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The method of the description of electron correlations in the disordered crys-
tals based on a Hamiltonian of many-particle system as well as the diagram
technique for calculation of Green’s functions are developed. Electron states
of system are featured within the scope of the self-consistent tight-binding
multiband model. Processes of scattering of electrons on potentials of the ion
cores of different kinds and oscillations of a crystal lattice are considered.
The consecutive method for the account of the long-range Coulomb interac-
tion of electrons at different sites of a lattice is offered. The cluster expan-
sion for a density of states, a free energy and an electrical conductivity of the
disordered system is obtained. As shown, the contributions of processes of
scattering of elementary excitations on clusters decrease with increasing
number of sites in a cluster according to some small parameter. Precision of
calculation is defined by accuracy of a renormalization of vertex parts of
mass operators of electron—electron and electron—phonon interactions as well
as by small parameter of the cluster expansion. The nature of spin-dependent
electron transport in carbon nanotubes with chromium atoms adsorbed on a
surface is found out. As shown, the quantity of spin-dependent transport is
related to the relative offset of energy levels of electrons (i.e. to the Coulomb
gaps arising in a vicinity of the Fermi level) for different projections of a spin
in an external magnetic field.

PosBuHEeHO MeTOny ONMMCY eJIeKTPOHHUX KOPEJIAIlill Y HeBIIOPAAKOBAHUX KPH-
cTajax, 1o 6asyeTbesa Ha 'aMisbTOHIAHI 6araToYacTUHKOBOI CCTEMU Ta AifAr-
pPaMHIil TexXHIIli A pO3paxyHKY fpiHOBHx ¢dyuKii. ExeKTpoHHi cTaHM cuc-
TeMU OMMCAHO B PAMKaX CaMOY3TOIKeHOTo 0araTo30HHOTO MOJEII0 CUJILHOTO
3B’A3KYy. BpaxoBaHO IpoIlecH PO3CiAHHS eJIeKTPOHIB Ha IIOTEHIlisdaIaX HOHHUX
KicTAKiB piBHOTO COPTY Ta KOJMBAHHAX KPUCTAJIIYHOI I'paTHUIII. 3aIIPOIIOHO-
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BaHO IIOCJIiIOBHY METONy BpaxXyBaHHA AajieKocs:KHOI KyinboHoBOI B3aemomii
eJIeKTPOHIB Ha pisHUX ByaJyax rpatHuni. Omep:KaHO KJacTepHe PO3BUHEHHS
IS TYCTUHU CTaHiB, BiJIbHOI eHepril Ta eJeKTPOIIPOBIAHOCTY HEBIOPAAKOBA-
HoI cuctemu. ITokasaHo, 1110 BHECKU IIPOIECiB POBCIAHHA eJIeMeHTapHUX 30y-
I:KeHb Ha KJlacTepaxX 3MEeHIIYIOThCS 3i 301JIBINTeHHAM YMcJia BY3JiB ¥ KJaacTepi
3a JedKUM MaJuM HapaMeTpoM. TOUYHICTh pO3paxyHKY BHU3HAUAETHCS TOUHIC-
TIO TEePEeHOPMYBAHHSA BEPIIMHHUX YAaCTHH MACOBUX OIIEPATOPIB eJIEKTPOH-
eJIEKTPOHHOI i eJIeKTPOH-(DOHOHHOI BRBAEMO/IiN Ta MaJIUM ITapaMeTPOM KJiacTe-
PHOTO PO3BUHEHHA. 3’ACOBAHO IIPUPOY CIiH-3aJIEKHOTO €JIEKTPOHHOTO TPaH-
CHOPTY BYTJIEI[eBUX HAHOPYPOK 3 aTOMaMU XPOMY, aICOpPOOBAaHMMHU Ha IIOBEP-
xHi. [TokasaHo, 1110 BeJIMYNHA CIIiH-3aJIe2KHOTO TPAHCIIOPTY IIOB’ A3aHa 3 BiTHO-
CHUM 3CyYBOM Y 30BHIiIITHBOMY MArHETHOMY IIOJIi eHepPreTUYHUX PiBHIB eJeKT-
pouiB (KyJaboHOBUMU II[iTHHAMU, III0 BUHUKAIOTH B 00J1acTi piBHa Pepwmi) s
Pi3HUX IPOEKILii cIiny.

PasBuT MeTOn OMMCAHUA SJIEKTPOHHBIX KOPPENANUNl B HEYIOPATOUEHHBIX
KpucTajliax, OCHOBAHHBIN Ha TaMUJIbTOHMAHE MHOTOUYACTHUYHOM CHUCTEMBI U
IuarpaMMHOII TeXHUKe IJA pacuéra GyHKIui ['puHa. DJIeKTPOHHBIE COCTOS-
HUA CUCTEMBI ONMCAHBI B paMKaX CaMOCOTJIACOBAHHON MHOTO30HHOI MOJEJN
CUJILHOI CBA3U. YUTEHBI IIPOIIECCHI PAaCCeAHUA DJIEKTPOHOB Ha MOTEHITMAaIax
MOHHBIX OCTOBOB PABHOT'O COPTA U KOJEOAHUAX KPUCTANINYUECKOH DPEIIETKHU.
IIpenno:ken mociiefoBaTeIbHBIN METO YUETA NATbHOAEHCTBYIOIIET0 KYJIOHOB-
CKOT'O B3amMMOJIeHICTBUA JJEKTPOHOB Ha PasHBIX y3Jax peméTku. IlomyueHo
KJIACTEPHOE PAa3JIOsKeHUe IJA ILNIOTHOCTH COCTOSHUM, CBOOOAHON SHEPTrUuU U
3JIEKTPOIIPOBOJHOCTY HEYIOPANOUEHHOUM cucTeMbl. IloKazaHo, YTO BKJIaIbI
IIPOIIECCOB pACCEeAHUA dJEeMEHTAPHBIX BO30Y:KIeHUI HA KJacTepax yMeHbIIa-
IOTCS C YBEJIMUEHNEM UMCJA Y3JI0B B KJIACTEPE B COOTBETCTBUU C HEKOTODPHIM
MaJbIM ImapamMeTpoM. TOUHOCTE pacuéra OMpeneaeTcA TOUHOCTHIO IePeHOop-
MUPOBKHU BEPIITMHHBIX YACTEH MACCOBBIX OIIEPATOPOB AJIEKTPOH-3JIEKTPOHHOTO
U 9JeKTPOH-(POHOHHOTO B3aMMOAENCTBUHM M MAJbIM IapaMeTpoOM KJIACTePHOTO
pasyio:keHusA. BeIsCcHEHA IPUPOJA CIINH-3aBUCUMOTO 9J€KTPOHHOTO TPAHCIIOP-
Ta YrJIepoqHBIX HAHOTPYOOK C aToMaMH XpOoMa, aJACcOpPOMPOBAHHBIMU HA II0-
BepxHOCTHU. [loKa3aHo, YTO BeJIMUYNHA CIINH-3aBUCUMOT'0 TPAHCIIOPTA CBA3aHAa C
OTHOCUTEJIbHBIM CABUTOM BO BHEIITHEM MATHUTHOM IIOJie JHEPTEeTUYECKUX
YpOBHEI B3JIEKTPOHOB (KYJOHOBCKUMM IEJSIMMU, BOBHUKAIOIIUMU B 00JIaCTH
ypoBHA PepmMu) 4JIs pasHBIX MPOEKI[UH CIIMHA.

