никеля. В покрытии была обнаружена высокая концентрация углерода и кислорода. Наличие полочки в спектре (рис. За) и несовпадение расчетных и экспериментальных данных свидетельствуют об образовании на поверхности интерметаллидных соединений никеля с алюминием, близких по составу к Ni<sub>4</sub>Al. Можно предположить, что в покрытии имеется соединение Ni<sub>3</sub>Al и чистый Ni, что дает в совокупности данный состав поверхности. По полученным спектрам были рассчитаны эффективные профили всех элементов и найдено распределение концентрации составляющих элементов покрытия по глубине (рис. 4). На основании этих данных можно сказать, что поверхность покрытия сильно насыщена кислородом и углеродом, концентрация которых стремительно уменьшается вглубь материала (до глубины 1 мкм), см. табл. 1. На поверхности покрытия зафик-



Рис. 3. Энергетический спектр, полученный методом упругого резонанса протонов с энергией 2,02 МэВ (а); энергетический спектр обратного рассеяния ионов 4He<sup>+</sup> с энергией 1,768 МэВ (б).

сировано наличие Ni в небольшой концентрации (7,2% при h = 37 нм). Ближе к подложке концентрация Ni значительно возрастает (до 65 %), и он становится основным компонентом покрытия. Присутствие высокой концентрации алюминия на поверхности, вероятно, можно объяснить тем, что алюминий является более легкой фракцией с низкой температурой плавления и в плазменной струе он находится, в основном, в расплавленном состоянии. При взаимодействии плазменной струи с поверхностью динамическое воздействие деформирует порошинки Ni, а расплавленная газо-плазменная фаза из Al завершает нанесение покрытия и заполняет поверхность.

Согласно проведенным исследованиям, в состав исходного порошка ПТ-НА-001 входит 93,5% никеля и 6,5 % алюминия. Параметры решеток основных составляющих покрытия соответственно равны:

 $a_{\text{Ni}} = 3,524 \text{ E} (a_{\text{Ta6Ni}} = 3,5238 \text{ E} [9]);$  $a_{\text{Al}} = 4,054 \text{ E} (a_{\text{Ta6Al}} = 4,0484 \text{ E} [9]).$ 

Формирование покрытия сопровождается рядом фазовых преобразований в исходном



Рис. 4. Концентрационные профили распределения составляющих элементов покрытия по глубине, полученные из энергетических спектров РОР и УРЯР.

материале порошка. На рис. 5 представлены фрагменты рентгенограмм порошка в исходном состоянии (а) и сформировавшегося покрытия (б). Установлено, что поверхность покрытия большей частью состоит из атомов Ni (85%). Наряду с основной фазой матрицы порошка в покрытии наблюдаются такие фазы, как NiO (4%) и Ni<sub>3</sub>C (3%). При этом выбранные режимы нанесения покрытий способствуют образованию на поверхности интерметаллидных соединений никеля с алюминием. Нами установлено, что поверхность покрытия в своем составе имеет около 5% Ni<sub>3</sub>Al. На рентгенограмме также четко выявляется наличие на поверхности чистого алюминия (до 3 %).

Сила сцепления покрытия и подложки значительно меняется от участка к участку.



Рис. 5. Рентгенограммы порошка Al-Ni : A – исходное состояние; Б – поверхность порошкового покрытия ( $\Delta$  – пик уменьшен в 3,7 раза; × – пик уменьшен в 3,1 раза).

Проведенные испытания показали, что сила адгезии колеблется в пределах от  $28 \pm 2,2$  до 45 ± 3 МПа. Измерения микротвердости поверхности и поперечного шлифа покрытия показали значительный разброс исследуемой величины. На исследованных участках покрытия значение микротвердости находится в пределах от  $65 \pm 3.5$  кг/мм<sup>2</sup> до  $3.0 \cdot 10^2 \div$ 4,2·10<sup>2</sup> кг/мм<sup>2</sup>. Предполагается, что максимальное значение микротвердость имеет на участках с преобладанием интерметаллидных соединений никеля с алюминием и карбидов никеля, тогда как более низкие значения исследуемой характеристики могут наблюдаться в областях с преобладанием чистого никеля или алюминия, а также небольших добавок железа и хрома, попавших на поверхность покрытия из эродируемого электрода плазмотрона.

