УДК 621.221.04:628.12

А. С. Балашевский¹, А. В. Герлига², И. И. Свириденко³

¹ Севастопольский национальный университет ядерной энергии и промышленности

- ²ООО Научно-исследовательский институт АЭС, г. Одесса
- ³ Севастопольское отделение научно-технической поддержки ОП НТЦ ГП НАЭК «Энергоатом»

Предотвращение орошения охлаждающим раствором гермообъема реакторного отделения при срабатывании спринклерной системы

Рассмотрен способ эффективного снижения давления под гермооболочкой реакторного отделения АЭС с ВВЭР-1000 в условиях течи первого/второго контура за счет конденсации пара струйными распылителями-охладителями без прямого орошения охлаждающим раствором атмосферы гермообъема и оборудования реакторной установки с организованным отводом конденсата в бак-приямок. Представлены результаты расчетного моделирования процесса снижения давления под гермооболочкой.

Ключевые слова: струйный распылитель-охладитель, АЭС, ВВЭР, гермооболочка, барбатажный бак, импульсное предохранительное утройство, компенсатор давления.

О. С. Балашевський, О. В. Герліга, І. І. Свириденко

Запобігання зрошуванню охолоджуючим розчином гермооб'єма реакторного відділення при спрацьовуванні спринклерної системи

Розглянуто спосіб ефективного зниження тиску під гермооболонкою реакторного відділення AEC з BBEP-1000 в умовах течі першого/другого контура за рахунок конденсації пара струменевими розпилювачами-охолоджувачами без прямого зрошування охолоджуючим розчином атмосфери гермооб'єма і устаткування реакторної установки з організованим відведенням конденсату в бак-приямок. Представлено результати розрахункового моделювання процесу зниження тиску під гермооболонкою.

Ключові слова: струменевий розпилювач-охолоджувач, АЕС, ВВЕР, гермооболонка, барботажний бак, імпульсний запобіжний пристрій, компенсатор тиску.

© А. С. Балашевский, А. В. Герлига, И. И. Свириденко, 2010

адача недопущения превышения давления в гермообъеме реакторного отделения (РО) АЭС с ВВЭР-1000 проектного значения при авариях с течью первого/второго контура определяется существующими ограничениями прочностных характеристик элементов системы герметичных ограждений. Во всех эксплуатационных режимах расчетные параметры в гермообъеме не должны превышать допустимых значений.

Применяемый на АЭС способ конденсации пара в гермообъеме РО с помощью спринклерной системы реализуется за счет распыла охлаждающего раствора спринклерными устройствами, размещенными внутри гермооболочки (ГО), что обеспечивает поддержание давления и температуры в гермообъеме ниже расчетного значения. Этот способ имеет ряд существенных недостатков [1], и основными из них являются прямое орошение охлаждающим раствором реакторного оборудования (используются растворы метабората калия и борной кислоты), радиационное загрязнение оборудования после забора раствора из бака-приямка, возможные отказы электрооборудования вследствие нарушения изоляции, развитие коррозионных процессов.

Для ликвидации этих недостатков необходимо модернизировать спринклерную систему. Предлагается реализовать метод локальной конденсации пара, поступающего в гермообъем, в струйных распылителях-охладителях (СРО) [2]. СРО вводятся в действие до срабатывания спринклерной системы на распыл охлаждающего раствор через распылительные форсунки, размещенные внутри СРО, обеспечивая при этом эффективное снижение давления под ГО с организованным отводом спринклерного раствора и конденсата в бак-приямок. Впервые идея этого технического решения была высказана проф. Суховым А. К. [3]. Известны экспериментальные исследования и ряд работ к. т. н. Мирошниченко С. Т., посвященные прямоточным распылительным теплообменникам [4] для снижения температуры в герметичном объеме.

Проверку эффективности СРО для снижения давления под ГО предлагается выполнить расчетно-экспериментальным методом.

Реализация способа

Особенностью предлагаемого метода является реализация режима локальной конденсации пара в объеме СРО с последующим организованным отводом в бак-приямок ГО практически всего образующегося конденсата. Это обеспечивается расположением трубы СРО в периферийной области гермообъема у основания купола ГО рядом с ее вертикальной стеной.

Конструкция СРО (рис. 1) представляет собой трубу 2 прямоугольного сечения, перед входом в которую несколькими рядами установлены струйные форсунки 1 с конически сходящимся входом и диаметром отверстия для выхода воды (6÷8)·10⁻³ м [4]. Подача охлаждающего раствора на форсунки производится из трубопровода спринклерной системы.

В нижней части СРО имеет патрубок выпара тумана с жалюзийным сепаратором *3*, занимающим одну грань трубы СРО, и трубопровод *4* для отвода охлаждающей воды и конденсата.

Образующийся на стене конденсат вместе с конденсатом в СРО и охлаждающим раствором собирают и по трубопроводам организованно отводят к баку-приямку.

Рис. 1. Схема СРО

На рис. 2 представлена схема системы снижения давления в гермообъеме в условиях течи методом локальной конденсации пара в СРО [1]. При повышении давления в гермообъеме 2 из-за аварийной течи первого/второго контура РУ 1 охлаждающий раствор подается в СРО спринклерным насосом 12 из бака-приямка 5 по подъемному трубопроводу 13. Охлаждающий раствор распыляется во внутренней полости вертикальной трубы 7 СРО, тем самым в СРО формируются условия, при которых: потоком капель охлаждающего раствора увлекается паровоздушная смесь из гермообъема 2 в трубу СРО 7;

2) давление внутри СРО снижается в сторону уровня, соответствующего температуре насыщения охлаждающего раствора, подаваемого спринклерным насосом *12*.