Key words: self-consistent tight-binding model, electron correlations, carbon

nanotubes doped with Cr atoms, energy spectrum of electrons and phonons,
electroconductivity, spin polarization of electric current.
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1. INTRODUCTION

Progress in describing of disordered systems is strongly concerned
with development of electron theory. Substitutional alloys are best de-
scribed among disordered systems. Traditional knowledge about
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physical properties of alloys is based on the Born approximation of the
scattering theory. However, this approach obviously cannot be applied
in case of a large scattering potential difference of components that
holds for the description of alloys with simple, transition and rare-
earth elements. The same difficulty relates the pseudopotential
method [1]. Because of non-local nature of pseudopotential, the prob-
lem of pseudopotential transferability exists. It is impossible to use
nuclear potentials determined by the properties of some systems to de-
scribe other systems. Due to using the theory of Vanderbilt ultra-soft
potentials [2, 3] and method of projector-augmented waves proposed
by Blochl [4, 5], fundamental progress in investigations of electronic
structure and properties of the system has been achieved. Significant
success in the study of electronic structure and properties of the sys-
tems was achieved recently because of the use of ultra-soft pseudopo-
tential Vanderbilt [2, 3] and the method of projector-augmented waves
within the density functional theory proposed by Blochl [4, 5]. This
approach was developed further because of use of the generalized gra-
dient approximation in density functional theory of multi-electron
systems developed in Perdew’s works [6—10]. In projector-augmented
waves approach, the wave function of valence states of electron (all-
electron orbital) is expressed by using the conversion through the
pseudoorbital. Pseudoorbital expands to pseudo partial waves in the
augment area. Even so, all-electron orbital in the same area is ex-
panded with the same coefficients via partial waves described by
Kohn—Sham equation. Expression for pseudo-Hamiltonian, which we
have in equation for pseudo-wave function, is derived by minimizing
the total energy functional. Using this equation and expanding pseu-
doorbital into plane waves, we can derive set of equations for expan-
sion coefficients. With this set, it is possible to get electron energy
spectrum, wave functions, and value of the total energy functional. As
shown in [10], there is a way to use this method for describing the elec-
tron structure of crystals, using VASP program package. Using clus-
ter methods of calculation and GAUSSIAN program package, this ap-
proach could be used for description molecule electronic structure.

It should be noted that simple effective calculation method of elec-
tronic structure and properties for big molecules had been proposed
recently in [10—17]. This method is based on tight-binding model and
density functional theory, which includes long-range Coulomb interac-
tion of electrons at different sites of crystal lattice. Long-range Cou-
lomb interaction of electrons at different sites is described in the local
density approximation.

However, mentioned methods [6—17] are used only for description of
ideal ordered crystals and molecules.

In disordered crystals, effects associated with localized electron
states and lattice vibrations occur. They cannot be described with a
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model of an ideal crystal. In this regard, other approaches are devel-
oped too.

Essential achievement in description of properties of disordered sys-
tems is connected with application of tight-binding model in the multi-
electron scattering, including approximation of coherent potential.
Starting from Slater—Koster works [18], there was wide use of the
tight-binding model in electronic-structure calculations and in de-
scription of ideal crystals properties [19]. Later, it was generalized for
the case of disordered systems.

In Refs [20, 21], method of describing magnetic alloys electronic
structure based on functional density theory is proposed. The effective
potential in Kohn—Sham equation [22, 23] consists of atomic potential
and Pauli addition, which is expressed through magnetic field induc-
tion. Atomic potential and induction of magnetic field are expressed
through variational derivative of exchange—correlation energy by
electron density and magnetization, respectively. Calculations of elec-
tronic structure of magnetic alloy are based on already mentioned ef-
fective mass potentials using self-consistent Korringa—Kohn—Rostoker
approximation—the coherent potential, but more developed in [24—
26]. In Ref. [20], a method is proposed for calculating the parameters
of interatomic pair correlations due to the pair mixing potential, which
is expressed through the second derivative of the thermodynamic po-
tential of the alloy concentration [27]. This thermodynamic potential
is calculated within the one-site coherent potential approximation. It
should be noted that the methods developed in [18-20, 24—-26] do not
include long-range Coulomb interaction of electrons at different lat-
tice sites.

For calculations of energy spectrum, free energy and electroconduc-
tivity of disordered crystals in our work, multi-scattering theory based
on Green’s functions is developed. Electron correlations in crystal are
described in multiband tight-binding model. It includes recalculation
of wave functions and atomic potentials with taking into account the
electron density redistribution because of atomic interaction. The
model includes long-range Coulomb interaction of electrons on differ-
ent sites of crystal lattice. The wave functions of noninteracting atoms
are calculated with Kohn—Sham equation using the Perdew potentials
[6—10]. Electron scattering processes on the ion core potentials of dif-
ferent kinds and on vibrations of crystal lattice are taken into account.
Calculations of two-time Green’s functions are based on temperature
Green’s functions [28]. This uses a known relation between spectral
representation for two-time and temperature Green’s function [29].

Calculation of two-time Green’s function of disordered crystal is
based on diagram techniques, which are analogous to diagram tech-
nique for homogeneous system [29]. Set of equations for temperature
Green’s function, expressions for both free energy and electroconduc-
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tivity of solids are derived. Accuracy of the energy spectrum, free en-
ergy and crystal conductivity calculations is based on renormalization
of vertex parts of the electron—electron and electron—phonon mass op-
erators. Calculations based on this method for energy spectrum, free
energy, conductivity and spin-dependent transport of nanotubes doped
with Cr atoms were performed.

2. HAMILTONIAN FOR SYSTEM OF ELECTRONS AND PHONONS
IN DISORDERED CRYSTALS

Hamiltonian of disordered system (alloy, disordered semiconductor)
consists of Hamiltonian of electrons in the external ion field, the Ham-
iltonian of electron—electron interaction, the Hamiltonian of ions, and
the Hamiltonian of electron—ion interaction. Motion of ion subsystem
is reduced to the ions’ oscillations near equilibrium positions under the
influence of ions’ interaction forces and their indirect interaction
through electrons. Within the Wannier representation, the system
Hamiltonian is as follows [28]:

H=H,+H,_,, 1)
where the zero-order Hamiltonian,
H, =9, +Hf0 +H,, (2)

consists of noninteracting electrons’ subsystem Hamiltonian in an ex-
ternal field of the A kind ions,

— (0) +

HeO N z h”lﬁ‘/l’nziﬂz a’ﬁiﬂ’l anziz‘lz ’ (3)
mhYy
TalaYo

Hamiltonian of subsystem of the A kind ions,

, {n]
“\i 1 n, n n n
H = E —_ 4 — E q)(o) 1 2 u 1 2 , 4
0 2JMA 2 mioy H (ll i2 - ll * i2 ( )

and the electrostatic-interaction energy of ions at equilibrium posi-
tions, @,.
Perturbation Hamiltonian in (1),

H.

int

=H,+H,+H,+H,+H,, %)

consists of electron—ion interaction Hamiltonian,
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_ +
Hei - Z wnlilYl”IzEYzanlilYlanzizh ’ (6)
mhvn
NaloYs

Hamiltonian of electrons’ interactions with oscillations of crystal lat-
tice (electron—phonon interaction),

_ ! +
Hef - z Unlif/l'"?izyZarhilylanZiZVZ ’ (7)
mhYy
NalaYs

electron—electron pair interaction Hamiltonian,

H, == yfmimmitg: g a a (8)

2 ~ T3igY35MlsY 4 miyyy T MglyYs  MgigYs MylgYy
mhYy
NalaYy
n3l3Y3

TylgYy

component of ion—ion interaction Hamiltonian caused by the presence
of different kinds of atoms (phonon—impurity interaction),

n n n n
H, _1 Y. il I A I/ A e %
2 [CUT o L L ' L : L

Nplp0ip

1y e, ['ﬁ” ”ju [”]u (”J ©)
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where

n n 1 1
AM;IOL .1 .2 = Xr T A SnnS‘i8kk ’
102 ll 12 M . M 172 “hls ~MAg

n, ny,| n, n, o [ Ny
(Dalaz . . - (Dalaz . . - q)alaz . . ’
ll l2 ll 12 ll 1'2

and anharmonic part of ion—ion interaction Hamiltonian (phonon—

phonon interaction),
n, n, n n n n
S P | e, | e | ] (10)
1’1 12 l3 ' ll ’ 1'2 ? 1'3

