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The nonlinear theory of electromagnetic waves generation in orbitron is developed. The set of the equations including

the equations of field excitation and the equations of 2-dimential motion is constructed and numerically solved. It

is shown, that mechanism of electron bunching and energy exchange of electrons with the wave in orbitron and in

magnetron has much in common. For the fixed parameters of orbitron from the point of view of generated energy

and electronic efficiency there is some optimal value of electron density in the interaction region.

PACS: 84.30.Jc, 85.10.Jz

1. INTRODUCTION

In [1] the original generator of millimeter waves - so
called ”orbitron” has been proposed, that represents
a coaxial structure, which inner cylinder is the thin
metal string. Advantage of such generator consists in
simplicity of a design, absence of slowing down system
and an external magnetic field. At applying to the
string (as an anode) of positive potential of several kV
electrons are pulled out from an inner surface of the
cylindrical resonator, being as a cathode. Multiply
spreading on molecules of residual gas, they get an
azimuthal component of the velocity V,, that allows
electrons to exchange energy with waves traveling in
an azimuthal direction. It has been shown [2], that
frequencies of rotating eigenwaves are determined by

the formula
~ (s || n 1
Wmn ~ b n 9 1)

where c is speed of light, b is inner radius of an exter-
nal casing of coaxial structure, m = 0,+1,+£2,... and
n = 1, 2,... - are azimuthal and radial numbers of
harmonics of eigenwave accordingly. As frequencies
of eigenwaves are discrete, we shall conventionally
name the considered coaxial system as a resonator.
From the formula (1) follows, that phase velocity of
eigenwave Upp = Wi, r/m is less than speed of light
under condition of r < b, where r is a distance from
the resonator axis. Thus, the wave appears slowed
down near the string. Just in this area electromag-
netic waves generation takes place that corresponds
to experimental data [1]. We shall emphasize, that
slowing down of a wave in orbitron occurs in absence
of the special slowing down system. The linear stage
of generation in orbitron has been investigated in [2-4]
where the conditions of instabilities originating have
been found and formulas for their increments have

(1)

been obtained. In [5] in of the given field approxima-
tion the nonlinear dynamics of nonrelativistic elec-
trons in orbitron has been considered at small ampli-
tudes of the wave. It is of interest to carry out more
general nonlinear consideration with refuse from the
assumptions made in [5], simplifying the picture of
wave generation in orbitron. In the present work the
nonlinear theory of electromagnetic waves excitation
in orbitron is developed, allowing to study the gener-
ation process starting from the field fluctuation am-
plification.

2. DERIVATION OF THE EQUATIONS OF
THE NONLINEAR THEORY

Let’s consider the high Q coaxial cylindrical res-
onator, unbounded along an axis z (the cylindri-
cal system of coordinates r,p,z is used). Radius
of the charged string, which creates an electrosta-
tic field E = 2¢Q/r where @ is linear charge den-
sity of the string, is equal a << b . The follow-
ing two-dimentional non-stationary problem is being
solved that simulates the generation process in or-
bitron. At absence of electrons in orbitron there is
some fluctuation of an electromagnetic field having
components H., E,, E, (H -wave). At the initial mo-
ment of time nonrelativistic electrons are uniformly
distributed along the circle of radius rg . By virtue
of azimuthal symmetry they have equal initial speeds
V0, Vo - At the following moments of time electrons
start to move in plane r, ¢ in the electrostatic field of
the string and in the fluctuation field, giving up its
energy to the fluctuation. As a result of fluctuation
amplification the electromagnetic field is generated
in orbitron. We find the time-dependent field of the
wave in the form of expansion on eigen waves of the
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resonator that forms a full set of functions

E(Ta¢7t) = Re Z mengmn(ra 4;0)7
) N ) (2)
H(r,p,t) = Re Z ngnhmn(r, ®),

—

where €, (7, ©) ,hmn(r, ) is intensity electric and a
magnetic field of eigen harmonics of the wave

emn.r = —7mRmN(km"T) exp(imyp)
e km,n’r V Nmn ’
7;7/", kmn .
Emn,p = i%emp(zmgp), (3)
an (kmnr) .
hmn,r = 7/;63317(””30)’
Nmn
where
Ryn = Jm(kmnr)Nyln(kmna) - J;l(kmna)Nm(kmnr)7
R;nn = J;n(k'mnT)Nfgm(kmna) - J;n(kmna)N;m(kmnT)v