Эти два эффекта приводят к возникновению необходимого перепада давления и связанному с этим активному поступлению горячих потоков парогазовой среды из гермообъема во внутреннюю полость СРО, где пар охлаждается и конденсируется на струях капельного факела *6* охлаждающего раствора. Конденсат вместе с охлаждающим раствором *10* собирается в нижней части трубы СРО *7*.

Трубу СРО 7 размещают в периферийной области гермообъема у основания купола ГО 4 рядом с ее вертикальной стеной 3. Выпускной патрубок 8 СРО, предназначенный для эвакуации из СРО газа и несконденсировавшегося пара 14, направляют в сторону стены ГО 3. На этой стене частично конденсируется пар 14 и туман, оставшийся после сепаратора. Образующийся при этом конденсат 15 стекает по стене 3 вниз, где собирается в конденсат из конденсатосборника 9 вместе с конденсатом и охлаждающим раствором 10 из трубы СРО 7 по сливным трубопроводам 11 организованно отводится в бак-приямок 5 РО [1], [7].

Принципиальная схема применения СРО в составе спринклерной системы РУ с ВВЭР-1000 представлена на рис. 3.

Основное преимущество предлагаемого способа — создание условий, при которых давление в гермообъеме не будет подниматься до уставки запуска спринклерной системы на распыл охлаждающего раствора через потолочные распылители. Предполагается, что спринклерный насос будет включаться на начальной стадии аварии, начиная с повышения избыточного давления под ГО более чем на 0,01 МПа. При этом спринклерный раствор должен поступать только на СРО и не поступать на потолочные распылители спринклерной системы до тех пор, пока избыточное давление в гермообъеме не поднимется более чем до 0,07 МПа — для РУ АЭС с ВВЭР-1000 «малой» серии (В-302, 338), и более чем до 0,03 МПа — для серийной РУ (В-320). Тем самым исключаются указанные выше отрицательные последствия работы спринклерной

Рис. 3. Принципиальная схема одного канала спринклерной системы с применением СРО: 1 — спринклерный насос; 2 — теплообменник аварийного и планового расхолаживания; 3 — бак бората калия; 4 — бак аварийного запаса борной кислоты; 5 — водоструйный насос; 6 — насос перемешивания бората калия; 7 — сливное устройство; 8 — струйные распылители охладители

системы и повышается надежность расхолаживания гермообъема и реакторной установки, т. е. обеспечивается безопасность протекания рассматриваемого аварийного процесса.

Математическое описание процессов тепломассообмена в СРО

Процесс в межфакельном (внефакельном) пространстве СРО описывается следующей системой уравнений [4]—[7]: уравнением неразрывности для пара, газа и тумана, соответственно,

$$\frac{d\left(W_{\Pi\Gamma}\rho_{\Pi}F_{\Pi\Gamma}\right)}{dz} = -\rho_{\Pi}\frac{\Pi_{\Pi\Gamma K}W_{\Pi\Gamma K}}{\cos\alpha} - F_{\Pi\Gamma}q_{mT}, \qquad (1)$$

$$\frac{d\left(W_{\Pi\Gamma}\rho_{\Gamma}F_{\Pi\Gamma}\right)}{dz} = -\rho_{\Gamma}\frac{\Pi_{\Pi\Gamma K}W_{\Pi\Gamma K}}{\cos\alpha},\qquad(2)$$

$$\frac{dG_T}{dz} = -\rho_T \frac{\Pi_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha} + F_{\Pi\Gamma} q_{mT}; \qquad (3)$$

Ядерна та радіаційна безпека 2(46).2010

уравнением баланса энергии для парогазотуманной смеси

$$\frac{d}{dz} \left[G_{\Pi} i_{\Pi}^{\prime\prime} + G_{\Gamma} i_{\Gamma} + G_{T} i_{T}^{\prime} \right] =$$

$$= -\frac{\Pi_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha} \left[\rho_{\Pi} i_{\Pi}^{\prime\prime} + \rho_{\Gamma} i_{\Gamma} + \rho_{T} i_{T}^{\prime} \right]; \qquad (4)$$

уравнением баланса количества движения

$$\rho_{\Pi\Gamma\Gamma}F_{\Pi\Gamma}W_{\Pi\Gamma}\frac{dW_{\Pi\Gamma}}{dz} = -F_{\Pi\Gamma}\frac{dP}{dz} - \Pi_{CPO}\tau + W_{\Pi\Gamma}\rho_{\Pi\Gamma\Gamma}\frac{\Pi_{\Pi\Gamma K}W_{\Pi\Gamma K}}{\cos\alpha}.$$
 (5)

Для факельного пространства запишем следующие уравнения:

уравнения неразрывности для потоков пара, газа и тумана, соответственно,

$$\frac{d\left(W_{\Pi\Gamma\Phi}\rho_{\Pi\Phi}\overline{F}_{\Phi}\right)}{dz} = \rho_{\Pi}\frac{\Pi_{\Pi\Gamma K}W_{\Pi\Gamma K}}{\cos\alpha} - F_{\Phi}q_{m\Gamma\Phi} - \frac{dG_{K}}{dz}, \quad (6)$$

$$\frac{d\left(W_{\Pi\Gamma\Phi}\rho_{\Gamma\Phi}F_{\Phi}\right)}{dz} = \rho_{\Gamma}\frac{\Pi_{\Pi\Gamma K}W_{\Pi\Gamma K}}{\cos\alpha}, \qquad (7)$$

$$\frac{dG_{T\Phi}}{dz} = \rho_T \frac{\Pi_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha} + \overline{F}_{\Phi} q_{mT\Phi}; \qquad (8)$$