1
_ T (0)
Hff - 3' Z ®0t10t2a3
* miyoy
Nyla0ly
In expression of ion—ion interaction Hamiltonian (10), only anhar-
monic terms of third order were taken into account.
In expressions written above, a are the creation and destruc-

ngigotg

+
niy aniy
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tion operators in the state described by the Wannier function,
0,:,(E) = (E|niy), E=(r,c). State index y includes a quantum number,
o =1/2,-1/2, which defines value of spin projection on Z axis, and a set

of other quantum numbers describing spatial movements of electrons.
Here, n is the number of primitive cell, i—the sublattice-site number in

primitive cell, r—the radius vector of electron, A® —matrix ele-

MiyY1sNalaYs

ments of Hamiltonian of electrons in an external field of the A kind ion

cores, u (
1

n n
] —the atom displacement operator at the site (ni); P, { ) j —
i

the operator of a-projection of atom momentum onto orthogonal axes,

n n n, n, n
o [ ! _zj, o0 ( o _3j—force constants related to poten-
1%2 ll 12 14243 ll 12 l3
tial energy of the A kind ion interactions.
Potential energy operator of electron in a field of different-kind ion

cores can be expressed as

A n n
V(r)=2v’”(r—r,'n), ro=r,+u’l |+u| |,
p i i
where r—electron radius vector, r,; = r, + p,—radius vector of atom

n
_ |—vector
i

equilibrium position at the site (ni) in a crystal lattice, u’ (
of atom static displacement from equilibrium position at site (ni).
Random addition to matrix element of one-electron Hamiltonian of a
pure crystal caused by impurity presence is as follows:

_ ni
w”1i1“/1’”2izY2 - Zw”ﬁ‘/l’”zizﬁ’z ’ (11)
ni
where
ni _ A Ani Ani _ L Jhni Ani _ UAni
MirY1sNglaYe ~ ni mirysnglaYs 7 T mirYesalaYe LUV MYy NelpYs [CUNR P

Here, ¢!, are random numbers taking values of 1 or 0, depending on

whether the A kind atom is at the site (ni) or not.
Hamiltonian of electron—phonon interaction (7) is expressed
through directional derivative of potential energy in ion-core field
n
along displacement-vector projections of atom, u[ ) ] .In (7), the value
i

of vV

miyY1sTelaYe 1s glven by
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nio l

_ Z rnio n
”1‘1Y1 olpYp ”1‘1\’1 TolsYo 0‘ 2|

where
Z:;l NaioYs ; ni ;::;? nylgys
and v”’;‘; naiory 1S defined by (11), where v*(r —r,,) is replaced with
“Cia L g ( ni )’
where
e, = =
|r -r,

Ani
Values of Avnlim’nzi2y2

static displacements and are defined by

knl _ Z rknla n
VHHYl olpYp miyY1sNalpYs (x .|

l

in (11) describe electron scattering on atom

3. GREEN’S FUNCTIONS OF ELECTRONS AND PHONONS

To calculate the energy spectrum of electrons and phonons, free energy
and electrical conductivity of disordered crystal, we introduce two-
time Green’s function. We define two-time retarded (G*?(¢,#')) and
advanced (G**(t,t') ) Green’s functions as follow [30]:

AB "N _ _.i nee N r ” - AB "N _ l YT -
Gt =— (I G = (L ,
(12)
Within the Heisenberg representation, operator
1’“ H/h H &

where 7 is the Planck’s constant, H= H — ,, u,—the chemical potential
of electron subsystem, N,—the operator number of electrons:

N z anw niy *

niy

In expression (12),
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[A,B]= AB-nBA, (13)

where 1 = 1 for Bose operators A, B, and n =—1 for Fermi operators A,
B; 6(t)—the Heaviside step function. Brackets (...) in (12) denote av-
eraging such as:

(4) =Sp(pA), p =€, (14)

where Q is thermodynamic potential of a system, ®@=Fk;T, T—
temperature.

Calculation of two-time retarded and advanced Green’s functions
(12) is based on the calculation of temperature Green functions.
Known relation between the spectral representations for retarded, ad-
vanced and temperature Green’s functions is used.

Let us define the temperature Green’s function as

G*2(z,7) = —<T ) (15)

'

where operator ~  isderived from .  in(12)by replacing ¢t = —ift,

y H Ae™™;

T. ,

1n =1 for Bose operators A, B, and n =—1 for Fermi operators A4, B.
We introduce the operator

o(t) = e™e™™, (16)

whereH=H,+ H;,,, H,= H,— 1.N,. Operator o(t) satisfies the equation

©0 _ g (900) (17)
ot

Hyt —Hyt
where H, (1) =€ H . .

The solution of Eq. (17) provided that o(0) = 1 follows from the defi-
nition of (16) and has the form

o(t) =T exp {—j. Hint(t’)dr'} . (18)

Taking into account expression (16) for the operator within the
Heisenberg representation, one can write as follows:

" (1) A(D)o(7) . (19)
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Expression (13) for temperature Green’s function, in view of (17),
leads to equation

G**(1,7) = (T, A(Y)B(t)o(1/@)), /(c(1/®)), , (20)
where
(A), =Sp(pyA), py = X0,

Expanding the exponent o(t) in expression (18) in a series of powers
H, (7), substituting the result into (20), and using Wick’s theorem for
calculating the temperature Green’s [28] functions of disordered crys-
tals, it is possible to construct a diagram technique similar to a homo-
geneous system [29]. The denominator in formulas (20) is derived from
the same factor in the numerator. So, Green’s functions can be ex-
pressed in a series only connected diagrams. Using the relation be-
tween the spectral representations of temperature and time Green’s
functions [29], by analytic continuation to real axis, we obtain the fol-
lowing set of equations for retarded Green functions (hereinafter, in-
dex r will be omitted) [28]:

G™ (e) = Gy* () + G5* (&) (w+Z,,(e) + Z,,(e)) G () »
G“(8) = Gy (e) + Gy (&) (AD + Z,, () + 2, (6) G (6) + Gy  ()AM 'G™(¢)
G™(e) = Gy" (e) + Gy ()IAM 'G™ () + Gy " () (AD + 2 ,,(6) + () ) G/ (&) » (21)
G (6) = Gy" (&) + Gy" ()AM 'G™ (e) + Gy (6) (AD + 2,,(6) + Z,,(8)) G (&) ,
G™(e) = Gy“(8) + G, “(e) (AD + Z,,(8) + Z,,(e) | G““ (&) + Gy () AM 'G™(e) ,

where € = /.

Here, G* (), G“(c), G (c), G**(¢), G™(¢) are spectral represen-
tation of one-particle Green’s function of the electrons’ subsystem as
well as ‘displacement—displacement’, ‘impulse—impulse’, ‘displace-
ment—impulse’, ‘impulse—displacement’ Green’s functions of pho-
nons’ subsystem, respectively; %,.(¢), Z,(¢), Z,,(€), Z,(¢) are actual
energy parts (mass operators), which describe the electron—phonon,
phonon—electron, electron—electron, and phonon—phonon interac-
tions, respectively.

