С. В. Широков, М. П. Вышемирский

Национальный технический университет Украины «Киевский политехнический институт», г. Киев

Использование тяжелых ионов для моделирования радиационного повреждения металлов

Дан обзор существующих методов решения проблемы моделирования радиационного повреждения металлов с использованием тяжелых ионов, а также анализ полученных в ходе исследования результатов. Показано, что облучение металлов тяжелыми ионами может имитировать нейтронное облучение эквивалентной дозы с достаточной точностью, предоставляя возможность детально изучить радиационное повреждение металлов.

Ключевые слова: радиационные дефекты, флюенс, вакансии, тяжелые ионы, время жизни позитронов, отжиг.

С. В. Широков, М. П. Вишемирський

Застосування важких іонів для моделювання радіаційного пошкодження металів

Наведено огляд наявних методів вирішення проблеми моделювання радіаційного пошкодження металів із застосуванням важких іонів, а також аналіз отриманих у ході дослідження результатів. Показано, що опромінення металів важкими іонами може імітувати нейтронне опромінення еквівалентної дози з достатньою точністю, уможливлюючи детальне вивчення радіаційного пошкодження металів.

Ключові слова: радіаційні дефекти, флюенс, вакансії, важкі іони, час життя позитронів, відпал.

© С. В. Широков, М. П. Вышемирский, 2011

Ядерна та радіаційна безпека 3(51).2011

атериалы, используемые в быстром реакторе, а также перспективных установках ADS, ITER, подвержены высоким дозам облучения нейтронами. Облучения материалов нейтронами приводит к изменению их физических и механических свойств и поэтому существенно влияет на работоспособность конструкций ядерных реакторов. Основным фактором, определяющим эти изменения, являются нарушения кристаллической решетки, характеризирующиеся числом смещений атомов в кристаллической решетке за время облучения (число смещений на атом, англ. — displacements per atom, dpa). Это излучение вызывает серьезное радиационное повреждение материалов, что приводит к разрушению оборудования [1]. Исследование радиационных повреждений, обусловленных облучением большими дозами, весьма актуально и важно. Однако это исследование замедляется из-за отсутствия нейтронных и протонных источников, имеющих высокие плотности потоков частиц. Моделирование с использованием облучения тяжелыми ионами представляет эффективный путь такого исследования [2].

Научно-исследовательским институтом Японии на реакторной установке JJR-2 проведено облучение монокристаллических образцов Al_2O_3 нейтронами с энергией $E_n > 1$ МэВ, при этом флюенс составлял 3 10²⁰ см⁻² [3]. Облучение аналогичных образцов тяжелыми ионами ¹⁹F выполнено Китайским институтом атомной энергии на ускорителе HI-13. Энергия ионов соответствовала 85 МэВ при флюенсе 5,28·10¹⁶ см⁻², что эквивалентно $E_n > 1$ МэВ при флюенсе 3·10²⁰ см⁻². После облучения проводился отжиг в атмосфере азота в течение 40 мин при температуре от 100 до 1050 °C с шагом 50 °С. Радиационные дефекты (вакансии и пустоты) выявлялись при дальнейшем облучении образцов позитронами при комнатной температуре методом измерения времени жизни последних. Для этого использовался спектрометр на основе BaF₂ с раздельной способностью 210 пс. Два идентичных образца располагались «сендвичем», источник позитронов мощностью 0,8 МБк находился в центре между образцами. Каждый спектр жизней позитронов содержал 1,5.10⁶ взаимодействий, которые были проанализированы с помощью LT-программы. Спектр жизней позитронов хорошо описывался двумя компонентами — τ_1 и τ_2 — при температуре ниже 450 °C, и третьей долгоживущей компонентой — т₃ — при температуре выше 450 °C. Из рис. 1 видно, что все параметры аннигиляции позитронов (такие, как время жизни и интенсивность) при облучении образцов тяжелыми ионами хорошо согласуются с результатами, полученными при облучении таких же образцов нейтронами эквивалентной дозы. Таким образом, можно сделать вывод, что облучение тяжелыми ионами может имитировать нейтронное облучение эквивалентной дозы и открывает путь к надежному исследованию радиационных дефектов, возникающих в металлах при проведении опытов в лабораторных условиях за минимальный период времени.