уравнение баланса энергии для парогазотумановой смеси

$$\frac{d}{dz} \left[G_{\Pi\Phi} i_{\Pi\Phi}'' + G_{\Gamma\Phi} i_{\Gamma\Phi} + G_{T\Phi} i_{T\Phi}' \right] = \frac{\prod_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha} \left[\rho_{\Pi} i_{\Pi}'' + \rho_{\Gamma} i_{\Gamma} + \rho_{T} i_{T}' \right] - \frac{F_{K\Phi}}{V_{K}} \left[i_{\Pi\Phi}'' q_{m} + q \right];$$
(9)

уравнение баланса количества движения для парогазотумановой смеси

=

$$\rho_{\Pi\Gamma T\Phi} \overline{F}_{\Phi} W_{\Pi\Gamma\Phi} \frac{dW_{\Pi\Gamma\Phi}}{dz} =$$

$$= -\overline{F}_{\Phi} \frac{dP}{dz} - W_{\Pi\Gamma\Phi} \rho_{\Pi\Gamma\Gamma} \frac{\Pi_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha} +$$

$$+ \frac{F_{K\Phi} \left[f + (W_{\Pi\Gamma\Phi} - W_{K}) q_{m} \right]}{V_{K}},$$
(10)

где р —плотность; *i* —энтальпия; *W* —скорость; *F* —площадь поперечного сечения; $\Pi_{\Pi\Gamma K}$ — периметр капельного факела; q_{mT} — массовая скорость образования тумана в единицах объема во внефакельном пространстве (удельный расход пара на образование тумана); τ — касательное напряжение трения на стенке СРО; $q_{mT\Phi}$ — массовая скорость образования тумана в единице объема факельного пространства; *G* — расход; $\overline{F}_{\Phi} = F_{\Phi} - F_{K\Phi}$ — площадь парогазовой смеси внутри факела; $F_{K\Phi}$ — площадь поперечного сечения, занятого каплями; V_K — объем капли; *P* — давление; подстрочные индексы: ПГ — парогазовая смесь, П — пар, Γ — газ, Т — туман, Φ — факел, К — капли охлаждающей воды, П Φ — пар в факеле, ПГТ Φ — парогазотумановая смесь в факеле; $\frac{\Pi_{\Pi\Gamma K} W_{\Pi\Gamma K}}{\cos \alpha}$ — объемный расход смеси через единицу площади конуса факела; $W_{\Pi\Gamma K}$ — скорость, перпендикулярная к поверхности конуса капельного факела.

Особенностью анализируемых процессов является то, что, при наличии течи из ГО в СРО может поступать парогазовая смесь либо с перегретым паром, либо с паром, находящимся на линии насыщения. Во втором случае в СРО может поступать парогазовая смесь с туманом. Туман может, кстати, самостоятельно возникать и исчезать в СРО.

В связи с этим в СРО возможны следующие варианты протекающих процессов:

в межфакельном и факельном пространствах парогазовая смесь содержит перегретый относительно линии насыщения пар;

в межфакельном пространстве течёт парогазовая смесь с перегретым паром, в факельном пространстве — парогазовая смесь с туманом;

в межфакельном пространстве течёт парогазовая смесь с туманом, а в факельном пространстве — парогазовая смесь с перегретым паром;

в межфакельном и факельном пространствах находятся парогазовые смеси с туманом.

Указанные четыре состояния паровоздушной смеси в СРО с процессом в ГО описываются в сумме системой из 54 дифференциальных уравнений [7], характеризирующей нестационарный тепломассообмен между парогазовой смесью в гермообъеме и каплями распыляемого в СРО раствора.

Результаты расчетного моделирования

Предварительное расчетное моделирование процессов в ГО выполнено для течей теплоносителя первого контура с учётом и без учёта конденсации пара на оборудовании. Анализ результатов показал, что использование данного способа в условиях аварии с течью позволяет максимально ограничить рост давления в гермообъеме на возможно низком уровне после его локализации. Эффективность работы СРО подтверждается результатами расчетного моделирования изменения давления в гермообъеме в условиях течи первого контура.

В работах [6]—[8] представлены результаты расчёта влияния конструктивных размеров и режимных параметров струйного распылителя-охладителя (СРО) на процесс снижение давления в ГО: длины и количества труб СРО, диаметра капли, перепада давления на форсунках, угла распыла факела.

На рис. 5 приведена динамика изменения давления в гермообъеме на примере импульсно-предохранительного устройства компенсатора давления (ИПУ КД) с отказом на закрытие. Это позволяет определить необходимое количество труб СРО для достижения заданного результата (в каждой трубе 24 форсунки, перепад давления на форсунках 0,5 МПа, диаметр сопла 8 мм, температура спринклерного раствора 30 °C, расход через одну форсунку 1,26 кг/с).

Установлено, что абсолютное давление в гермообъеме не поднимается выше 0,14 МПа при 10 СРО, что исключает условия срабатывания спринклерной системы РУ с ВВЭР-1000 «малой» серии. Пик роста давления для течей эквивалентным диаметром 60 мм в период аварии достигается на 2400-й секунде.

Результаты расчёта получены с помощью разработанной нами математической модели процессов, происходящих как в отдельном СРО, так и в системе СРО+ГО при наличии течи.

Рис. 5. Динамика изменения давления в гермообъеме при установке 10 труб СРО без учёта конденсации пара на оборудовании и спринклерной системы: 1, 2, 3 — изменение давления в ГО при длине трубы L = 4, 3 и 2 м, соответственно; 4 — изменение давления в ГО без учёта СРО

Для дальнейшего, более детального, анализа с применением описанной математической модели было выбрано исходное событие (ИС), имевшее место на энергоблоке № 3 РАЭС 22 сентября 2009 г. [9] из-за полного открытия ИПУ КД с отказом на закрытие при проведении испытаний в режиме «горячий останов», что сопровождалось повышением температуры и давления среды внутри гермооболочки.

