А. С. Балашевский ${ }^{1}$,
С. Т. Мирошниченко ${ }^{2}$
${ }^{1}$ Севастопольское отделение ОПНТЦ ГПНАЭК «Энергоатом", Украина
${ }^{2}$ Севастопольский национальный университет ядерной энергии и промышленности, Украина

Анализ результатов расчёта максимальной проектной аварии с применением струйных распылителей-охладителей

Abstract

Представлены результатырасчетного моделированияштатной спринклерной системы, струйных распылителей-охладителей (СРО) и их влияние на эффективность снижения давления и температуры в гермообъеме РУ АЭС с ВВЭР в условиях максимальной проектной аварии. С помощью расчетныхкодов RALAP5/MOD3.4 и MELCOR 1.8 .5 определены расходы пароводяной смеси, поступающей в гермообъем при наличии течи.

Ключевые сло ва: струйный распылитель-охладитель; атомнаяэлектрическаястанция; водо-водянойэнергетический реактор; реакторная установка; гермообъем; главный циркуляционный трубопровод: максимальная проектная авария.

О. С. Балашевський, С. Т. Мирошниченко

Аналіз результатів розрахунку максимальної проектної аварії із застосуванням струменевих розпилювачів-охолоджувачів

Наведенорезультати розрахунковогомоделюванняштатной спрінклерної системи, струменевих розпилювачів-охолоджувачів і їх вплив на ефективність зниження тиску і температури в гермооболонці РУ АЕС з ВВЕР в умовах максимальної проектної аварї. За допомогою розрахункових кодів RALAP5/MOD3.4 і MELCOR 1.8 .5 визначено витрати пароводяної суміші, що надходить у гермооб'єм за наявностітечі.

Ключові слова: струменевий розпилювач-охолоджувач; атомна електрична станція; водо-водяний енергетичний реактор; реакторна установка; гермооб'єм; головний циркуляційний трубопровід: максимальна проектна аварія.
(c) А. С. Балашевский, С. Т. Мирошниченко, 2012

Cовременное развитие атомной энергетики вызывает особое внимание к проблемам безопасности. Модернизация и усовершенствование действуюших систем безопасности позволяет удовлетворить повышенные требования к их надежности, безопасности и экономичности в целом. Применяемая на АЭС спринклерная система обеспечивает поддержание давления в гермообъеме (ГО) в заданных пределах и отвод теплоты из ГО путем распыла воды и конденсацию выделевшегося пара, но ее срабатывание наносит значительный ущерб оборудованию реакторной установки. Поэтому необходимо создание системы, которая позволила бы исключить повреждение и залив борным раствором оборудования, находящегося в гермообъеме. В данном случае для локализации аварийных последствий при течи первого контура предлагается применение струйных распылителей-охладителей [1-4].

Тем не менее, исходя из того, что вероятность возникновения максимальной проектной аварии (МПА) на действующих энергоблоках АЭС Украины практически нулевая, возникает вопрос о необходимости проверки работоспособности струйных распылителей-охладителей (СРО) не только в условиях «малых» и «средних» течей, но и при двухстороннем разрыве главного циркуляционного трубопровода (ГЦТ).

Целью научной работы является проверка работоспособности СРО в условиях МПА для предотвращения выброса радиоактивных веществ за пределы защитной оболочки. Для достижения поставленной цели необходимо провести расчетное моделирование с привлечением расчетных кодов RALAP5 и MELCOR 1.8.5.

Максимальная проектная авария, связанная с разрывом «холодных» и «горячих» ниток эквивалентным диаметром 850 мм, может оказать существенное влияние не только на целостность активной зоны реактора, но и определяюшее влияние на целостность гермообъема [5-7]. Анализируя МПА с применением современных кодов и разработанной нами математической модели СРО, позволяюших получить более реалистические результаты, были иследованы характеристики изменения параметров среды в ГО при наличии и отсутствии СРО.

Анализ МПА на реакторных установках с ВВЭР-1000/B-320 с применением расчётных кодов RELAP5 и MELCOR 1.8.5 выполнен при разрыве «холодной» нитки ГЦТ с двухсторонним истечением.

Процессы, протекающие в гермообъеме при аварии с потерей теплоносителя, можно описать системой уравнений на основе схемы массовых потоков пара, газа и тумана (рис. 1, a).