После имплантации ионов вольфрама был проведен микроанализ, как на имплантированных участках, так и на участках, облученных электронным пучком. После облучения сильноточным электронным пучком (СЭП) в режиме плавления шероховатость уменьшается, на отдельных участках образуется гладкая поверхность. На снимке, где изображены участки после имплантации W (рис. 6), видно, что шероховатость образцов очень высокая, соответствующая плазменно-детонационному нанесению покрытия. Микроанализ был проведен в точках поверхности, где почти не обнаружено Al, а Ni присутствует в очень больших концентрациях (около 92 ат.%Ni и около 3,5 ат.%Al). В этих областях концентрация *W* составляет 4 ат.%. В других областях имеется 30 ÷ 50 ат.%Аl, здесь концентрация *W* заметно ниже и составляет около 2,7 ат.%. Исследовали также области, где содержание Al доходит до 82 ÷ 92ат.%, где обнаружено уже около 7,11 ат.% W, т.е. наблюдается значительный разброс в концентрации W, Al и Ni на поверхности. После плавления электронным пучком есть участки, где только имеется Al и следы Ni (рис. 7, рис. 8), в этих участках обнаружено W около 2,1% (рис. 10).

После имплантации ионов W (падающая доза составляла  $10^{17}$  см<sup>-2</sup>) в поверхностном слое покрытия из Al-Ni регистрировалось около  $5 \cdot 10^{16}$  см<sup>-2</sup> ионов W (данные OP, рис. 11).



3-3 (точка 1)



3-4 (точки 1 и 2)

Рис. 6. Структура поверхности порошкового покрытия из Al-Ni, нанесенного плазменной струей с последующей имплантацией ионами W, E = 60кB, доза  $5 \cdot 10^{17}$ см<sup>-2</sup>, длительность импульса 200 мкс (точками 1 и 2 указаны участки, в которых проводился микроанализ).



2-1 (точка 4)

Рис. 7. Структура поверхности порошкового покрытия из Al-Ni после имплантации ионов W, E = 60 кB, дозой  $5 \cdot 10^{17}$  см<sup>-2</sup>, длительность импульса 200 мкс с последующим облучением СЭП в режиме плавления, точками 6, 6а, 7 указаны участки, в которых проводился микроанализ с меньшим разрешением.



1 – За (точка 7)

Рис. 8. Структура поверхности порошкового покрытия из Al-Ni после имплантации ионов W, E = 60 кB, дозой 5·10<sup>17</sup>см<sup>-2</sup>, длительность импульса 200 мкс с последующим облучением СЭП в режиме плавления, точками 6, 6а, 7 указаны участки, в которых проводился микроанализ с большим разрешением.



Рис. 9. Спектры элементного анализа порошкового покрытия Al-Ni, нанесенного импульсной плазменной струей с последующей имплантацией ионов W (E = 60 кB, доза  $5 \cdot 10^{17}$  см<sup>-2</sup>, длительность импульса 200 мкс).

Облучение электронным пучком привело к частичному или полному оплавлению покрытия, см. рис. 8. Как видно из микроанализа, рис. 9, (SEM c WDS) концентрация



Рис. 10. Спектры элементного анализа порошкового покрытия Al-Ni, нанесенного импульсной плазменной струей с последующей имплантацией ионов W (E = 60 кB, доза  $5 \cdot 10^{17}$ см<sup>-2</sup>, длительность импульса 200 мкс) и после оплавления с помощью СЭП в режиме плавления покрытия (максимальная концентрация W 2.11 ат.%).



Рис. 11. Спектры резерфордовского обратного рассеяния ионов гелия с начальной энергией 1,5 МэВ, измеренные от образцов *W*-AlNiO. Геометрия эксперимента: нормальный угол падения пучка к поверхности образцов, угол рассеяния – 170°. Стрелками также указаны элементы и соответствующие кинематические границы парциальных спектров для различных элементов.

ионов W доходит до 7,11 ат.%, а концентрация Al колеблется в некоторых (отдельных) местах до 82 ат.%. По всей оплавленной области концентрация Ni доходит до 92 ат.%, а алюминия всего 3,5 ÷ 5 ат.%, а содержание W составляет в этих областях всего 4 ат.%.

На рис. 12 представлены спектры обратного рассеяния ионов гелия, снятые для покрытия Al-Ni имплантированного *W*. Из рисунка видно, что парциальные выходы от имплантированного *W* и элементов покрытия существенно меняются при электронно-



Рис. 12. Профили распределения концентрации *W*-имплантанта по глубине покрытия из AlNi, нанесенного на подложку из Cu с последующим облучением двух пучков электронов с различной плотностью мощности (режимы 1 – 7).