Для расчета переходного процесса в РУ использовалась четырехпетлевая модель РУ ВВЭР-1000/В-320 для программы RELAP5/Mod3.4, адаптированная под параметры блока № 3 РАЭС. Расчет выполнялся с целью получения функций течи (расходы и удельные энтальпии пара и воды в помещение бака-барботера КД ГА503) для дальнейшего расчёта изменения параметров в ГО с помощью кода MELCOR 1.8.5.

Основные параметры блока перед рассматриваемым ИС: реактор подкритичен, концентрация борной кислоты в теплоносителе 1-го контура 16 г/кг. Мощность остаточных энерговыделений активной зоны при выполнении расчета практически постоянна — около 3 МВт, что соответствует стационарной четырехгодичной топливной загрузке после перегрузки топлива. В силу особенностей модели, расчет стационарного состояния выполнен при работающих ГЦН с теплоотводом в ПГ, при этом давление в последних выбрано из условия получения требуемой температуры теплоносителя $T_1 = 270$ °C на входе в реактор.

Затем, на заключительной стадии, уже при отключенных ГЦН давление в первом контуре было повышено с помощью трубчатых электрических нагревателей компенсатора давления (ТЭН КД) от 158 до 186,5 кгс/см². С этого момента начинается собственно расчет переходного процесса. Сравнительная хронология событий (блочные данные и расчет) представлена в табл. 1. Расчетное время отсчитывается от момента ИС — полного открытия ИПУ КД (приведено в скобках).

Разрыв мембраны барботажного бака (ББ) в расчете происходит на 45-й секунде с момента ИС аварии.

Для более корректного задания граничных условий для кода RELAP5 предполагалось, что после разрыва мембраны истечение пароводяной смеси происходит в объем около 250 м³. Это соответствует реальному свободному объему помещения ГА503. Данный расчетный объем проходным сечением 9,98 м² (что также соответствует геометрии проемов в ГА503) соединен с объемом 6×10^4 м³ — объемом остальной части реакторного отделения внутри ГО. Поскольку для достижения требуемой точности расчета рассматриваемой течи требовалась лишь качественная оценка поведения основных параметров в указанных объемах (это было подтверждено анализом чувствительности), пассивные поглотители теплоты в данных объемах не моделировались. Не моделировалась и работа вентиляционных систем, а также работа спринклерной системы, поскольку расчет функций течи был необходим, прежде всего, для последующего сравнения эффективности различных инженерных систем подавления параметров в ГО. Начальные условия в данных объемах приняты следующими: температура +27 °С (300,15 К), давление 1,0·10⁵ Па (абс.), срела — азот.

Как видно из таблицы, вплоть до 1700-й секунды результаты расчета демонстрируют хорошее совпадение с блочными данными. Единственное отличие связано с незначительным временным ростом давления в первом контуре после включения на контур насоса TQ23D01. Соответственно, достижение давления первого контура ($P_1 = 44 \text{ krc/cm}^2$), при котором оперативный персонал включил в работу на контур TQ33D01, произошло позже. Этот факт, однако, не оказал существенного влияния на функции течи, что впоследствии было подтверждено вариантным расчетом с включением третьего канала системы аварийного охлаждения активной зоны высокого давления (САОЗ ВД) не по давлению, а по достижении заданного момента времени переходного процесса, в соответствии со станционными данными.

Расчет показал, что после 4000-й секунды процесса в помещение ГА503 из бака-барботера поступает уже не пароводяная смесь, а исключительно вода с нулевым паросодержанием и сравнительно низкими параметрами. Поэтому для дальнейших расчетов были использованы полученные параметры внутри ГО (давления, расхода) для первых 4000 секунд аварии (рис. 6 и 7).

Зная поступление пара в ГО (по данным расчёта RELAP5), с помощью программы MELCOR 1.8.5 можно рассчитать изменение давления, температуры и других характеристик в атмосфере ГО с течением времени, а также оценить влияние работы СРО на протекающие в ГО процессы. Соответственно, изменяя геометрические параметры труб СРО, можно добиться желаемого результата в снижении давления и температуры паровоздушной смеси в ГО.

Были проведены расчеты динамики параметров в ГО без СРО и спринклерной системы, а также с учётом спринклерной системы и включением в работу 10 труб СРО длиной 2 м и умеренно-консервативно завышенной температуры спринклерного раствора 35 °С. Количество СРО определялось исходя из расходной характеристики спринклерных насосов: для работы 10 труб СРО достаточно двух каналов спринклерной системы.

Включение СРО происходит при избыточном давлении в ГО, равном 0,1 кгс/см². В модели также учитывается конденсация пара на стенках гермообъема и оборудовании внутри ГО.