Скорость изменения параметров парогазовой смеси в ГО можно оценить из уравнения сохранения массы

$$
V_{\Gamma О} \frac{d \rho_{\Pi \Gamma}}{d P} \cdot \frac{d P}{d t}=G_{\mathrm{T}}(t)-G_{\Pi}-G_{\mathrm{K}}-G_{\Pi \mathrm{T}}+G_{\Pi . С Р О}^{\mathrm{BbX}}-G_{\Pi . \mathrm{CPO}}^{\mathrm{BX}},
$$

где $V_{\text {ГО }}$ - объем ГО; $\rho_{\text {ПГ }}$ - плотность парогазовой смеси; P - давление в ГО; t - время, в течение которого пароводяная смесь поступает в ГО; $G_{\mathrm{l}}(t)$ - расход истекающего теплоносителя; G_{Π} - расход пара, поступаюшего в ГО из течи; $G_{\mathrm{K}}-$ количество сконденсировавшегося пара в ГО; $G_{\Pi Т}$ - расход пара на образование тумана в ГО; $G_{\Pi \text { ПСРО }}^{\mathrm{BLx}}$ - расход пара на выходе из $\mathrm{CPO} ; G_{\Pi . \mathrm{CPO}}^{\mathrm{Bx}}-$ расход пара на входе в СРО.

Далее запишем уравнение баланса массы тумана в ГО:

$$
V_{\mathrm{TO}} \frac{d \rho_{\mathrm{T}}}{d t}=G_{\Pi \mathrm{T}}-G_{\mathrm{T} . \mathrm{CPO}}^{\mathrm{BX}},
$$

где $\rho_{\mathrm{T}}-$ плотность капельной среды (тумана); $G_{\mathrm{T}}^{\mathrm{CPO}} \mathrm{Bx}-$ масса капель на входе в объём СРО.

Рис. 1. Схема

массовых (а) и энергетических (б) потоков пара, газа и тумана в системе ГО и СРО

В соответствии со схемой энергетических потоков парогазовой смеси с туманом (рис. 1, б) можно составить следующее балансовое энергетическое уравнение:

$$
\begin{aligned}
& \frac{d}{d t}\left[G_{\Gamma} h_{\Gamma}+G_{\mathrm{T}} h_{\mathrm{T}}\left(P_{\Pi}\right)+G_{\Pi} h_{\Pi}\left(P_{\Pi}\right)\right]= \\
& =G_{\Pi} h_{\Pi}\left(P_{\Pi \Gamma}\right)-G_{\Pi . С Р О}^{\mathrm{BX}} h_{\Pi . С Р О}^{\mathrm{BX}}\left(P_{\Pi}\right)+G_{\Pi \cdot С Р О}^{\mathrm{BBLX}} h_{\Pi}^{\mathrm{BLXX}}- \\
& -G_{\Gamma . \mathrm{CPO}}^{\mathrm{Bx}} h_{\Gamma . \mathrm{CPO}}^{\mathrm{Rx}}+G_{\Gamma . \mathrm{CPO}}^{\mathrm{Bbx}} h_{\Gamma}^{\mathrm{Bbx}}-G_{\mathrm{K}} h_{\Pi}\left(P_{\Pi}\right)-G_{\mathrm{T} . \mathrm{CPO}}^{\mathrm{Bx}} h_{\mathrm{T}}^{\mathrm{Bx}}\left(P_{\Pi}\right) \text {, }
\end{aligned}
$$

 энтальпия пара и газа, выходяшего из СРО; $h_{\Pi}^{\mathrm{Bx}}, h_{\Gamma}^{\mathrm{Bx}}$ - энтальпия пара и газа на входе в $\mathrm{CPO} ; h_{\mathrm{T}}$ - энтальпия капельной среды (тумана).

Данные уравнения после дополнения конечными зависимостями для определения расходов пара на конденсацию внутри ГО и расхода пара в ГО через образовавшуюся течь

Рис. 3. Изменение расхода теплоносителя,
поступаншего в ГО при МПА (RELAP 5)

Рис. 4. Динамика изменения давления в ГО при МПА (MELCOR 1.8.5):
1 - изменение давления в ГО без включения СРО и спринклерной системы;
2 - изменение давления в ГО при включении спринклерной системы: 3 - изменение давления в ГО при включении СРО

Рис. 5. Динамика изменения температуры в ГО при МПА (MELCOR 1.8.5):
1 - изменение температуры в ГО без включения СРО и спринклерной системы;
2 - изменение температуры в ГО при включении спринклерной системы;
3 - изменение температуры в ГО при включении СРО

позволяют определить количество труб СРО для поддержания безопасного давления в ГО без включения сплинклерной системы.

Далее рассмотрим расход пара (рис. 2) и теплоносителя (рис. 3), поступаюшего в ГО при МПА.

Как показано на рис. 4 и 5, максимальные значения давления и температуры в ГО достигаются практически мгновенно - в течение $10 \ldots 15$ с от начала развития аварийного процесса.

В аварийной ситуации, связанной с поступлением пара в ГО, СРО полностью обеспечивают поддержание давления не более $4,0 \mathrm{\kappa гс} / \mathrm{cm}^{2}$ (рис. 4), температура при этом не будет превышать расчётную $-150{ }^{\circ} \mathrm{C}$ (рис. 5).

