УДК 621.039.58

М. П. Вышемирский¹, А. С. Мазурок², А. В. Носовский³

¹Национальный технический университет Украины «Киевский политехнический институт», г. Киев, Украина ²ООО «Атомэнергосервис», г. Киев, Украина ³Государственный научно-технический центр по ядерной и радиационной безопасности, г. Киев, Украина

Анализ влияния начальных и граничных условий на формирование термоудара корпуса реактора

Дан анализ влияния начальных и граничных условий на термоудар корпуса реактора на примере энергоблока № 1 Южно-Украинской АЭС с реакторной установкой ВВЭР-1000/В-302. В результате выполнения серии теплогидравлических расчетов получен наиболее консервативный сценарий для группы исходных событий, связанных с течами второго контура.

Ключевые слова: корпус реактора, опускной участок, термоудар, начальные условия, граничные условия, теплогидравлический анализ.

М. П. Вишемірський, О. С. Мазурок, А. В. Носовський

Аналіз впливу початкових та граничних умов на формування умов турмоудару корпусу реактора

Виконано аналіз впливу початкових та граничних умов на термоудар корпусу реактора на прикладі енергоблока № 1 Южно-Української AEC з реакторною установкою BBEP-1000/B-302. В результаті виконання серії теплогідравлічних розрахунків отримано найбільш консервативний сценарій для групи вихідних подій, пов'язаних з течами другого контуру.

Ключові слова: корпус реактора, опускна ділянка, термоудар, початкові умови, граничні умови, теплогідравлічний аналіз.

овышение безопасности атомной энергетики приобрело особую актуальность после аварий на АЭС «Три-Майл-Айленд» (США, 1979 г.) и Чернобыльской АЭС (1986 г.). Первая подтвердила правильность основных принципов безопасности, используемых при проектировании реакторов с водой под давлением, вторая — позволила извлечь уроки по разным аспектам и привела к инициализации национальных и международных программ, направленных на расширение и усиление сотрудничества в сфере атомной энергетики. Третьим серьезным инцидентом в истории атомной энергетики стала тяжелая авария на АЭС «Фуку-

сима» (Япония, 2011 г.), которая подтвердила необходи-

мость повышения безопасности АЭС. Согласно «Энергетической стратегии Украины на период до 2030 года» [1] планируется сохранение доли производства электроэнергии на АЭС на уровне, который соответствует половине суммарного количества электроэнергии, произведенной в Украине. Для решения этой задачи необходимо вводить в эксплуатацию новые энергоблоки и продлевать срок эксплуатации существующих. Продление эксплуатации действующих энергоблоков имеет ряд преимуществ перед строительством новых в части технической эффективности и надежности. Одним из основных направлений работ, выполняемых в рамках продления эксплуатации, является оценка текущего технического состояния корпуса реактора (КР) за проектный период, после чего делается вывод о возможности его эксплуатации в сверхпроектный период. При этом особое внимание уделяется возможности возникновения термоудара на КР, а также его послелствиям.

В статье, согласно методике теплогидравлического анализа в обоснование сопротивления хрупкому разрушению КР, используется модель с детализированным опускным участком реактора (ОУР) [2—4]. Анализ влияния начальных (НУ) и граничных условий (ГУ) на термоудар КР выполнен для исходного события (ИС), вызванного течью второго контура. Рассмотрен частный случай течи: разрыв паропровода острого пара в нелокализируемой части.

Описание протекания аварии. При разрыве паропровода острого пара происходит увеличение теплоотвода от первого контура ко второму, быстрое захолаживание первого контура и запуск систем безопасности (СБ). В ОУР формируется холодный сектор (рис. 1, *a*) вследствие поступления холодного теплоносителя через все поперечное сечение входного патрубка аварийной петли реактора.

Важным аспектом протекания аварии является месторасположение разрыва. В рассматриваемом примере разрыв происходит в пределах гермообьема (ГО), что влечет за собой рост давления в ГО выше 0,3 кгс/см² (изб.) и запуск СБ. Вследствие этого начинается подача холодной воды от системы аварийного охлаждения активной зоны (САОЗ), что приводит к увеличению давления и еще большему снижению температуры первого контура. В результате подпитки парогенераторов (ПГ) холодной водой от системы аварийной питательной воды происходит захолаживание первого контура через второй. После отключения главных циркуляционных насосов (ГЦН) в контуре возникает устойчивая естественная циркуляция по петлям. Низкая скорость теплоносителя в главном циркуляционном контуре (ГЦК), при работе САОЗ в петлю без разрыва по второму контуру, приводит к формированию «холодных языков» (рис. 1, б).

Расчетная модель. Для расчетного анализа использована четырехпетлевая модель энергоблока № 1 Южно © М. П. Вышемирский, А. С. Мазурок, А. В. Носовский, 2013
Украинской АЭС (ВВЭР-1000/В-302) с детализированной

Рис. 2. Пространственное изображение нодализации модели ОУР для анализа термических нагрузок

разбивкой ОУР [3, 4]. Разработанная модель ОУР позволяет получить реалистичное поведение теплоносителя, в том числе взаимное перемешивание потоков с различной температурой (рис. 2).