0-4 (0) Распитались электромагниты ИК YP2IS03, S04 и открылся ГК YP2IS01 при P_1 = 186,5 кгс/см ² 13 (18 – достиже- ние уставки закрытия) При P_1 = 175,7 кгс/см ² запитались ИК YP2IS03, S04 и появивлась индикация «закрыто» ГК YP2IS01 по сниж закрытия) 61 (54) Включились все группы ТЭН КД 74–134 () Сработала блокировка по давлению в гермооболочке больше 0,003 кгс/см ² (изб.), закрылась локализу- ощая арматура систем TI. 22.42 134–194 (181) Аварийно отключились ТЭН КД Включены в работу насосы TB10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточ- ных насосов 289 (320) При $P_{1k} = 66$ кгс/см ² произошло формирование сигнала защиты « $T_s < 10$ °C» без воздействия на испол- ных насосов 314–374 (360) Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1-4 системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1k} = 58$ кгс/см ² 696–879 Предпринята польтка закрытия YP2IS01 кратковременным открытием YP2IS08 и подачей питания из акрытию YP2IS01 134–134 (134) Включены в работу на 1-й контур насос TQ23D01 при $P_1 = 48$ кгс/см ² 134–134 (1340) Включена в работу на 1-й контур насос TQ23D01 при $P_1 = 44$ кгс/см ² 134–134 (1340) Включена в работу на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см ² 134–134 (1340) Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см ² <th< th=""><th>Время после ИС аварии, данные (расчет), с</th><th colspan="3">Последовательность событий</th></th<>	Время после ИС аварии, данные (расчет), с	Последовательность событий			
13 (18 — достиже- ние уставки закрытия) При $P_1 = 175,7$ кгс/см ² запитались ИК YP2IS03, S04 и появилась индикация «закрыти» ГК YP2IS01, не уставки закрытия) 61 (54) Включились все группы ТЭН КД 74–134 (-) Сработала блокировка по давлению в гермооболочке больше 0,003 кгс/см ² (изб.), закрылась локализу- ошая арматура систем TL 22.42 134–194 (181) Аварийно отключились ТЭН КД по уровню в КД менее 4200 мм 194–254 (224) Включены в работу насосы TB10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточ- ных насосов 289 (320) При $P_{1k} = 66$ кгс/см ² произошло формирование сигнала защиты « $dT_k < 10$ °C» без воздействия на испол- инат насосов 314–374 (360) Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1–4 системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1k} = 58$ кгс/см ² 377–434 (481) Включены в работу на 1-й контур насоса TQ14-34D01, TQ13D01 при $P_1 = 50$ кгс/см ² 696–879 Прецпринята польтка закрытия YP2IS01 кратковременным открытием YP2IS08 и подачей питания на закрътию уразини закрытия уклапана YP2IS09 с последующи их закрытием YP2IS08 и подачей питания на закрътию магиты закрытия YP2IS01 кратковременным открытие клапанов КР21509 с последующи них закрытием YP2IS08 и подачей питания на закрътию магиты закрытия уклапана YP2IS09 с последующи них закрытием YP2IS08 и подачей питания на закрътию магиты закрытия YP2IS01 кратковременным открытием YP2IS08 и подачей питания на закрътию уследа 1334–1394 (1364) Включен в работу на 1-й контур насос TQ23D01 при $P_1 =$	0-4 (0)	Распитались электромагниты ИК YP21S03, S04 и открылся ГК YP21S01 при $P_1 = 186,5 \text{ krc/cm}^2$			
61 (54)Включились все группы ТЭН КД74–134 (\neg)Сработала блокировка по давлению в гермооболочке больше 0,003 кгс/см² (изб.), закрылась локализу- юшая арматура систем ТL 22.42134–194 (181)Аварийно отключились ТЭН КД по уровню в КД менее 4200 мм194–254 (224)Включены в работу насосы ТВ10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточ- ных насосов289 (320)При $P_{1k} = 66$ кгс/см² произошло формирование сигнала защиты «dT ₄ <10 °C» без воздействия на испол- нительные механизмы CAO3314–374 (360)Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1–4 системы аварийного оллаждения зоны (CAO3) в 1–й контур. $P_{1k} = 58$ кгс/см²696–879Предпринята полытка закрытия YP21S01 кратковременным открытием YP21S08 и подачей питания на электро- магииты закрытия клапана YP21S09 с последующим их закрытием, что не привело к закрытию YP21S011154–1214 (990)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48$ кгс/см²1234–1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, КD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, паротенераторов (ПГ) 1–4 и КД1754–1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см²2067 (\neg)Зафиксированю сАзба впректном объеке, подача спринкерно растемара в ГО от насосов TQ11-31D01 234-12474 (3969)Выведен из работы на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см²2414–2474 (3969)Выведен из работы на 1-й контур насос TQ33D01 при $P_1 = 60$ кгс/см²2414–2474 (4000)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = $	13 (18 — достижение уставки закрытия)	При $P_1 = 175,7$ кгс/см ² запитались ИК YP21S03, S04 и появилась индикация «закрыто» ГК YP21S01, но давление в 1-м контуре продолжало снижаться. Идентифицировано незакрытие ГК YP21S01 по снижению параметров 1-го контура и повышению параметров в ББ			
74–134 (-)Сработала блокировка по давлению в гермооболочке больше 0,003 кгс/см² (изб.), закрылась локализующая арматура систем TL 22.42134–194 (181)Аварийно отключились TЭН КД по уровню в КД менее 4200 мм194–254 (224)Включены в работу насосы TB10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточных насосов289 (320)При $P_{1x} = 66$ кгс/см² произошло формирование сигнала защиты «dT _x <10 °C» без воздействия на исполнительные механизмы CAO3	61 (54)	Включились все группы ТЭН КД			