Upon receipt of the expression (21), the spectral decompositions for
the two-time (12) and temperature (15) Green’s functions are used:

G:?f(t) = 2i J G:f((}))e_iwtdo) , fo((,o) = Jl G:?f(t)eimtdt ,
T —0
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1/0
G (1) = ®Z:G‘w(mn)eﬂm"T s GAB(o)n) = % I G*E (1) dr,

®, -1/6

2nn® for Bose particles,
o, = ) ] n=0,+1,+2,....
(2n +1)n® for Fermi particles,

There are well-known relations between spectral representations of
Green’s functions, which follow from Green’s functions definitions:

AB (. h >
G2 () ) = G;B(lmn/ 0,
G*E(iwo, /I < 0.

Green’s functions are matrices with respect to the indices (niy) and
(nio), respectively, for the subsystem of electrons and phonons.

From the equations of motion for Green’s functions of zero ap-
proximation [30], one can be obtained:

G (e) =[e- HPT, HyY =B | s Gote) = [0°M, — DT,
CD(O) = “q)(())ni(x,n'i'a' ’ Gé)P(S) = [0‘)2 - MA_ICD(O) ]_1 q)(O) ’
DOG (c) = i; PPN MG (e) = —i ; SIS (22)

Provided

82 ANT nn'
(h CAD+ X () + 2,,(¢) o0V | |<<1, (23)

[

solution of the set (21) has the form:

-1

G“ (¢) = [[Gg‘f (g)]f1 —(w+2,(e)+ Zee(a))} ,

2

AT A®+2fe(8)+sz(8)j:| ’ (24)

G (e) = [[G:f”(s)]l - (;

2

AM'G™ (e) = Z (g,

where AM = (M, — M,,)3,,8,8..| -

Upon receipt of Eqs (24), the members, which are proportional to the
second and higher powers of small parameter (23), are neglected.
Using the mentioned above diagram technique, in work [28], explicit
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’-' '\
N
ﬁg()tz/ ﬁ4(14
Ay ﬁlyl Y, Ay’
Fig. 1. Diagramfor X, , .. (t,7) =%, - ;here, I’

expression has been found for the mass operator of Green’s functions
that describe the many-particle interactions in the system.

The mass operator of Green’s function of electrons for the electron—
phonon interaction, X,(t,1'), is described by the diagram in Fig. 1.
Solid lines in the Fig. 1 correspond to the Green’s function of elec-

trons, G** . (1,7); dashed lines correspond to the Green’s function of

niy,n'i'y

Tgig0y
niy,miyy;
diagrams in Fig. 2, where unshaded triangle corresponds to the ex-

phonons, G** . (t,7"). Vertex part I

nio,n'i'a

(15,7, 7;) is described by

pression I'j2%  (1,,1,1,) = U222 §(1—1,)d(t — 1,) .

0 niy,miyy; niy,miy;
For internal points i~ in Figs. 1 and 2, summation is carried out.
Summation by i~ provides summation by niy and integration over .

Expressions corresponding each diagram attribute multiplier (-1)"*7,

where n is order of diagram (number of vertices Iy in the diagram), and
F is the number of lines for the Green’s function of electrons, G** ,
which goes out and goes into in the same vertices.

For the mass operator that describes electron—phonon interaction,
we have:

— Mo ke Aanyiy Aoyl
Sot nipmry €)= D, €l €2 ThmT (&)
Mmiy
Aongiy

niy, ngizys

Syt = facoon( S i
J 20

ef niy,n'i'y’ 4TEl

Fig. 2. Diagrams for the vertex part I"2*% (t,,7,7,)=I" . ;here, I’

niy,miyy,
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Fig. 3. Diagram for X, . ..(t,7) =2, . - ;here, I’

|:Gul;°l1 Tyly0ty (8') G’l:;;uz iy (8')] G:;3‘/s "4L4Y4( & )FZZZ’Z;W;L,Y’ (e~ e, & 8') - (25)
For repeated indices, summation is performed.

The diagram in Fig. 3 describes the phonon—electron interaction.
Designations in Fig. 3 correspond to designations in Figs. 1 and 2.

The mass operator describing phonon—electron interaction has the
form:

A
fe nio,n'i'a’ (8) z cmcn’L’Efe nia,n'i'a’ (8) ’

i
fe nio,n'i'o/ (8) - J. de' f(8 )v'n:i;(;z’nlilyl x

*

« {[G (e +¢) -G

mirY1sM3isY3 ngizyz, My,

(e + s’)} G * () +

[CUACHOUNA

mhY1,73i3Y3 nylgY g NolaYs NalaYasMylyYy N3l3Y3,Myly ¥y

e (s+s’)[G‘w (£)-G™“ * (s')}}r“?’i’a’. (e +¢,6-¢") .(26)

Diagrams for the mass operator X,(t, 1) that describes electron—

electron interaction are shown in Fig. 4.
Vertex part 722" (t,,1,,1,7') is shown by diagrams in Fig. 5. Un-

niy,n'i'y

shaded triangle in Fig. 5 corresponds to the expression

Fg{ﬁ; :f;’l (T, T, T T) =1 3(t —1,)3(t —1,)d(t - T),

T v(z)my,nzlez _ v(2)ni‘/’nzi272
nyiyy;,niy ni'y,miyy; °

+ iy Ay

n,y, n,

Ay Ay

Fig. 4. Diagrams for £, . ..(t,T)=Z, . - ;here, i’
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ﬁlhll
iy, Ay, Y, Ay, Y Ay,
-
% = + + +
Ay AW Ay Ay Ay Yy
ﬁ"’,"
Fig. 5. Diagrams for vertex part 2> (1, 1,,7,7) = - ; here, I~

The mass operator that describes electron—electron interaction is as
follows:

—_y@ 2)
2ee niy,n’i'y’(g) - Zee niy,n'i'y’ + 2ee niy,n'i’y'(g) ’
2(1) _ 1 7 de' A% 1a* ' Gaa* LY
ee n,n' . Sf(S)] ln(S)— nn(g) ’
§ 4TCZ = 1:12 25

—0

1 2 o0 o0
(2) _ ~
=® (e) = (—znij [ de, L de,i

—0

x { Fe)f(e,) [G,finz (6 & +8,)G (6,)~ G (c—¢, + sz)G:;m*(gl)} x
x [G:ing (g,) — G:;n: (s, )] FZ;Z‘? (e, — & +8538,,8) +

+f(e)f (e, + &, — &) [G;li;4 (6,)Ga", (&, + 8, —€) — Ga® "(£,)Ga " (¢, + &, — a)] x

<G ) -G ) [TE i Gnegie +e,—60)|, (@T)
f @ —v®e (n=niy).

Similarly, in Ref. [28], expressions are obtained for the mass opera-
tor X,(€) that describes phonon—phonon interactions.

Upon receipt of expressions (25)—(27), the relations arising from the
theory of functions of complex variables are used:

1
@Z o(io,) = 1 O

. ) (P(Z) ((Dn = znTC@) ’
1Y !

) ..
0> ¢lin,) =— pon O ) (w, = (2n +1)nO),
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where @(2) is the analytical function of complex z in the region covered
by a contour C.

Between the Green’s functions (12) G.(¢) defined at a constant
chemical potential p, and the Green’s function Gy(¢) defined at a con-
stant number of electrons N,, there exists a relation G,(g) = Gy(e + ).

When renormalization of vertex parts is neglected, diagrams for the
mass operators in expressions (25)—(27) should be put as follow:

Aafiglally
ngiyyyniy

2N A VP 2 o3 ng,n, . -~
(e —¢,g¢&)=0v"""" ry $(e;,€— € +8€538,5,€) =1

nyigy,n'i'y' ? ,n

In expressions (26), (27), f(¢) is the Fermi function; Fermi level ¢, = p,
of a system is determined by the equation:

(2) = [ f(e.e0)a. )z, (28)

where (Z)—the average number of electrons per atom. Electron density
of states, g,(g), in expression (28) is given by the formula:

g,() -1 D PLg..(e), (29)

i,7,0,h
where P’ = <cﬁi> —the probability of filling the site (ni) with the A kind
atom, v—the number of atoms in a primitive cell, g, (¢) —the condi-
tional partial electron density of states per one atom for state (niyc)
provided the A kind atom be placed at the site (ni):

£ =1 (G2, )

re(ni)

In the last formula, configuration averaging is carried out provided
that, in site (ni), the A kind atom is placed.