Основные подходы. В данном случае использован консервативный подход к выполнению теплогидравлического анализа, что соответствует рекомендациям МАГАТЭ [5, 6]. Анализируемое ИС рассмотрено по отношению к асимметричному захолаживанию.

Согласно рекомендациям МАГАТЭ, приняты следующие условия: максимальный расход холодной воды от систем первого и второго контуров; минимальная температура воды, подаваемой в контур; максимальное давление в первом и втором контурах.

Рассматривается минимальная конфигурация САОЗ ВД, приводящая к асимметричному захолаживанию. В работе находится второй канал САОЗ ВД (TJ20,23D01).

Анализ всех ИС выполнен с учетом принципа единичного отказа в СБ. Под единичным отказом следует понимать отказ либо активного элемента СБ, либо пассивного элемента СБ, имеющего механические движущиеся части [7]. Доминирующим физическим процессом, по отношению к термоудару, является формирование «холодных секторов (языков)» в сочетании с высоким давлением первого контура.

Начальные и граничные условия выбирались так, чтобы они приводили к наихудшим, с точки зрения термоудара КР, последствиям рассматриваемого ИС.

Начальные условия. Анализ начальных условий выполнен методом последовательных расчетов, т. е. изначально исследовалась одна величина, отбирался наиболее удовлетворительный (консервативный) сценарий и далее по результатам расчета выполнялся анализ влияния иного параметра. На рис. 3 представлена последовательность выбора консервативных НУ. В качестве НУ для рассматриваемого ИС приняты следующие значения основных параметров первого и второго контуров.

Начальная мощность реактора. Реактор работает на номинальном уровне мощности (с учетом погрешности поддержания мощности 2 % и погрешности измерения мощности 2 % [8]) и в состоянии РУ «горячий останов».

В документах МАГАТЭ [5, 6] не приведены рекомендации по отклонению уровня мощности в большую либо меньшую сторону от номинального значения. Для работы энергоблока на мощности проведен расчетный анализ как для 96 %, так и для 104 % $N_{\rm HOM}$. Установлено, что в обоих случаях достигается одинаковое асимметричное захолаживание, однако для консервативного анализа выбрана начальная мощность 104 %, что дает возможность получить максимальную температуру металла КР на начальной стадии аварии.

Давление теплоносителя на выходе из реактора. Принято равным 163 кгс/см² (с учетом погрешностей измерения и поддержания параметра) [8].

Давление в ПГ. Принято равным 66 кгс/см² (с учетом погрешностей измерения и поддержания параметра).

Уровень теплоносителя в компенсаторе давления (КД). Принят равным 8,47 и 9,07 м [8] (учитываются погрешности поддержания и определения уровня как в большую, так и в меньшую стороны).

Расход теплоносителя через реактор при работающих четырех ГЦН. Выбран максимальным/минимальным и равным 88800/80000 м³/ч [8].

Уровень в ПГ. Принят равным 0,335/0,305 м по уровнемеру с базой 1 м (учитываются погрешности поддержания и определения уровня как в большую, так и в меньшую стороны) [8].

Изменением остальных параметров пренебрегаем, так как они вносят незначительный вклад в формирование условий термоудара КР, и принимаем их значения номинальными.

Граничные условия. При выборе ГУ рассмотрены работа систем и значения параметров, которые приводят к асимметричному захолаживанию КР и формированию «холодного сектора» или «холодного языка» на внутренней поверхности КР.

Выбор ГУ осуществлялся на основании результатов расчетного анализа. Перечень расчетов представлен в виде диаграммы на рис. 4.

Исходя из полученных для различных сценариев результатов были отобраны следующие допущения для выполнения консервативного расчетного анализа:

место разрыва моделируется как можно ближе к выходному коллектору $\Pi\Gamma$, что обеспечивает максимальный расход в течь;

Рис. 5. Минимальная температура теплоносителя в ОУР: $a - paбота на мощности; \delta - «горячий останов»$

уставки по давлению первого контура для трубчатых электронагревателей (ТЭН) КД выбираются максимальными с учетом погрешностей определения давления;

температура воды, подаваемая САОЗ в контур, с учетом погрешности измерения принимается минимальной (48 °C и 53 °C в баках ТЈ10В01 и ТН10В01 соответственно);

не рассматривается обесточивание энергоблока;

для исключения ограничивающего воздействия на рост давления первого контура не рассматривается работа системы впрыска в КД;

отдельно рассматривается влияние формирования сигнала по повышению давления в ГО более 0,3 кгс/см² на термоудар КР. Формирование сигнала в ГО приводит к отключению ГЦН с сохранением рабочего состояния ТЭН КД, что является благоприятствующим фактором по отношению к рассматриваемому ИС, так как уменьшается перемешивание теплоносителя первого контура и холодной воды, подаваемой от СБ и системы подпитки-продувки. Но после восстановления уровня в КД в работу вступают ТЭН КД, что приводит к сочетанию высокого давления в первом контуре и низкой температуры теплоносителя к концу расчетного времени;

постулируется наложение единичного отказа по снятию сигнала на локализацию аварийного ПГ по пита-

Рис. 6. Давление в первом контуре: *a* — работа на мощности; *б* — «горячий останов»

тельной воде, что приводит к подпитке ПГ аварийными питательными электронасосами (АПЭН) водой с температурой 5 °С (регулятор работает в режиме поддержания заданного уровня). Данное действие рассматривается с целью максимального захолаживания теплоносителя первого контура и достижения условий работы насоса TJ20D01 в контур;

на 1500-й секунде предполагаются действия оперативного персонала по восстановлению рабочего состояния подсистемы подпитки-продувки первого контура из баков TD60B11,21 (после работы насоса TJ20D01 на контур).