134-194 (181)Аварийно отключились ТЭН КД по уровню в КД менее 4200 мм194-254 (224)Включены в работу насосы ТВ10D02,03 подачи борного концентрата из баков ТВ-10 на всас подпиточ- ных насосов289 (320)При $P_{1K} = 66$ кгс/см2 произошло формирование сигнала защиты « $dT_{6} < 10$ °C* без воздействия на испол- нительные механизмы САОЗ314-374 (360)Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1-4 системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1K} = 58$ кгс/см2574-434 (481)Включены в работу на 1-й контур насосы TQ14-34D01, TQ13D01 при $P_1 = 50$ кгс/см2696-879Предпринята попытка закрытия YP21S01 кратковременным открытием YP21S08 и подачей питания на электро- магниты закрытия клапана YP21S09 с последующим их закрытием, что не привело к закрытию YP21S011134-1394 (1364)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48$ кгс/см21234-1394 (1364)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см22067 (¬)Зафиксировано срабатывание защиты САОЗ по $P_{1O} > 0.3$ кгс/см2, локализация гермообъема, запуск механизмов САОЗ в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234-2474 (3969)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60$ кгс/см22414-2474 (4000)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60$ кгс/см23494-3554 (6530)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 31$ кгс/см23494-3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31$ кгс/см23494-3554 (6530)Выведен из работы на 1-й контур расос TQ13D01 $P_1 = 31$ кгс/см23494-3554 (6530)Выведен из работы на 1-й	74-134 (-)	Сработала блокировка по давлению в гермооболочке больше 0,003 кгс/см ² (изб.), закрылась локализующая арматура систем TL 22.42			
194–254 (224)Включены в работу насосы TB10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточных насосов289 (320)При $P_{1K} = 66$ кгс/см ² произошло формирование сигнала защиты «dT _s <10 °C» без воздействия на исполнительные механизмы CAO3	134-194 (181)	Аварийно отключились ТЭН КД по уровню в КД менее 4200 мм			
289 (320)При $P_{1k} = 66 \ { m krc/cm^2}$ произошло формирование сигнала защиты « $dT_s < 10 \ { m c}$ » без воздействия на исполнительные механизмы САОЗ314-374 (360)Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1-4 системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1k} = 58 \ { m krc/cm^2}$ 374-434 (481)Включены в работу на 1-й контур насосы TQ14-34D01, TQ13D01 при $P_1 = 50 \ { m krc/cm^2}$ 696-879Предпринята попытка закрытия YP21S01 кратковременным открытием YP21S08 и подачей питания на электро- магниты закрытия хлапана YP21S09 с последующим их закрытием, что не привело к закрытию YP21S011154-1214 (990)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48 \ { m krc/cm^2}$ 1334-1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- о3501, ПГ1-4 YR11-41,21-42S01, КD YR51-53S01 объединены в общий коллектор аварийные газовые сдуяки реактора, парогенераторов (ПГ) 1-4 и КД1754-1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \ { m krc/cm^2}$ 2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{TO} > 0,3 \ { m krc/cm^2}$, локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234-2474 (3969)Выведен из работы на 1-й контур насос TQ32D01 $P_1 = 60 \ { m krc/cm^2}$ 3494-3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \ { m krc/cm^2}$ 3494-3554 (6530)Выведен из работы на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \ { m krc/cm^2}$	194–254 (224)	Включены в работу насосы TB10D02,03 подачи борного концентрата из баков TB-10 на всас подпиточных насосов			
314-374 (360)Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) 1-4 системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1k} = 58 \text{ krc/cm}^2$ 374-434 (481)Включены в работу на 1-й контур насосы TQ14-34D01, TQ13D01 при $P_1 = 50 \text{ krc/cm}^2$ 696-879Предпринята попытка закрытия YP2IS01 кратковременным открытием YP2IS08 и подачей питания на электро- магниты закрытия клапана YP2IS09 с последующим их закрытием YP2IS08 и подачей питания на электро- магниты закрытия клапана YP2IS09 с последующим их закрытием, что не привело к закрытию YP2IS011154-1214 (990)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48 \text{ krc/cm}^2$ 1334-1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1-4 и КД1754-1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \text{ krc/cm}^2$ 2067 (-)Зафиксировано срабатывание защиты САОЗ по $P_{TO} > 0,3 \text{ krc/cm}^2$, локализация гермообъема, запуск механизмов САОЗ в проектном объеме, подача спринклерного раствора в ГО от насосв TQ11-31D012234-2474 (3969)Выведены из работы на 1-й контур насос TQ23D01 $P_1 = 60 \text{ krc/cm}^2$ 2414-2474 (4000)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \text{ krc/cm}^2$ 3494-3554 (6530)Выведен из работы на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \text{ krc/cm}^2$	289 (320)	При $P_{1\kappa} = 66 \text{ кгс/см}^2$ произошло формирование сигнала защиты «d $T_s < 10 \text{ °C}$ » без воздействия на исполнительные механизмы САОЗ			
374-434 (481)Включены в работу на 1-й контур насосы TQ14-34D01, TQ13D01 при $P_1 = 50 \mathrm{krc/cm^2}$ 696-879Предпринята попытка закрытия YP21S01 кратковременным открытием YP21S08 и подачей питания на электро- магниты закрытия клапана YP21S09 с последующим их закрытием, что не привело к закрытию YP21S011154-1214 (990)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48 \mathrm{krc/cm^2}$ 1334-1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1-4 и КД1754-1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \mathrm{krc/cm^2}$ 2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{\GammaO} > 0,3 \mathrm{krc/cm^2}$, локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234-2474 (4000)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60 \mathrm{krc/cm^2}$ 3494-3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \mathrm{krc/cm^2}$ 4514-4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \mathrm{krc/cm^2}$	314-374 (360)	Зафиксировано открытие клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) $1-4$ системы аварийного охлаждения зоны (САОЗ) в 1-й контур. $P_{1k} = 58 \text{ кгс/см}^2$			