Equation (28) follows from the definitions of electrons’ number op-
erator (12) and Green’s function G*3(t,t") (15); A=a'., B=a_ [27].

niy ? niy
It should be noted that the first term X{ . . in the expression for

the mass operator X .(¢) of electron—electron interactions is de-

ee niy,n'i'y
scribed the Coulomb and exchange electron—electron interactions
within the Hartree—Fock approximation. The second term X® (),

ee niy,n'i'y
which is caused by output beyond the Hartree—Fock approximation,
describes the electron correlations.
Expressions (24) differ from the corresponding expressions for the
Green’s function of the single-particle Hamiltonians of disordered sys-
tem only by the view of mass operators. Therefore, to calculate the
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Green’s function (24), the well-known methods of the theory of disor-
dered systems [28] will be used. .

Let us perform cluster expansion for Green’s functions G* (g¢),
G"“(¢) in expressions (24) by introducing the mass operator as the sum
of one-site operators and selecting a zero one-site approximation of the
Green’s function of an effective environment. Specified expansion is a
generalization of the cluster expansion for the Green’s function G* (¢)
of single-particle Hamiltonian. Green’s function of an effective envi-
ronment for the subsystem of electrons determine the expression [28]

¢ L[Gga*(g)r - g))}1 : (30)

where the mass operator of the electron—phonon interaction for the A
kind atoms in the effective environment is equal to

9
miy Naly

The values €) are determined by expression (25), in which the

Green’s functions of disordered crystal are replaced by Green’s func-
tions of the effective environment.

Green’s functions of an effective environment for phonon subsys-
tem are defined by expression:

¢ [eel-C T g))}l. (31)

The values of | , , in expressions (30) and (31) are de-

fined similarly to |

In expressions (30) and (31), o,(¢), o/(€) are potentials of an effective
environment (coherent potentials); their values will be determined.
Green’s functions (24) satisfy the equation:

G(e) =C ) , (32)

where T is a matrix of scattering, which can be represented as a series
with terms describing the scattering by clusters with different num-
bers of sites:

T=> "+ > TOmmeg (33)
(nyiy) (nyiy)#(nyiy)
Here, T® ™"z =[] — t"4( , and t"" is opera-

tor of scattering on the same site that is determined by the expression:

i — I:I _ (ani‘ — g )( _ Gnli’l) .
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Value X" (g) in the formula (89) for the subsystem of electrons is given
by the expression

w+Z,(e)+2,()—1 - > M (34)

i
and, for the subsystem of phonons, by the expression
h

ATAD L (8)+ 2, () - M. (35)

(nyiy)

Coherent potentials determined from the condition <t°i‘> = 0 satisfy
the set of coupled equations [28]:

cgil(s)=<[1—(zgﬁ(s)—cgﬁ(s))( ) > X

x <[1 - (zgh () — oL () € ) 30 (g)> , (36)
and, for the subsystem of phonons,
-1
6% (e) = <[1 -(F@-of@)C ;o
% <[1 - (Z?il (e) —o)" (8)) C . e (8)> . (37)

Using (33), cluster decomposition for the Green’s function of elec-
trons and phonons of disordered crystal can be obtained. As a zero one-
site approximation in this method of cluster expansion, the approxi-
mation of coherent potential is chosen. The densities of electrons’ and
phonons’ states, free energy and electrical conductivity are presented
as infinite series with terms describing the processes of scattering on
clusters with different numbers of atoms. As shown, the contributions
of scattering processes with electrons and phonons in clusters decrease
with increasing number of atoms in the cluster by a small parameter:

ple)=| Y (t"(e)C ) . (38)

(naig) 2 (miy) ' Uly,myl

Investigation of this parameter shows that it is small in a wide range of
changes of characteristics of the system (including the concentration
of components), except for narrow intervals of energy values at the
edges of the spectrum. For single-electron Hamiltonian in single-band
model, this parameter was introduced for the first time and investi-
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gated in Ref. [31]. Subsequently, this parameter was investigated in
Ref. [32]. For many-particle Hamiltonian, which includes electron—
electron and electron—phonon interactions, this parameter was ex-
plored in Ref. [28].

Using (29), (32), (33), spending averaging over the distribution of
atoms of different kinds at the sites of a crystal lattice, and neglecting
the contribution of processes of electron scattering in clusters consist-
ing of three or more atoms, which are small by the above parameter,
for the density of electron states, we obtain

g,(e) =+ D Prgoo(€),

v i,v,0,A
ggiyc(s) =
S (O i i
T (1)#(01) !
»
T(Z)?» 0i,A'lj — [I _ t}u 0i(~ ~ ~ ~ . (39)

Doing the above-configuration averaging the Green’s function
G*(¢) for the phonon density of states similarly, we obtain

1
gf(g) =- Z gOm (8),
A% i,0,A
(40)
2 (€) =
_ 2M, . (s -~ - ~ ~
Th (/7=(01) ’
9

where ¢

Matrix elements of the Green’s function of the electron subsystem
of the effective environment can be calculated, using the Fourier
transformation:

C Z[s H(l)(k)] et (41)

iyo,i'y's’

where
HV(k)=H{" &)+ ) (k,¢), (42)

N—the total number of primitive cells.
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Calculation of matrix elements of Green’s functions of phonons’
subsystem of an effective environment is performed by the formula

"~ 1 -1 ik(x,+p,—T, —p;
C .:N;[&MA—@(k)] P 2 (43)

io,i'o)
where

O(k) = DV (k) + (k,€). (44)

In formulas (41)—(44), vector k is varying within the first Brillouin
zone.

Components of matrix of force constants, which are caused by the
direct Coulomb interaction of ions, have the form:

’ 2
o [n nj _ Z.Z e
ao .
dne,y|r, +p — T, —p,

X
i i |5
X|:3(rncx + pioc - rn’cx - pi'oc )(rna’ + pioc’ - rn'a’ - pi'a’) - |rn + pL - I.n’ - pi'|2 Sau’:| ’
(45)
where Z,,—the valence of ion, which is located at the site (ni) = (n'i) .

Diagonal (by number (ni) of a site) elements of the matrix of force
constant are determined from the condition

n n
Zq)aa'[. .,jzo'
n'i' l l
Value of ®?(k) in expression (44) is the Fourier image of matrix,

n n
o, ( o j , given by expression (45); here, Z,, = Z,,, = Z*, where Z* is
i i

the A kind ion valence._

The mass operator . in expression (44) describes the interac-
tions of ions by means of electrons. '

Single-centre scattering operator ¢*** in the formula (39) is given
by expression (33), in which the quantity Zg"lil (¢) describes the scatter-
ing of electrons, according to (11), (25), (27), (34), and has the form:

nyi; i, 1 ~ c m ;<
Eﬁn;;lc,n,i,y,c, (e) = wiiyg‘{n,i,y,c, + 5 Zl o (anﬁl‘ylﬁ1 -z . (46)
Y101
In expression (46), Z,fiyc —the number of filled electron state (niyc)

provided that, at the site (ni), the A kind atom is located. The value
Z" is determined by the expression (28), in which the electron den-

niyc
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sity of states, g,(c), is replaced by conventional partial density of

states, gmvc(g) The value Zﬁl . isequal to
Zr};yc = Zi}:yc = '[ f(S, 8F )gr;;iyc(g)ds * (47)

The total number of electrons in the valent states of the A kind atom
is equal to

Z o (48)

The effective charge of the A kind atom is determined by the expres-
sion

AZ, =Z. -Z . (49)

Here, Zf is the number of electrons in the valent states of noninteract-
ing A kind atoms.
Localized magnetic moment of the A kind atom is equal to

m,=>(Z ~-Z ). (50)

Y

The value . in the formula (47) is derived from expressions (39)
and (47) by replacing of the Green’s function to the function of effec-
tive environment. A

Single-centre operator of scattering ¢*“" in the formula (40) is given
by expression (33), in which the quantity 2’,}’% (¢) that describes, ac-
cording to (24), (26), (35), the scattering of phonons, has the form

2 ’
n n n
ln iy anr 8 (0)
fmla n'i'a (8) - |: A)Snn ii' a(x + q)(xa' {l i j - cD(m’ (l i )j| 6717116LL1 ’

(51)
where @, [n n,j is determined by expressions (45) and (44), in which
i i

Z,=2",Z, =2Z".