Результаты расчетного анализа Расчетный анализ рассматриваемого ИС выполнен на временном интервале 5000 секунд. По результатам анализа можно отметить следующее:

при использовании максимальных эксплуатационных характеристик ГЦН достигается более глубокое (работа на мощности) или более быстрое (горячий останов) захолаживание ОУР;

изменение уровня в КД не является показательным по отношению к формированию условий термоудара КР при работе энергоблока на мощности. В состоянии РУ «горячий останов» минимальный уровень в КД сопутствует возникновению условий термоудара: к концу расчетного времени в первом контуре достигается более высокое давление по сравнению с расчетом, для которого применялся максимальный уровень в КД;

уровень в ПГ, с точки зрения отбора консервативных НУ, необходимо выбирать в соответствии с рассматриваемым состоянием РУ. При работе на мощности большее захолаживание ОУР достигается при минимальном уровне, наблюдаемом в ПГ, что приводит к более ранней подаче холодной воды от АПЭН. В состоянии «горячий останов» более консервативно выбирать максимальный уровень, потому что в данном случае преобладает процесс захолаживания первого контура за счет выноса большого количества энергии в течь при кипении.

На графиках минимальной температуры теплоносителя в ОУР (рис. 5) и давления в первом контуре (рис. 6) приведены кривые, одна из которых соответствует базовому расчету, а другая — анализу с использованием консервативного сценария. Как следует из рис. 5 и 6, применение данного консервативного подхода для выполнения теплогидравлического анализа существенно усугубляет термоудар КР и позволяет получить более представительные результаты по отношению к рассматриваемому явлению.

Выводы

Исследование термоудара КР является важной составляющей анализа безопасности АЭС, так как оценивается влияние на важнейший компонент РУ — корпус реактора. Для выполнения анализа влияния НУ и ГУ на формирование термоудара КР использована модель энергоблока № 1 Южно-Украинской АЭС с реакторной установкой ВВЭР-1000/В-302 и детализированным ОУР.

Результаты расчетов показали, что при использовании разработанного консервативного подхода к выполнению теплогидравлического анализа достигается более глубокое захолаживание первого контура при сохранении высокого давления в нем. На данный момент теплогидравлический анализ с целью оценки влияния термоудара на КР выполняется в рамках продления сроков эксплуатации энергоблоков Украины. Полученные результаты могут быть использованы в качестве граничных условий при выполнении прочностных расчетов оценки целостности КР.

Список использованной литературы

1. Енергетична стратегія України на період до 2030 року (із змінами та доповненнями, внесеними розпорядженням Міністерства палива та енергетики України від 26 березня 2008 року): Розпорядження Кабінету Міністрів України від 15 березня 2006 року № 145-р.

2. Алексеев Ю. П. Методика выполнения теплогидравлических анализов в обоснование сопротивления хрупкому разрушению корпуса реактора / Ю. П. Алексеев, А. И. Бережной, Г. В. Громов, А. С. Мазурок // Сб. докладов второй международной науч.-практ. конф. «Повышение эффективности АЭС». — 2011. — С. 111—120.

3. Алексеев Ю. П. Модель опускного участка реактора ВВЭР-1000 / Ю. П. Алексеев, А. И. Бережной, А. С. Мазурок, А. В. Корницкий // Ядерна та радіаційна безпека. — 2011. — № 3 (51). — С. 44-46.

4. *Мазурок А. С.* Валидация теплогидравлической модели РУ с детальной разбивкой ОКР для анализа термических нагрузок на корпус реактора / А. С. Мазурок, Ю. П. Алексеев, А. Г. Крушинский, А. В. Корницкий // Ядерна та радіаційна безпека. — 2012. — № 1 (53). — С. 16—21.

5. Guidelines on pressurized thermal shock analysis for WWER Nuclear Power Plants. IAEA-EBP-WWER-08 (Rev. 1). 2006.

6. Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment. Deterministic Evaluation for the Integrity of Reactor Pressure Vessel. IAEA-TECDOC-1627. 2010.

7. Общие положения безопасности атомных станций (ОПБ-2008), НП306.2.141-2008 / АЯР Украины. — К., 2008.

8. Южно-Украинская АЭС. Энергоблок № 1. Анализ запроектных аварий. База данных по ЯППУ. 10/08-06.231.ОД.2. 2009.

Получено 29.10.2012.