696-879Предпринята попытка закрытия YP2IS0I кратковременным открытием YP2IS08 и подачей питания на электро- магниты закрытия клапана YP2IS09 с последующим их закрытием, что не привело к закрытию YP2IS011154-1214 (990)Включен в работу на 1-й контур насос TQ23D01 при P_1 = 48 кгс/см²1334-1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1-4 и КД1754-1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при P_1 = 44 кгс/см²2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{\rm TO} > 0,3$ кгс/см², локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234-2474 (3969)Выведены из работы на 1-й контур насос TQ23D01 P_1 = 60 кгс/см²3494-3554 (6530)Выведен из работы на 1-й контур РБК насосами TQ12-32D01 при P_1 = 23 кгс/см²4514-4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при P_1 = 23 кгс/см²	374-434 (481)	Включены в работу на 1-й контур насосы TQ14-34D01, TQ13D01 при $P_1 = 50 \text{ krc/cm}^2$			
1154–1214 (990)Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48 \ { m krc/cm}^2$ 1334–1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1–4 и КД1754–1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \ { m krc/cm}^2$ 2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{\Gamma O} > 0,3 \ { m krc/cm}^2$, локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234–2474 (3969)Выведены из работы на 1-й контур насос TQ23D01 $P_1 = 60 \ { m krc/cm}^2$ 3494–3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \ { m krc/cm}^2$ 4514–4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \ { m krc/cm}^2$	696-879	Предпринята попытка закрытия YP2IS01 кратковременным открытием YP2IS08 и подачей питания на электро- магниты закрытия клапана YP2IS09 с последующим их закрытием, что не привело к закрытию YP2IS01			
1334–1394 (1364)После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1–4 и КД1754–1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44$ кгс/см²2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{\Gamma O} > 0,3$ кгс/см², локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234–2474 (3969)Выведены из работы на 1-й контур насос TQ23D01 $P_1 = 60$ кгс/см²3494–3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31$ кгс/см²4514–4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23$ кгс/см²	1154-1214 (990)	Включен в работу на 1-й контур насос TQ23D01 при $P_1 = 48 \text{ krc/cm}^2$			
1754–1814 (3540)Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \ { m krc/cm^2}$ 2067 (-)Зафиксировано срабатывание защиты CAO3 по $P_{\Gamma O} > 0,3 \ { m krc/cm^2}$, локализация гермообъема, запуск механизмов CAO3 в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234–2474 (3969)Выведены из работы на 1-й контур насосы TQ14-34D01, TQ33D01 при $P_1 = 70 \ { m krc/cm^2}$ 2414–2474 (4000)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60 \ { m krc/cm^2}$ 3494–3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \ { m krc/cm^2}$ 4514–4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \ { m krc/cm^2}$	1334–1394 (1364)	После предварительного закрытия YR60S01,02 открытием арматуры на линии сдувок с реактора YR01- 03S01, ПГ1-4 YR11-41,12-42S01, KD YR51-53S01 объединены в общий коллектор аварийные газовые сдувки реактора, парогенераторов (ПГ) 1-4 и КД			
2067 (-)Зафиксировано срабатывание защиты САОЗ по $P_{\Gamma O} > 0,3 \ \mathrm{krc/cm^2}$, локализация гермообъема, запуск механизмов САОЗ в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D012234–2474 (3969)Выведены из работы на 1-й контур насосы TQ14-34D01, TQ33D01 при $P_1 = 70 \ \mathrm{krc/cm^2}$ 2414–2474 (4000)Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60 \ \mathrm{krc/cm^2}$ 3494–3554 (6530)Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \ \mathrm{krc/cm^2}$ 4514–4574 (7182)Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \ \mathrm{krc/cm^2}$	1754–1814 (3540)	Включен в работу на 1-й контур насос TQ33D01 при $P_1 = 44 \text{ krc/cm}^2$			
2234–2474 (3969) Выведены из работы на 1-й контур насосы TQ14-34D01, TQ33D01 при P ₁ = 70 кгс/см ² 2414–2474 (4000) Выведен из работы на 1-й контур насос TQ23D01 P ₁ = 60 кгс/см ² 3494–3554 (6530) Выведен из работы на 1-й контур насос TQ13D01 P ₁ = 31 кгс/см ² 4514–4574 (7182) Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при P ₁ = 23 кгс/см ²	2067 (-)	Зафиксировано срабатывание защиты САОЗ по $P_{\Gamma O} > 0,3$ кгс/см ² , локализация гермообъема, запуск механизмов САОЗ в проектном объеме, подача спринклерного раствора в ГО от насосов TQ11-31D01			
2414-2474 (4000) Выведен из работы на 1-й контур насос TQ23D01 P ₁ = 60 кгс/см ² 3494-3554 (6530) Выведен из работы на 1-й контур насос TQ13D01 P ₁ = 31 кгс/см ² 4514-4574 (7182) Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при P ₁ = 23 кгс/см ²	2234-2474 (3969)	Выведены из работы на 1-й контур насосы TQ14-34D01, TQ33D01 при $P_1 = 70$ кгс/см ²			
3494-3554 (6530) Выведен из работы на 1-й контур насос TQ13D01 P ₁ = 31 кгс/см ² 4514-4574 (7182) Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при P ₁ = 23 кгс/см ²	2414-2474 (4000)	Выведен из работы на 1-й контур насос TQ23D01 $P_1 = 60 \text{ krc/cm}^2$			
4514-4574 (7182) Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при <i>P</i> ₁ = 23 кгс/см ²	3494-3554 (6530)	Выведен из работы на 1-й контур насос TQ13D01 $P_1 = 31 \text{ krc/cm}^2$			
	4514-4574 (7182)	Зафиксирована подача на 1-й контур РБК насосами TQ12-32D01 при $P_1 = 23 \text{ krc/cm}^2$			