The value . in expression (42) and sec-
ond component in right part of expression (46) describes the Coulomb
interaction of electrons, including long-range Coulomb interaction at

different sites in crystal lattice. The value . in expression (42)
and second component in right part of expression (46) describes the ex-
change interactions of electrons. The value . in expression (42)

describes the electron correlations. Unlike the Refs [11-17], in our
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work, long-range Coulomb interaction of electrons at different sites in
crystal lattice is described with considering of arbitrary numbers of
energy bands.

The value . in expression (42) describes the scattering of
electrons by crystal-lattice vibrations.

In expressions (39), (40), Pg'/gi is conditional probability to find at
the site (Ij) the A’ kind atom provided that, at the site (0i), the A kind
atom. ¢! is the value of matrix elements of single-centre operators of

scattering for the case when, at the site (ni), the A kind atom is located.
Probability of filling of site (0i) by the A kind atom in expression (39)
is equal:

g =(co) (52)

where ¢, is the random numbers taking values of 1 or 0 depending on
the A kind atom located at the site (ni) or not.
For crystals with two kinds of atoms and two sublattice types,

P* = x, - Y2y for v, sublattices of first type and P = x, + L1 for
v v

v, sublattices of second type; P’ =1-P2; v=v; + vy x4, xp=1—x,—

concentrations of components A, B in alloy, respectively; n,—the pa-
rameter of long-range atomic order.

Conditional probability Bf/okl in (39) is defined by the expression
By = BL B = (cjeh) (53)

and is related to parameters of interatomic pair correlation g, by
next equation [25, 29]:

BB

, s
By = B + (B 8,06, = 5,0 (54)

A
0i

here, 5—the Kronecker symbols; €5, = <(c§ —c/ ) — ¢ )> .

4. FREE ENERGY

Thermodynamic potential of the system is defined by the expression
[29]

Q =-OInSp(e ). (55)

Hamiltonian H is defined in expression (12). Using the formula (14),
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from (55), we obtain
Q=0,+9Q, Q' =-0In(c(1/0)),, (56)

where Q,—the thermodynamic potential of noninteracting electrons
and phonons.

For the thermodynamic potential Q' (56), diagram technique can be
developed, which is similar to the diagram technique for the tempera-
ture Green’s function.

As aresult, we obtain

1N Im:[% T ds[f(s)Sp< (W0) + 2,6, 1) + 2, (6, 1)) G (g,x)> +

o =-

V.
]- -1 PP uu
+5 coth (%} Sp <AM WG (,2) + (ADQ) + 2, (e, 1)) G (e, m)} . (57)

The thermodynamic potential Q, in the absence of interaction in the
formula (56) is equal to

Q, =Q, +Q,, +Q,. (58)

Thermodynamic potential of the electron subsystem is as follows:
Q,, = —@T 1n(1 + elHhe0)/® )g(,e(s)ds ) (59)
Thermodynamic potential of the phonon subsystem is
Q, = @T In(1 - e /°)g,,(e)de . (60)

In expressions (59), (60), go.(c), go/€) are given by formulas (39),
(41), in which G* (g), G*(¢) are replaced by zero-order approxima-
tion Green’s functions, G(‘)"f ), Gy“(e) .

Configuration component of the thermodynamic potential in the
formula (58) depends on the distribution of atoms of different kinds
and is defined as

Q, =(®,)-0s,, (61)
where S, = —<1nR,> —the configuration entropy, P.—the distribution

function of atoms over crystal lattice sites.
Configuration entropy can be represented as in Ref. [26]:
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1 o 1 e By
S,=-=|>P:InP;+= > Pyln SR (62)
VI 2 %
AL
(0i)=(1j)

Free energy F as a function of volume V, temperature T, number of
electrons N,, and parameters of interatomic correlations (& > M) 18

determined by the thermodynamic potential Q: F=Q+y, <N > .In a

weak dependence approximation of the mass operators on energy of

electrons and phonons, free energy F can be represented in the form
[28]

F=Q +Q,+0,+p,(Z), (63)
where Q,, Q; are given by expressions (59), (60), in which g.(€), go/(€)
are replaced by g,.(g), g/(€) (see (39), (41)).

The values F, Q,, S., Q,, Q; in formulas (59)—(63) are calculated per
one atom.

5. ELECTRICAL CONDUCTIVITY

To calculate the electrical conductivity tensor, we use the Kubo for-
mula[33]:

You _
o) = [ [ (< h , (64)
0

[Sh e )

where J, is the operator of the a-projection of the current density.
It follows from Eq. (64) that

Re () = i (6 (@) -G ()] (65)

To calculate the spectral representations, G;]“J“ (®) and G;]“J" (®) , of the

retarded and the advanced Green’s functions, we use the expression
for current-density operator,

I, () = e[ W (& )0, W(&, 1), (66)

where W' (§,t) and W(E,t) are the field operators of creation and anni-
hilation of electron, respectively; v, is the operator of the a-projection
of the velocity; e is the electron charge. By integrating over &, we mean
integrating over the crystal volume and summing over the projections
of spin o onto the z-axis; the volume of the crystal is assumed equal to
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unity.
The temperature Green’s function in this case is written as

2

JJ
"(1,7) = D Vg, Upnn, (0,5 0,57, g7y, (67)

N I/1 mngngiy

where V;—volume of primitive cell; the two-particle Green’s function
is written as

G"(n,7,nyt, 0,7, n, 1) = <7;a,,1(r')anz(r)a;(r')a;(r)oa/e))o (c(1/6)),", (68)

(n = niy) . The two-particle Green’s function (68) is described by the
diagram in Fig. 6. Numbers in Fig. 6 correspond to point numbers; e.g.,
1 corresponds to (14i,y,74).

Using the diagram technique for two-time temperature Green’s
function and neglecting the contributions of scattering processes on
clusters of three or more sites, for the static conductivity tensor, we
can get the expression:

2
+2P£f | N N+
A
Z ZOBJMOAL[ , i () +
7ot
A
+I ' B B ' B +
+F ) ) N )
+t ()] )
+T(2)Mj,x 0i (gi )1” i')T(z)x 0i,\Ij (Si) +

0O - ;

1 2 1 2 1

Fig. 6. Diagrams for the two-particle Green’s function.
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- ) ~ ) . ) , 0iyc,0iyc
+ T(2)MM Ol(gi )1 i )T(Z)MM Ol(gi )):|:|} +
+ [ [ deyde,f(e)f(e,) (AGY (e, %))} : (69)
where I B B ,and
¢ ) , € ) )

In formula (69), component AG,(e,,¢,) of two-particle Green’s

function is caused by the interaction and has the form:
AGH (6112) = 5~ Uy, {[ G () — G (21) |
T
x| Gax, (e) — Ga, (2,) || G, ()G (21 -
~ G, )G, () |+ Gon, (e)| G, (8) — G, (2) |
<G (6)] G (8) ~ G, (&) | - G (2) %
x| G (e) — G, () |G, ()| Gt (&) — G, (1) | +
+[ Gor ()G, (2) — Gt ()G, (2) | x
<[ G, (e) - Gt (2) || Gl (o) — Gl (@) | +
G () - G (@) Gt ()] Gl (2) - G, (2) |