На основании расчётного исследования можно сделать вывод, что для конденсации пара в ГО объемом $60 \cdot 10^{3}$ м 3 при МПА и снижении давления в ГО ниже проектного значения потребуется $10-12$ труб СРО с расходом охлаждающей жидкости $1095-1315 \mathrm{~m}^{3} /$ ч (соответствует работе двух каналов спринклерной систмы с расходом $700 \mathrm{~m}^{3} / \mathrm{q}$).

Таким образом, СРО обеспечивает основную функцию ГО - предотвращение выброса радиоактивных изотопов в окружающую среду [8—10].

Важной характеристикой СРО является работа в различных условиях. Малые габариты, универсальность, надежность позволяют использовать СРО не только для снижения давления в ГО, но и для пожаротушения, очистки газовоздушной среды помещений от твердых и жидких аэрозолей $[11,12]$.

Выводы

Полученные результаты расчёта поведения паровоздушной среды в ГО во времени с применением СРО показывают, что давление в ГО не превышает допустимое (проектное) значение, при этом СРО способствуют сохранению целостности гермообъема и предотвращению выброса радиоактивных вешества за пределы ГО.

Список использованной литературы

1. Гер.шга A. В. Математическое моделирование работы струйного распылителя-охладителя (СРО) / Г. Г. Балакан, А. В. Герлига // Тр. ОНПУ. - Одесса, 2006. - Выпा. 2 (26). - С. $71-75$.
2. Гериига A. B. Расчетный анализ снижения давления в гермообъеме контаймента с помощью струйных распылителей-охладителей при наличии течи / Г. Г. Балакан, А. В. Герлига, В. А. Герлига, А. Ю. Проходцев // Сб. науч. тр. СІУЯЭиП. - Севастополь, 2006. - Вып. 3 (19). - С. $30-37$.
3. Гермига A. B. Результаты расчетного моделирования системы аварийного снижения давления под гермооболочкой реакторной установки АЭС с ВВЭР-1000 на основе струйного распылителяохладителя / Г. Г. Балакан, А. В. Герлига, И. И. Свириденко // Вестник СевГТУ. - Севастополь, 2007. - Вып. 77: Механика, энергетика, экология. - С. 158 - 165.
4. Гер.ига А. В. Влияние параметров струйного распылите-ля-охладителя на снижение давления в гермообтеме в аварийных случаях / А. В. Герлига, И. И. Свириденко, Г. Г. Балакан, А. С. Балашевский // Сб. науч. труд. СНУЯЭиП, 2007. - Вып. 4(24). C. $43-48$.
5. Васильченко В. Н. Моделирование аварий на ядерных энергетических установках атомных электростанний / В. І. Васильчснко, Е. З. Емельянснко, В. В. Ким, А. Е. Смышляев // Одесса: «Резон 2000», 2002. - С. 466.
6. Коврижкии Ю. Л. Оптимизация планирования ремонтов и испытаний систем безопасности АЭС на основе риск-ориентированных подходов / Ю. Л. Коврижкин, Ю. А. Комаров, В. М. Пышный и др. - Одесса: ТЭС, 2006. С. 383.
7. Комаров Ю. А. Методы оптимизации испытаний на герметичность системы гермооболочки реакторной установки в период ремонтных кампаний АЭС с ВВЭР-1000/ Ю. А. Комаров, С. И. Косенко, В. И. Скалозубов, И. М. Фольтов // Проблемы безопасности АЭС и Чернобыля. - К., 2008. - Вып. 9. - С. 15-22.
8. Бапшиевский А. С. Аварийное расхолаживание гермообтема АЭС с ВВЭР-1000 при наличии течи с использованием струйного распылителя-охладителя / А. С. Балашевский, А. В. Герлига, С. Т. Мирошниченко // Сб. науч. труд. СНУЯЭиП. - 2009. Выпा. 4 (32). - С. 9-15.
9. Балаиевский А. С. Предотврацение орошения охлаждающим раствором гермообтёма реакторного отделения при срабатывании спринклерной системы / А. С. Балашевский, А. В. Герлига, И. И. Свириденко // Ядерна та радіаційна безпека. - 2010. Выпा. 2 (46). С. С. 4249.
10. Балашевский А. С. Оптимизация конструктивных параметров струйного распылителя-охладителя / А. С. Балашевский, В. А. Герлига // Сб. науч. труд. СНУЯЭиП. - 2011. Вып. 3(39). - С. 7-12.
11. Сухов A. K. Повышение надежности и пути продления ресурса локализующей системы безопасности РУ с ВВЭР-1000/ А. К. Сухов, Е. А. Сухова // Стратегия развития ядерной энергетики. Выбор Украины: Сб. тезисов докл. - К., 2001. - С. 27.
12. Бейнер K. С. Использование универсальной эжекторной установки для конденсации радиоактивного пара в целях продления ресурса последней / К. С. Бсйнср, А. К. Сухов, Е. Н. Сычев // Сб. науч. тр. СНИЯЭи П. - Севастополь: СНИЯЭиП, 2002. Выпा. 6. - С. 12-15.