Таблица	1.	Хронология	инцидента
---------	----	------------	-----------

Примечание. (-) — параметр не моделировался.

С использованием разработанной модели СРО получены характеристики снижения избыточного давления в гермообъеме РУ в условиях рассматриваемого аварийного процесса (рис. 8). Результаты моделирования показывают, что давление в ГО не достигает уставки срабатывания спринклерной системы в «штатном» режиме (1,3 кгс/см²). Соответственно, спринклерный раствор не подается на потолочные распылители и не происходит орошения охлаждающим раствором оборудования, находящегося в ГО.

Кривая *1* на рис. 8 иллюстрирует повышение давления паровоздушной смеси в ГО без учёта работы СРО и спринклерной системы. Видно, что давление в ГО на 1800-й

Ядерна та радіаційна безпека 2(46).2010

секунде достигает значения срабатывания спринклерной системы ($P = 1,3 \text{ кгс/см}^2$) и впоследствии продолжает расти. Кривая 2характеризует интенсивное снижение давления в ГО после 1800-й секунды при включении спринклерной системы. Как видно из рис. 8, кривая 3 (блочные данные поведения давления в гермооболочке) хорошо совпадает с расчётными данными (кривая 2), но с незначительно более поздним включением спринклерной системы.

При работе СРО (геометрические характеристики: длина трубы L = 2 м, кривая 4) давление в гермообъеме за всё время переходного процесса не достигает значения, при котором срабатывает спринклерная система.

Рис. 7. Расход пара из бака-барботера в ГО (RELAP5)

Рис. 8. Динамика изменения давления в ГО с включением и отключением спринклерной системы и СРО (MELCOR 1.8.5): *1* — расчётные данные изменения давления в ГО без учёта СРО и спринклерной системы; *2* — расчётные данные изменения давления в ГО без СРО и с учётом спринклерной системы; *3* — блочные данные изменения давления в ГО с учётом спринклерной системы; *4* — расчётные данные изменения давления в ГО с подачей охлаждающего раствора на СРО; *a* — момент включения СРО; *б* — момент включения спринклерной системы

При увеличении длины труб и оптимизации других конструктивных параметров СРО можно получить еще более эффективное снижение избыточного давления в гермообъеме.

Расчетным путем как с помощью разработанных нами программ, так и с привлечением результатов расчёта, полученных в коде RELAP5 и MELCOR 1.8.5, показано, что предлагаемый способ снижения давления в гермообъеме позволяет максимально ограничить рост давления в гермообъеме на приемлемо низком уровне после локализации гермооболочки для энергоблоков АЭС с BBЭP-1000.

Следует отметить, что для более детального анализа протекания процессов, происходящих в гермооболочке, необходимо провести расчёты по влиянию температуры охлаждающего раствора на эффективность работы СРО для энергоблоков АЭС «малой» серии с ВВЭР-1000/В-302 и серийных энергоблоков АЭС с ВВЭР-1000/В-320.

Выводы

1. Предлагаемый способ снижения давления в гермообъеме АЭС с ВВЭР-1000 состоит в том, что в аварийной ситуации при росте давления под ГО из-за появления течи подача охлаждающего раствора при срабатывании спринклерной системы происходит не на потолочные форсунки, а на форсунки, расположенные в трубах СРО. Это исключает прямое орошение оборудования ГО спринклерным раствором, что обеспечивает повышение безопасности расхолаживания РУ.

2. Пар из гермообъема «захватывается» и увлекается потоком капель в трубы СРО, где конденсируется с последующим организованным отводом образующегося конденсата по трубопроводам в бак-приямок, не попадая на поверхность оборудования, находящегося под ГО.

3. Результаты расчетов подтвердили работоспособность предложенного способа снижения давления в ГО. Наличие СРО в ГО при аварийном событии на блоке № 3 РАЭС (полное открытие ИПУ КД с отказом на закрытие) позволило бы исключить прямое орошение оборудования РУ от спринклерных устройств, не допуская повышения давления в гермоообъеме выше проектного предела.

4. Для окончательного принятия решения об использовании СРО необходимо экспериментальное подтверждение результатов моделирования. Сотрудниками Севастопольского отделения НТЦ разработана схема экспериментального стенда и проведены соответствующие расчёты.

Список литературы

1. Герлига А. В. Способ эффективного снижения давления под гермооболочкой при аварийной течи теплоносителя // Сб. науч. тр. СНИЯЭиП. — Севастополь, 2008. — Вып. 1 (25). — С. 26–33.

2. Герлига А. В., Свириденко И. И., Балакан Г. Г. Способ конденсации пара в герметическом объеме реакторного отделения: пат. на полезную модель 32561 Украина, МПК 8 G21C15/00. — №u2007/13338; заявл. 30.11.2007; опубл. 26.05.2008, Бюл. № 10.

3. Сухов А. К. Повышение надежности и пути продления ресурса локализующей системы безопасности РУ с ВВЭР-1000 / А. К. Сухов, Е. А. Сухова // Стратегия развития ядерной энергетики: выбор Украины: Сб. тезисов докл. — К., 2001. — С. 27.

4. Мирошниченко С. Т. Устройство снижения температуры в герметичном объеме / С. Т. Мирошниченко, М. М. Крастелев, А. К. Сухов. — Деп. в ЦСИФ, № 5210. — 1991. — 29 с.

5. Герлига А. В. Математическое моделирование работы струйного распылителя-охладителя (СРО) / А. В. Герлига, Г. Г. Балакан // Труды ОНПУ. — Одесса, 2006. — Вып. 2 (26). — С. 71–75.

6. Герлига А. В. Влияние параметров струйного распылителяохладителя на снижение давления в гермообъеме в аварийных случаях / А. В. Герлига, И. И. Свириденко, Г. Г. Балакан, А. С. Балашевский // Сб. науч. тр. СНУЯЭиП. — 2007. — Вып. 4 (24). — С.43-48.

7. Герлига А. В. Снижение давления в гермообъеме АЭС с ВВЭР-1000 струйными распылителями-охладителями в условиях течи / А. В. Герлига // Дис. ... канд. техн. наук СевНТУ. — Севастополь, 2008. — С. 152. 8. Балашевский А. С. Аварийное расхолаживание гермообъема АЭС с ВВЭР-1000 при наличии течи с использованием струйного распылителя-охладителя / А. С. Балашевский, А. В. Герлига, С. Т. Мирошниченко // Сб. науч. тр. СНУЯЭиП. — 2009. — Вып. 4 (32). — С. 9–15.

9. Отчет о расследовании нарушения в работе РАЭС. ЗРОВ-П07-002-09-09, 16.10.2009. — ОП «Ривненская АЭС» НАЭК «Энергоатом» Минтопэнерго Украины, 2009. — С. 15.

Надійшла до редакції 30.03.2010.