лучевой обработке. Уширение профилей имплантации может быть интерпретирована как его эффективная диффузия или массоперенос в приповерхностных слоях Al-Ni покрытия. Вольфрам сначала по мере увеличения температуры диффундирует вглубь покрытия, затем движется обратно к поверхности покрытия с уменьшением пиковой концентрации. Для двух последних режимов *W* равномерно распределен (растворен) в слое NiAl<sub>2</sub>O<sub>3</sub> с концентрацией всего 0,1 at%.

На рис. 13 (режим 2) и рис. 14 (режим 4) представлены выборочные профили распределения концентрации *W*-импланта по глубине покрытия Al-Ni и затем облученные электронным пучком. Профили апроксимировались двумя (рис. 13) и одним (рис. 14) Гауссианом. Первый Гауссовый пик на рис. 13 может быть обусловлен образованием мелкодисперсных преципитатов, в состав которых входит имплант. Второй, более широкий Гауссиан, – соответствует изотропное распределение *W* в слоях покрытия из Al-Ni.



Рис. 13. Обработанный профиль ионов *W* с помощью двух Гауссиан.

Результаты микроанализа также свидетельствуют об этом, т.е. есть участки с концентрацией от 4 ат.% до 2,14 ат.%. В случае отжига (плавление) в режиме 4 (рис. 9) мы наблюдаем лишь изотропное распределение имплантата по глубине с существенным уменьшением пиковой концентрации, смещением пика вглубь образца (покрытия) и уменьшением ширины распределения. В последнем случае образование включений не обнаружено, что возможно, связано с их распадом или уносом с поверхности после плавления электронным пучком (возможно, частичным испарением Al) при более высоких плотностях мощности. Для случая образца, облученного в режиме 2 (режим 6) видно дальнейшее падение концентрации *W*, уширение распределения и диффузии имплантата из глубины образца (покрытия) к поверхности.



Рис. 14. Обработанный профиль с помощью одного Гауссиана.

В табл. 2 приведены параметры подгонки функциями Гаусса эффективных профилей распределения *W*-импланта по глубине слоя Al-Ni на подложке из Cu для различных режимов обработки электронного пучка. Подгонка осуществлялась как двумя Гауссианами (режим 1 – 3), так и одним Гауссианом (режим 4, 6). Эффективный коэффициент диффузии ( $D_{eff}W$ ) *W*-импланта извлекался из профилей распределения. Для режимов 4 и 6  $D_{eff}W$  найден 2,0·10<sup>-7</sup> и 1,1·10<sup>-5</sup> см<sup>2</sup>/с, соответственно. Величина  $D_{eff}W$  (режим 4) характерна для диффузии атомов металла в расплавах, что подтверждается данными SEM анализа.

Измерения микротвердости поверхности покрытия Al-Ni после имплантации W показывают, что при малых нагрузках на пирамидку разброс значений уменьшается по сравнению с тем, что имелось сразу после нанесения покрытия. Однако при увеличении нагрузки видно, что на участках, которые имели максимальную твердость до имплантации, увеличили свои значения на (25 ÷ 32) % ± 2,5%, а на других участках опять наблюдался значительный разброс значений. В реТаблица 2

Параметры подгонки функциями Гаусса эффективных профилей распределения *W*-имплантанта по глубине покрытия на основе Al-Ni на подложке из технической меди для различных режимов обработки электронным пучком

| Номер режи    | 1                   | 2   | 3   | 4   | 6   |     |
|---------------|---------------------|-----|-----|-----|-----|-----|
| Параметры     | σ <sub>1</sub> , нм | 58  | 24  | 51  | _   | _   |
| распределения | σ <sub>2</sub> , нм | 211 | 201 | 181 | 137 | 843 |

зультате плавления покрытия с помощью СЭП содержание W в поверхностном слое уменьшилось, и в разных участках имело разное значение. В некоторых участках содержание *W* находится на пределе обнаружения, а в некоторых участках достигает 2,2 ÷ 2,5 % (в первую очередь там, где концентрация Al очень высока), рис. 10. Вследствие того, что температура в поверхностном слое покрытия была заметно выше температуры плавления Al, в некоторых участках собирался Al в виде капель [11]. В этих областях концентрация Al достигает 92% (очень светлые области на рис. 9). Необходимо уменьшить плотность энергии в 2,5 ÷ 3 раза для того, чтобы на поверхности покрытия не образовывались капли Al, а только происходило перемешивание в жидкой фазе [11 – 14].