После удачного эксперимента с алюминиевыми пластинами был проведен опыт с образцами нержавеющей стали аустенитного класса. MSS-316 (Modified Stainless Steel) имеет следующий состав, %: Cr — 15,05, Ni — 14,76; Ti — 0,32; P — 0,007; S — 0,007; Mn — 1,78; Si — 0,52; C — 0,048; Fe — 67,515 (Fe подбирался в остатке по массе). Образцы стали (их толщина составляла 0,5 мм) поддавались механическому наклепу для улучшения механических свойств, а далее полировались до зеркального вида. Облучение проводилось при переменной температуре (меняющейся

от комнатной до 802 °C, точность измерения температуры ± 5 °C) ионами 12 C с энергией 70 МэВ на ускорителе HI-13.

Интенсивность повреждений составляла 2,1 dpa·ч⁻¹ для двух доз — 21 и 33 dpa. Время жизни позитронов измерялось в облученных и необлученных образцах одной и той же стали. Время жизни свободных позитронов в нержавеющей стали Stainless Steel составляет τ_f =110 пс, а время жизни позитронов, попавших в моно-, ди-вакансии и дислокации, составляет соответственно τ_{1B} =1,3 τ_f , τ_{2B} =1,5 τ_f и $\tau_{дис}$ =1,3 τ_f . Для необлученного образца MSS-316 τ_{1B} =147 пс, τ_{2B} =271 пс: это средневзвешенное время аннигиляции позитронов в образце. Зависимость τ_{1B} и τ_{2B} от температуры отжига получена сначала для необлученной стали MSS-316. Таким образом, было определено, что с ростом температуры отжига τ_{1B} уменьшается и достигает 110 пс, а τ_{2B} =255 пс при 800 °C.

Для облученных образцов MSS-316 зависимость τ_{1B} и τ_{2B} от температуры облучения представлена на рис. 2 (для

Рис. 1. Зависимость времени жизни позитронов τ_1, τ_2, τ_3 и их интенсивности I_2 и I_3 в образце Al_2O_3 от температуры отжига при их облучении нейтронами и ионами ¹⁹F эквивалентной энергии

21 dpa). Из рисунка видно, что при комнатной температуре время жизни позитронов, попавших в ди-вакансию (τ_{2p}) почти такое же, как и в необлученных образцах, тогда как время жизни позитронов, попавших в моно-вакансию, $\tau_{1B}\!=\!155,3$ пс. Оба параметра τ_{1B} и τ_{2B} достигают своих пиковых значений 157,4 пс и 373,0 пс при 580 °С. При температуре 802 °C τ_{1B} =128,2 пс и τ_{2B} =301,7 пс: в данном случае время жизни позитронов больше соответствующих значений τ_{1B} и τ_{2B} в необлученных образцах, отожженных при 800 °С. Доли моно- и ди-вакансий и дислокаций уменьшаются с ростом температуры облучения, кроме 580 °C, что можно интерпретировать как факт, что т_{1в} представляет собой средневзвешенное время жизни свободных позитронов и позитронов, захваченных на возникших дефектах. Время жизни позитронов т₁ дает пик при 580 °C. Конкуренция между сочетанием дефектов теплового движения и дефектов термического отжига приводит к увеличению доли дивакансий, что в свою очередь приводит к пику при этой

Рис. 2. Сравнение времени жизни позитронов облученной и необлученной стали MSS-316

температуре. Самые большие пустоты или кластеры, характеризующиеся τ_2 , наблюдались также при 580 °C.

Из температурной зависимости времени жизни позитронов τ_2 в стали MSS-316 (рис. 3), полученной для 33 dpa, пик наблюдается так же при 580 °С. Видно, что ниже температуры пика время жизни позитронов τ_2 увеличивается с температурой облучения; следовательно, радиационные дефекты более чувствительны к температуре, чем к дозе облучения.