Emn/c, Jm(x) and Ny, (z) are Bessel and Neumann
functions (the stroke means differentiation by argu-
ment x ),
Nonp = {[(kmnb)? = m*|R3,,, (Knnb) —
[(kmna)Q - mQ]Rgnn(kMTla)}/(4k72nn)
is a normalizing multiplier. In (2) the field of a spa-
tial charge is not taken into account. In the further
the harmonic with m = 0 will not be considered, as

it does not lead to bunching of electrons. Eigen func-
tions (3) are normalized by the following way:

b 2m . o
/ drr dQOhmnh:n’n’ =
a o
N (1)
/ d’r‘r/ d@émne*m'WL’ = 470/ Onn -
a o

Substituting relation (2) in Maxwell equations

. - 10E
rotH:4—ﬂj+78—E,
& C@t (5)
. 10H
rothl = ————,
c Ot

and using conditions of normalization (4), we shall
obtain the following equations of excitation for time-
dependent amplitudes of the expansion (2) :

dfn (1)

dgnn (t)
dt

(6)

+ iwmnfmn(t) =0,

fmn = .menCOS(wmnt) - Z.QOmnSin(Wmnt) -

fmn|t=0 = men = |f0m7t|ezp(i(b077Ln)7

gmn|t:0 = Jomn = |gOmn|exp(7’q)(]J\;[nn)7

where function of time

b 2m
Kmn (t) = / dTTA d(p_](?”’, QD, t)e_:kmn (Ta 90) 9 (8)

makes sense a coefficient of coupling of eigen (cold)
wave with a flow of electrons. The current ; in for-
mulas (5,8) is formed by electrons emitted from the
cathode. By means of (3) formula (8) can be repre-
sented in the form

\/]%{Klmn (t) - K4mn (t)+

i(Kgmn(t) + KSmn(t))}7

Kypn(t) =
(t) )

where

b 27
Kipn = / drr dejeRy,, (kmnr)sin(me),
a 0

b 2T
Ko — / drr / dpjp Ry (k) c08(mp),
a 0

(10)
b 27
Ryn (K, .
Ko = [ are [ gy, "m0y,
a 0 mn
b 2
Ron(k
K4mn=/ drr d@jrmzii(mmcos(mga).
a 0 mn

(11)

As in absence of electrons there is no chosen direction
in azimuth, it is natural to assume, that initial fluctu-
ations of the field are standing waves in an azimuthal
direction. Therefore following relations between am-
plitudes and phases of the fluctuations should be ful-
filled

|gOmn| = |90,7mn| - ‘men| = |f0,7mn|;

— HI — — HY
- (I)Omn - (I)O,—mn - @0,—mn .

12
(I)Omn ( )

The solutions of the equations of excitation (6) with
initial conditions (7) are convenient to present in an
integrated view

¢
exp(—iwmnt) / dt' exp(iwmnt’ ) Kmn (t))—
y (13)

¢
exp(iwmnt) / dt' exp(—iwmnt’ ) Kmn(t'),
0
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¢
Gmn = —i fomnSin(Wmnt) + Gomncos(Wmnt) — exp(—iwmnt)/ dt' exp(iwmnt’) Ko (t')+
0

¢
exp(iwmnt)/ dt' exp(iwmnt’) Kpn (') -
0

Relations(10-14) allow to present any harmonic of the electric field of the wave (2) in the form

Emn,T(r7 <p7 t) = Re(fmn (t)emn77(r7 SO) + f_mn (t)e—’mn,T(r7 (p)) =
2m R (kmnr) " e _ o
W{len(t)cosfbmn + Lomn(t)sin®; .+ Lamn(t)cos®, . + Lamn(t)sin®, —
mn m’I’LT
\% Nmn

2

‘menKCOS((I):m + @omn) + cos(Py,, — Pomn)}

Emn,tp(r, ®, t) = Re(fmn(t)emn,ap(rv 90) + ffmn(t)efmnytp(rv 90)) =

—W{Lgmn(t)cos@;n + Lemn (t)sin®; | + Lip, (t)cos® 4 Lgyn(t)sin®,,  —
VL S+ Do) — sin(5, — B0)}.
where
t t
Lion == [ e {c080' Ky () + sint! K (¢)}. L = /0 4 {5100 K gy (1) — 050 Kmn (£},