### выводы

Нанесение покрытий из Al-Ni высокоскоростной струей на подложку Cu приводит не только к образованию в покрытии NiO; Ni<sub>3</sub>C; Ni<sub>3</sub>Al; Ni и Al с высокой адгезией к подложке, но и к высокой шероховатости и к значительному разбросу значений твердости.

Имплантация ионов *W* приводит к незначительному повышению твердости, однако из-за высокой шероховатости и характерного рельефа трудно выделить эффект, связанный, в первую очередь, с имплантацией, тем более что в отдельных участках поверхностного слоя концентрация *W* достигала свыше 7,11 вес%.

Последующее облучение покрытия Al-Ni СЭП в двух разных режимах плавления приводит к сглаживанию рельефа поверхности, уменьшению пиковой концентрации *W* в поверхностном слое, однако на поверхности покрытия образуются капли из чистого Al; адгезия покрытия к подложке резко возрастает, что нельзя сказать о твердости покрытия.

Исследование диффузии ионов *W* с помощью обратного рассеяния (OP) до и после воздействия (плавления) электронным пучком показало увеличение эффективного коэффициента диффузии, продвижению *W* вглубь материала. А при облучении СЭП высокой плотностью энергии наблюдается смещение пика (максимума концентрационного профиля) ближе к поверхности. По-видимому, это связано с частичным испарением поверхностного слоя покрытия.

Таким образом, в сообщении показано то, что имплантированный W в покрытии из Al-Ni в результате облучения электронным пучком с разным эффективным коэффициентом  $D_{eff}W = 2 \cdot 10^{-7}$  см<sup>-2</sup> движется вглубь покрытия, а  $D_{eff}W = 1, 1 \cdot 10^{-5}$  см<sup>2</sup>/сек движется к поверхности. Пиковая концентрация ионов Wуменьшается и происходит движение смещения максима в разные участки времени. Следует отметить то, что в результате плавления электронным пучком возможно образование оксида AlO и NiO и возможно образование более сложного оксида AlO<sub>2</sub>Ni.

Работа частично финансировалась по проектам №3078 STCU, а также проектом "Наноматериалы, нанопленки и наноматериалы, новые физические принципы получения нанопленок, нанотехнологий и покрытий с помощью ионных, плазменных и электронных потоков" НАН Украины.

## БЛАГОДАРНОСТИ

Авторы признательны А.П. Кобзеву (ОИЯИ, г. Дубна Московская обл.) за помощь в проведении измерений анализов методами РОР и УРЯР; Ю.А. Кравченко и В.С. Кшнякину за помощь в проведении отдельных экспериментов, а также Ф.Ф. Комарову за помощь в проведении измерений энергетических спектров обратного рассеяния.

### ЛИТЕРАТУРА

 Погребняк А.Д., Тюрин Ю.Н. Импульсная плазменная модификация поверхности и осаждение покрытий на металлы и сплавы// Успехи физики металлов. – 2003. – Вып. 4. – С. 1-71.

- Тюрин Ю.Н., Погребняк А.Д. Эффект дуплексной обработки поверхностных слоев сплавов//Трение и износ. – 2002. – Т. 23, № 1. – С. 207-214.
- Погребняк А.Д., Кульментьева О.П., Кшнякин В.С. и др. Физико-химические состояния покрытий на основе нержавеющей стали SUS 316, осажденных на малоуглеродистую сталь SS 400//ФММ. – 2004. – Вып. 97, № 5. – С. 44-52.
- Misaelides P., Hatzidimitrion A., Noli F. and Pogrebnjak A.D. Characterisation and Corrosion Behaviour of Protective Coatings on Stainless Steel Samples Deposited by Plasma Detonation//Technique Surf. and Coat. Tech. 2004. Vol. 180-181. P. 290-296.
- Бойко В.И., Валяев А.Н., Погребняк А.Д. Модификация металлов с помощью мощных импульсных пучков заряженных частиц//УФН. – 1999. – Т. 169, № 11. – С. 1148-1173.
- Погребняк А.Д., Тюрин Ю.Н. Модификация свойств металлов, сплавов и нанесение покрытий с помощью плазменных струй//УФН – 2005. – Т. 175, № 5. – С. 515-544.
- Кадыржанов К.К., Комаров Ф.Ф., Погребняк А.Д. и др.//Ионно-лучевая и ионно-плазменная обработка материалов. М.: издат-во. МГУ, 2005. – 640 с.