G () =[G, (0) — Gl (21) |G (2)

rngng rnyng anyng anyny

X[Gaa* (82)_Gaa* (82)i|Gaa* (81)} 1"”6”7(81,82;32’81) (n = nl'}’c)-(70)

rngn, anqny angng ngng
Operator of a-projection of the electron velocity in (69) is as follows:

oh. .(k
s = 1 )

To simplify the formula (69), we use approximate expression
<AG£3(81;82)> ~AC , where AC is derived from the ex-

pression (70) by replacing G* (g) with ¢
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It should be noted that the description of electron correlations in
disordered crystals would have to come from Hamiltonian system that
consists of interacting subsystems of nuclei and electrons. However, it
leads to excessively large rank of the Hamiltonian matrix (1) and major
complications in numerical calculations of electronic structure and
properties of the system. To reduce the rank of the Hamiltonian matrix
(1), the real wave functions of neutral free the A kind atom are chosen
as a basis.

Hamiltonian of the system consists of a single-electron Hamiltonian
in the ion core field, the potential energy of the pair electron—electron
interactions, Hamiltonian describing the vibrations of the lattice, and
Hamiltonian of electron—phonon interaction.

The wave functions and potential energy of an electron in the A kind
atom, which is located at the site (0il), are determined by the method
of electron density functional from Kohn—Sham equation [4, 5, 6, 7].

Potential energy of electrons in the ion core and the Hamiltonian
wave-function basis, we find from the Kohn—Sham equation for the
noninteracting atoms [22, 23]:

{——: C T k() + VM(I‘) + V}?é cr(1')} \V?ﬁc(r) = gik%w;c(r) , (7))
m

where oc—the quantum number of spin projection on the z-axis;
o0=(C ; [, m—quantum numbers of angular momentum, and ~ —the
quantum number describing the value of electron energy. To reduce
the record in the expression (71), (r — r,;) is denoted by (r).

In expression (71), the value Vef(t (r) is potential energy of an elec-
tron in the A kind atom core at the site (ni);

2

vim =] dv e (r') (72)

is the Coulomb potential of the electron charge.
In formula (72), electron density is as follows:

n,(r)y=n, (r)+n, (r). (73)

Electron density with projection of spin o is given by expression

n,,(r) = z bc\llzbcs (r)\ljlbﬁ (r), (74)

where Z, —the occupation number of electron state (i5c), provided

that the site (ni) be occupied by the A kind atom, which is calculated by
the formula (45). The expression (74) follows from the definition of the
density operator of electrons [31] and the definition of the Green’s
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function (15). In meta-generalized gradient approximation obtained by
Perdew [6—10], based on the density functional theory of many-
electron systems, taking into account the spin polarization and inho-
mogeneous distribution of electron density, the result of the action of

VMGGA () on the wave func-

exchange—correlation potential Vi (r) =V

tion can be represented as follows:

MGGA
V.

XCoo (r)ww(r)=V)?éf:(r)wm(r)—%V{uxc,c(r)V}ww(r), (75)

a e MGGA 8 e MGGA a e MGGA
V}?SGA (I‘) = |: XL -V — ’ HXC,G(I‘) =X ’

on ovn, ot

c (e}

where eNc®*(2n_)/2 is the exchange—correlation energy density,

T, = Z |V\|156 |2 / 2 —kinetic energy density.
3

Wave functions of basis set, ¢, .(r), on which Hamiltonian of the

system is given by the set (1), are defined from Kohn—Sham equation
(71) for the A = A kind atom and equal to ¢, (r) = R? -—r, )Yl,”n ©,9),

where R’ - _yp )—the radial part of wave function in Eq. (71),

ni

yY=(ov). Real spherical functions, Y, (6,¢9), are related to complex
spherical functions, Y, (0, ), by relations

@)+ Y00y g o V@0 -Ya0.0) (o) (7

2 i2

Electron density with spin projection o (74) can be represented as

ercn (99 (P) =

n}»ic (r) = n?(ic(r) + An}»ic (r) ’ (77)
where

1, () = 2L e (O () (78)
I3
is the density of electron states in the ion cores; summation is carried
out over the filled states Z);. =1 of ion core, and

An}»is (r) = ZZL%GW?;; (r)wgc (r) (79)
8

is the density of electrons in valent states of the atom. We assume that
the potential energy of electrons in the ion core and the Hamiltonian
wave-function basis have the same form as for noninteracting atoms.
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This assumption puts a requirement that the value of occupation num-
ber Z}&y in expression (79) has the same value calculated by the formula
(45).

Using formula (76), it can be shown that Z}SG in expression (79) is
equal to

Z: = l(Zx
2

idc idco

+2Z5). (80)

Here, Z"

idvoe

is calculated by expression (45), in which should be put

v=(ov), where v=c, s. Above-mentioned consistency can be achieved by
using the iterative procedure, in which the value of the right side of
expression (80), which is calculated by the formula (45), at a certain
step of iteration with a given accuracy coincides with the left side of
expression (80) in the previous step.

Matrix elements A of Hamiltonian (1) in multi-band s—p—d-

mY1>NglaY o
tight-binding model are the matrix elements of the operator of kinetic
energy and potential energy of an electron in a potential of the ion
core, o s “(r —r,), on the real wave functions of the neutral A
kind atoms. Potential energy of an electron in the field of ion core,
v*(r), is determined by formulas (76)—(79), in which, instead of the
total electron density, one should put the density of electrons, n/,_ (r)

(79), in states of the A kind ion core.
Diagonal (by site number (7,i;)) matrix elements are equal to
O i = (W,
MY191,M4 Y202 mhY101
number) matrix elements can be presented in the following form:

h(O) r

A gy A
; ; = . -r.)+tv*(@-r, _ ‘ . .
MY Y101, 1212Y 202 <W”1L1V151 rTyow my ) v ( Moty ) Wﬂzlez"z

Matrix elements in the right side of the last formula are calculated
by the Slater—Koster method [18, 19].

Potential energy of an electron in the ion core field in the expression
(11) is determined by formulas (76)—(78), in which, instead of the total

electron density, the density of electrons, n/, (r) (78), in states of the A

A -, )‘ \u,‘:ily252> . Off-diagonal (by site

kind ion core should put.
Matrix elements v®"""%"2 of Hamiltonian (1) can be calculated by

n3igY3sTylgYy
integrating the angular variables. Integral of the product of three
spherical functions (Gaunt integral) can be represented using the
Clebsch—Gordan coefficients [34]. As a result, for matrix elements

p@hmobme we ghtain

Lymg,lymy
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i 2 1 [y +ner+ne, e+
vlsms»l4m4 =e Z X
21, +1 @+ 1)L, +1)

=0
=Tl <t+1

|to—t| <ty <ty +1
I+1'+l3=2n",n'=0,1,2,3,...
ly+4 +l3=2n,,n;=0,1,2,3,...

xe(l,l'l;0,0)e(l,l'l; m' — m, m')e(l,LL,; 0, 0)e(l,l L,; m, —m,, m,) x

© n r-Ls
[drn’ R, (R)R,. ()| drn’R,, (n)R,, () 21 +
0 0

+1
1

b

w Ty r
+[drn’ Ry, ()R, ()] drn Ry ()R () i | (81)
0 0 2

where [, m are orbital and magnetic quantum numbers, respectively,
c(l"l'l; m", m')—the Clebsch—Gordan coefficients [34], R, (r)—the ra-
dial part of wave function, n—the main quantum number.