¢ ¢
Lamn = / dt' {sin 0’ K3pn (t') — c080' Kgpn(t')}, Lamn = —/ dt' {sin 0 K4 (t') + cos0' Kz (')},
0 0

t t
L5mn = / dt/{COS elKgmn (t/) + sinG’Klmn(t’)}, Lﬁmn = / dt/{COS G’Klmn(t’) — sin@’Kan (t/)}7
0 0

t t
Lo, = / A {c05 0' Ko (#') — 510 K (£}, L — / At {008 0' K (#') + 510 Ko (£)},
0 0

0 = wWpnt', O = mp — wpnt, @, = mp + Wt

(16)

(19)

(21)

From formulas (15,16,21) it is visible, that partial necessary to solve nonrelativistic equations of motion
waves of the field in orbitron represent waves travel- in cylindrical coordinates with corresponding initial

ing in an azimuthal direction. To find electron cur- conditions
rent j(r, ¢, t) , which determines functions (8-11), it is

v, Vi Vi e v, V.V, e dr do V,
-2 __*_ __F,. ), —f£=-"¢_ " F ), — =V, = =-2
dt r r Me (r:¢,1), dt r Me o ¢1), dt Ve, dt r’

Vili=o = V2o, Vipli=o = Vieos Tli=0 = 70, ¢]t=0 = 0.
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In the equations (22) —e < 0 and m, are charge
and mass of electron, Vé = 2eQ)/m, is square of a
certain scale velocity of electrons, and components of
the electric field of the wave are determined by for-
mulas (2). The set of equations (6,7,22) describes
self-consistently the process of electromagnetic waves
excitation in orbitron. For their solution we shall
present electron current in the form

JT%

——ez =6(r —ri(t

where 7;(t), i (t), Vi(t) are the solutions of the equa-
tions (22,23) for i electron, N is full amount of elec-
trons in the interaction region. For application of
the method of macroparticles it is necessary to write

N

Klmn = —€le Z ‘/jtp(t)
J

mRmn (kmnrj(t))
K3mn = TCHe Z VVJT k'mn'rj (t)

For convenience of calculations the equation de-
duced above have been led to a dimensionless form.
For conciseness they are not presented. The formula

5mn ):

E 5mn

m=1

The solution of the problem is determined by the
following main parameters: the ratio of radii b/a ;
amount of electrons, corresponding to unit of coax-
ial length [ | i.e. N/l ; voltage U in kV applied to
the string; coefficient of decreasing of particle energy
a=mVp/(4eQin(b/a)) < 1, which characterizes of
its energy losses due to collisions with molecules of
residual gas and is equal to the ratio of its kinetic
energy in the point ry to the maximal possible ki-
netic energy which the particle would gain, having
passed a way from the cathode up to the anode with-
out scattering; parameter of synchronism of particles
with a harmonic (m,n) of initial fluctuation of the

2
mve

Wy = Wk(p + Wiy, Wkgo = 9

where 7’ is reference point of potential. The elec-
tron efficiency for orbitron is determined as follows.
Let’s consider firstly the case when electrons fall down

Rmn(kmnrj (t))sm(mcp] (t))> Komn = —€Hle Z ‘/jtp(t)

i{|fmn(t)|2 + |f—mn(t)|2 + |9mn(t)|2 + |g—mn(t)|2}'

down the current (24) in the following view ,

jlr e :—e,uez 6r—rj

)o(p = ¢;i(t)),
(25)

where j is number of macroparticle, N is full amount
of macroparticles, u. is mass of macroparticle, deter-
mined by the amount of electrons in macroparticle.
We note, that representation of the current in the
form (24,25) allows to pass simply from Euler coordi-
nates in (10,11) to Lagrange coordinates of macropar-
ticle, which are the solutions of the set of equations
(22,23). At that there are absent, from the comput-
ing point of view, laborious process of distribution
of a charge in cross-points of Euler grids of coordi-
nates and interpolation of force in points of particles
locations. Substituting (25) into formulas (10,11), we
shall obtain