### ТРИПЛЕКСНА ОБРОБКА ПОКРИТТІВ З АІ-Ni Б.П. Гриценко, М.О. Погребняк, М.К. Кылышканов, О.Д. Погребняк, С.М. Дуванов, В.В. Понарядов

У роботі досліджувалися покриття з Al-Ni, нанесені високошвидкісним плазмовим струменем на підкладинку з технічної міді за допомогою Резерфордовського і зворотнього розсіювання іонів (РОР і ОР), ядерних реакцій, растрової електронної мікроскопії (РЕМ) з мікроаналізом, рентгенофазового аналізу (РФА), мікротвердості й адгезії. Було виявлено в нанесеному покритті концентрація Ni близько 85%, інші 15% відносяться до Ni,Al, Ni,C i, можливо, Ni. Адгезія покриття до підкладинки складає від  $28 \pm 2.2$  до  $45 \pm 3$  MPa, а мікротвердість розрізняється дуже сильно, від 65  $\pm 3,5$  кг/мм<sup>2</sup> до  $(3 \div 4,2) \cdot 10^2$  кг/мм<sup>2</sup>. Показано, що в результаті імплантації Шу поверхневому шарі виявлене до 7,11 at%. Після опромінення електронним пучком Шпроникає всередину покриття й у результаті плавлення поверхневого шару покриття концентрація зменшується. Визначено ефективні коефіцієнти дифузії Шу покритті.

- Фельдман А., Майер Д. Основы анализа поверхности и тонких пленок. М.: Мир, 1989. – 490 с.
- Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронооптический анализ. – М.: Металлургия, 1982. – 367 с.
- 10. Григорович В.К. Твердость и микротвердость металлов. М.: Наука, 1976. 230 с.
- Pogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et. al. Effect of Fe and Zr Ion Implantation and High-Current Electron Irradiation Treatment on Chemical and Mechanical Properties of Ti-V-Al Alloys// Jour. of Appl. Phys. – 2000. – Vol. 87, № 3. – P. 1-7.
- Noli F., Misaelides P., Pogrebnjak A.D. et. al. Investigation of the characteristics and Corrosion resistance of Al<sub>2</sub>O<sub>3</sub>/TiN coatings//Appl. Surf. Science.-2005.-Vol. 112, № 11.-P. 176-182.
- Погребняк А.Д., Кравченко Ю.А., Алонцева Д.Л. и др. Структура и свойства порошковых покрытий из Ан-35, нанесенных высокоростной плазменной струей до и после оплавления плазмой//Трение и износ. 2005. Т.26, № 5. С. 507-516.
- 14. Погребняк А.Д., Кравченко Ю.А., Василюк В.В. и др. Физико-механические свойства покрытий на основе Ni, обработанных концентрированными потоками энергии// Металлофизика и новейшие технологии. 2006. Вып. 1. С. 1001-1024.

#### TRIPLEX PROCESSING OF Al-Ni COATING B.P. Gritsenko, N.A. Pogrebnjak, M.K. Kylyshkanov, A.D. Pogrebnjak, S.M. Duvanov, V.V. Ponaryadov

We studied Al-Ni coatings, which were deposited by a high-rate plasma jet to a substrate of tough pitch copper. Rutherford and back ion scattering (RBS and BS), nuclear reactions, scanning electron (SEM) microscopy with microanalysis (WDS-2), XRD, measurements of microhardness and adhesion were used as the methods of analysis. In the deposited coating we found high Ni concentration reaching 8,5%, the remainder was Ni, Al, Ni, C, and possibly NiO. The coating adhesion to the substrate was  $28\pm2,2$  to  $45\pm$ 3 MPa, its microhardness differed within a broad range – from  $65\pm3.5 \text{ kg/mm}^2$  to  $(3 \div 4.2) \cdot 10^2 \text{kg/mm}^2$ . After W ion implantation in the surface layer we found that peak concentration reached 7,11at.%. After electron beam irradiation W penetrated to the coating bulk. As a result of melting occurred in the coating surface layer the peak W concentration fell. We determined the efficient diffusion coefficients of W in the coating.