Matrix elements on the basis of real wave functions [18],

2) iy Yy s Mol . . . .
p@mhnneit: | for each site are expressed by linear combinations of ma-

ngigYs,MiyYy

trix elements vﬁiﬁ;jij . This calculation procedure for matrix ele-

ments can be easily programmed.
Matrix elements on the basis of real wave functions, p®™mmkr  for

N3l3Yg,MylyY s
different sites can be approximately represented in the form similar to
formula (81), if we describe radial part of the wave function by Gaus-
sian function (Gaussian orbital) as this is done in the method of mo-
lecular orbitals—linear combinations of atomic orbitals [35]. In this

approximation, the multicentre integrals v®™ "2 have the form of

NglzYg,MalyY s
one-centre integrals, as the product of two Gaussian orbitals, which
are localized at different centres, can be reduced to the product of orbi-
tals, which are localized at the joint centre.

To investigate the influence of an external magnetic field on the en-
ergy spectrum of electrons and electrical conductivity member describ-
ing the additive energy of the crystal in an external magnetic field, it
is need to be added to Hamiltonian of the system H (1):

" +
H' = Z 2HBGIHan11'1Y1°1a"111Y1°1 ’ (82)
m4LY101

where ug, H, o, are the Bohr magneton, intensity of external magnetic
field, and electron spin projection on the direction of the magnetic
field, respectively.
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Spin-dependent transport in systems with strong electron correla-
tions is described by partial constituent of diagonal conductivity ten-
sor element (79), which corresponds to a specific value of the electron
spin projection.

Thus, in the obtained expressions for the Green’s functions of elec-
trons and phonons, free energy and electrical conductivity of the crys-
tal, the processes of electron scattering on the potential of ion core,
charge and spin fluctuations of density and lattice vibrations are taken
into account. The accuracy of calculating the electronic structure, vi-
brational spectra and electrical conductivity of the crystal is deter-
mined by precision of vertex renormalization parts of the mass opera-
tors of electron—electron and electron—phonon interactions and the
small parameter of the cluster expansion for the Green’s functions of
electrons and phonons.

6. RESULTS OF CALCULATIONS AND CONCLUSIONS

Here are the results of calculation of the energy spectrum of electrons
and phonons and conductivity of carbon nanotubes doped with chro-
mium. In calculation, renormalization of vertex parts of mass operator
of electron—electron and electron—phonon interactions (21)—(23) was
neglected. Real wave functions of 2s-, 2p-, 3s-, 3d-states of neutral non-
interacting atoms of carbon were chosen. In the above-mentioned self-
consistent iterative procedure of calculation of electronic structure and
free energy, in the first step of the iteration formula (44), Z:yc were put
equal to occupation numbers of the corresponding electron states of
neutral noninteracting atoms of carbon and Cr. The off-diagonal (by
site index (ni)) matrix elements of Hamiltonian (1) were calculated by
taking into account the first three coordination spheres. Contribution
to the static displacements of atoms was neglected in the calculations.
Calculations were performed for the temperature T =300 K.

We performed geometry optimization of the crystal structure of
carbon nanotube of chirality (3,0) with Cr impurity. Geometric optimi-
zation of the crystal structure was achieved by minimizing the free en-
ergy (32). Carbon nanotube doped with Cr has a one-dimensional crys-
tal structure. Primitive cell contains 18 non-equivalent atom posi-
tions. Carbon atoms are located in 12 positions on the surface of the
inner cylinder. The distance between the carbon atoms is 0.142 nm.
The Cr atoms are randomly located in six positions on the outer surface
of the cylinder opposite the centre of a hexagon, the vertices of which
are carbon atoms. Through the study of free energy minimum, it is
found that Cr atoms are randomly located on the surface of nanotubes.
This indicates that the probability of Cr atoms arrangement in the ex-

pression (51) P = B} = ¢*, where ¢* —the ratio of Cr atoms with re-
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spect to the six possible positions of the atoms Cr within the primitive
cell. The distance between carbon atoms and Cr is 0.22 nm. The relative
position of carbon atoms and Cr is similar to the location of atoms of
transition metals on the surface of carbon nanotubes of large diameter,
which are described in [35] by ultrasoft pseudopotential method.

The value of localized magnetic moment projection of the Cr atom and
induced localized magnetic moment of the C atom in the direction of the
magnetic field increases with the intensity of field. For carbon nano-
tubes with 5 Cr atoms in primitive cell, value of projection magnetic
moment of the Cr atom varies as m, =(1.02;2.24)n,, and the magnetic
moment of the C atom varies as m, = (0.0036;0.02)u, with increasing
values of the magnetic field intensity from zero to H=200 A/m.

As calculated by means of the formula (39), Figure 7 shows the par-

tial (g,,(c) = 1 > PBg;..(e)) and total (g,(e) = > 8,.(¢)) electron densi-

v i,7,h
ties of states of carbon nanotube with an admixture of Cr in the ab-
sence of external magnetic field. Vertical line shows the Fermi level ¢;.
In Figure 8, points show the dependence of free energy F (32) on the
parameter of pair correlations in arrangement of Cr impurities on lat-

tice sites, £”” = g/, (54) for the first coordination sphere (atom of Cr is

denoted as the B kind atom). The dependence F(c?”) is shown in the re-
gion of free energy minimum. The free energy is measured from aver-
age electrostatic interaction energy of the A kind ions, (@) (61).

Figure 9 shows the partial (g,.(¢)) and total (g.(¢)) electron densities
of states of carbon nanotube with five atoms of Cr per primitive cell in
external magnetic field of H=100 A/m. In Figure 9, the part of the en-
ergy spectrum that is close to the Fermi level is shown. As shown in

"204 0,2 ' 0,0
g, Ry

Fig. 7. Electron densities of states of carbon nanotube with an admixture of Cr.
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Fig. 8. Dependence of free energy F for carbon nanotubes with five atoms of
Cr per primitive cell on the parameter of pair correlations in arrangement of
Cr impurities on lattice sites, £55.

Figure 9, for a given sign of the projection of magnetic moment local-
ized on sites of lattice, energies of the electron with spin o = % are
shifted relative to values of the energy of the electron with spin
o=- % . This leads to the formation of the Coulomb gap in the energy

spectrum of electrons, which is visible on gey (¢) and on g(¢) of Fig. 9.
2

The results presented in Fig. 9 are qualitatively consistent with re-
sults obtained by another method in Ref. [37].
In Figure 10, the dependence of the spin polarized electric current,

Fig. 9. Electron densities of states of carbon nanotube with five atoms of Cr
per primitive cell in external magnetic field of H=100 A/m.
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Fig. 10. The dependence of spin polarized electric current, Ac/c, in carbon
nanotube on the magnitude of the external magnetic field, H.

Ac/c = (01/2 — Gy ) / G, in carbon nanotube with chirality (3,0) on the

magnitude of the external magnetic field as calculated by the formula
(37) for temperature of 300 K is shown.

Thus, the phenomenon of spin-dependent electron transport occurs
in systems with strong electron correlations and is associated with the
location of the Fermi level relative to the Coulomb gap in the energy
spectrum of electrons.

In an external magnetic field, there is relative displacement of elec-
trons’ energy levels (Coulomb gap) for different spin projections o
(Fig. 9).

Value of spin polarization of electron transport depends on the dif-
ference of electron density states with different spin projection at the
Fermi level.

In Ref. [38], the electronic structure and properties of carbon nano-
tubes with transition metal chains adsorbed on the surface is calcu-
lated, based on the density functional method using ultrasoft pseudo-
potential. Our results are qualitatively consistent with the results of
[38], in which ab initio electron density functional method shows that
the chains of transition metals adsorbed on the surface of carbon nano-
tubes open a gap in the electrons’ states with a certain spin value.
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