Радиус образовавшихся пустот можно ориентировоч-

но оценить по зависимости $R_v = N^{\overline{3}}R_{ws}$, где R_{ws} — радиус Вигнера-Зейтса; N — число вакансий, содержащихся в микропустоте [2]. Результаты расчета среднего диаметра наблюдаемых пустот при различных температурах облучения (до 802 °C) на 21 и 33 dpa (рис. 3) свидетельствуют о том, что температура существенно влияет на диаметр микропустот и, таким образом, на радиационное распухание. Пик распухания нержавеющей стали варьируется в диапазоне 450—650 °C в зависимости от состава металла. При более низких температурах облучения дефекты менее подвижны и вероятность их укрупнения мала. При более высоких температурах облучения имеет место вакансионный отжиг, и распухание происходит только при определенной температуре. В данном случае пик радиационного распухания наблюдался при 580 °C, соответствующие микропустоты содержали 14 и 19 вакансий со средним диаметром 0,68 и 0,82 нм для 21 и 33 dpa соответственно. Как уже упоминалось, наклеп и добавление незначительного количества стабилизирующих элементов могут значительно уменьшить радиационное распухание в нержавеющей стали.

Хотя радиационный пик распухания и обнаружен при 580 °С, а пустоты содержали по 14 и 19 вакансий со средним диаметром 0,68 и 0,82 нм для 21 и 33 dpa соответственно, это распухание значительно меньше, чем в обычной нержавеющей стали, при исследовании которой пустота со средним диаметром 25,8 нм обнаружена при облучении с температурой 560 °С и общей дозой $3,2 \cdot 10^{22} \text{ n} \cdot \text{см}^{-2}$, что эквивалентно использованной в опыте дозе облучения тяжелыми ионами [3].

Изучением этой же проблемы долгие годы занимались в российском Физико-энергетическом институте им. А. И. Лейпунского. В середине 1980-х под руководством Ю. В. Конобеева были получены групповые библиотеки сечений образования дислокаций [4]. При расчетах по системе констант БНАБ до последнего времени использовалась именно оценка Ю. В. Конобеева и др. Однако данные DAMSIG-81, лежащей в основе этой библиотеки, были получены с использованием устаревших к настоящему времени нейтронных данных ENDF/B-3. Поэтому было решено создать новую версию библиотеки сечений образования дислокаций и на основании обновленных данных получить модель образования радиационных дефектов

Рис. 3. Температурная зависимость времени жизни позитронов τ_2 и среднего диаметра микродефектов в стали MSS-316, облученных до доз 21 и 33 dpa

Рис. 4. Зависимость дозы облучения от энергии образования дислокаций

в металлах. Расчет групповых сечений образования дислокаций проводился с помощью программы NJOY-91 — признанного и широко используемого в мире программного средства для обработки файлов оцененных нейтронных данных. Методика расчета DPA, принятая в NJOY-91.4, базируется на каскадной функции Робинсона, основной идеей которой является принятие минимальных значений энергии, необходимой для образования устойчивой пары Френкеля в различных материалах, $-E_d$. Опыт был проведен с помощью компьютерной симуляции на независимо разработанном модуле KERMA программы TERMIS в Физико-энергетическом институте им. А. И. Лейпунского. Верифицировались полученные данные сравнением их с данными 175-групповой абсолютно независимой библиотеки групповых сечений образования дислокаций RLF-1. Полученные результаты оказались вполне удовлетворительными (рис. 4), что еще раз подтверждает возможность моделирования радиационных дефектов с помощью тяжелых ионов [3].

Подводя итоги, можно сделать вывод, что облучение металлов тяжелыми ионами может имитировать нейтронное облучение эквивалентной дозы с достаточной точностью и дает возможность детально изучить радиационное повреждение металлов.

Список литературы

1. *Пищак, В. К.* Электронный конспект лекций для студентов специальности «Атомные станции и установки»: Конструкционные материалы ядерных энергетических установок. — К.: КПИ, 2007.

2. *Абрамович, М. Д.* Радиационное материаловедение на АЭС. — М.: Энергоатомиздат, 1984.

3. Yongnan Zheng. Heavy ion irradiation simulation of high dose irradiation induced radiation effects in materials / Yongnan Zheng, Yi Zuo and others // Вопросы атомной науки и техники. — X., 2009. — Вып. 4.

4. Забродская, С. В. Библиотека сечений образования транслокаций, H₂, Не в системе константного обеспечения БНАБ-93 / С. В. Забродская, М. Н. Николаев // Всерос. ин-т науч. и техн. информации — электронный ресурс.

Надійшла до редакції 23.03.2011.