N

_ Ry (Rt (1)) cos(mep; (1)),

(26)
sin(mep;(t)), Kamn = —efie Z Vir(t mRﬂ;:fj?;&? (t»cos(mgoj (t)).
(27)

for energy of an excited field of the wave, correspond-
ing to unit of orbitron length, can be obtained from
expansion (2). It has a view ,

(28)
wave Ggmn = (V0 — Uphmn/Uphmn) ; angle s, which is
formed by initial velocity of the particle Vo with ra-
dial direction, at that tg@,. = —V,0/Vro. The values
Byo = Vipo/c and py = 19/a are determined by para-
meters a , U , asmn , at that at their fixed values B0
grows together with py . Parameters of initial fluctu-
ation | fomn|, Pomn are chosen small enough that final
results did not depend on them. Accuracy of calcula-
tions is determined by amount of particles N and by
step of integration in time At . Electron in orbitron
possesses not only kinetic W, , but also potential W,
energy which are given by the relations

me V2

Wkr = 5

(29)

r
W, = Qtenp ,
only on the string. Let in the initial moment of time

their kinetic and potential energies are equal Wy and
Wpo , and energy of initial fluctuation of an electro-
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magnetic field is £(0). After the termination of gener-
ation process when all particles will fall down on the
string, corresponding values are equal Wy s, Wys, ey .
From the law of energy conservation follows, that

Wio + Wpo — Wpy =5 —e(0) + Wy (30)
Work of the external source creating a voltage be-
tween the anode and the cathode is spent on the ini-
tial kinetic energy of electrons and their potential en-
ergy relating to the string and consequently is equal
Wio + Wpo — Wpp. From (30) it is visible, that at
the end of generation the work of the external source
transforms to the energy of the field and the energy
of the anode heating-up, which is equal Wys . The
electron efficiency is equal

ne — S £(0) i Wiy)
Wio + Wyo — Wy Wio + Wyo — Wyp'
(31)

For magnetrons the relation Wy ~ 0 is fulfilled. In
magnetron case formulas (31) transorm into efficiency
for magnetron [6-8]. Under certain conditions in orbi-
tron subsidence of some part of particles on the cath-
ode is possible. The similar phenomenon takes place
in magnetrons too [6-7]. In this case the part of work
of an external source is spent for increase in potential
energy of this part of particles which should be added
in the right part of equality (30) and in numerator of
the second formula (31). Subsidence of electrons on
the cathode leads to reduction of the value 7 .

3. RESULTS OF CALCULATIONS

The numerical solution the equations obtained above
yielded following results. Values e,n as functions of
the angle ¢4 have a maximum at ¢, = 7/2 . Devi-
ations of the angle ¢ . from this value leads to sharp
reduction of energy of the generated field and effi-
ciency of its excitation. It means, that only those
electrons effectively interact with the wave, which
trajectories are close to circular and which compo-
nents of velocity are subjected to the condition

Vo >> V. (32)
It means, that electron exchanges with the wave
only by an azimuthal part Wy, of its kinetic energy.
Power, transferred to the wave by an electron, by
virtue of (32) and relation E, ~ E, [5] is equal

P=—e(V,E,+ V,E,) = —€eV,E,. (33)
Besides for interaction of electrons with a harmonic
(m,n) , similarly to magnetron [6-8], should be satis-
fied the condition of synchronism of angular velocity
of electrons wy and angular phase velocity wppmn of
this harmonic

_ VLP _ Wmn
wo = 77 Wphmn = .

(34)

Wo = Wphmn
m

Tt is known [8], that in the field of the charged cylin-
der the frequency of radial fluctuations of electron
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more than /2 times exceeds its angular velocity. The
incommensurability of frequencies of radial and az-
imuthal motion of electron leads to that under con-
dition (34) there is no synchronism of components of
the field E, with radial motion of an electron. There-
fore, and also by virtue of (33) it is possible to con-
sider, that the electron bunching and waves genera-
tion in orbitron slightly depend on E,. and mainly are
determined by component E, During some initial in-
terval of time electrons, being uniformly distributed
on phase, do not exchange energy with initial fluctu-
ation of the field (2,7). In the further under action of
azimuthal nonuniformity of the wave one part elec-
trons gets in decelerating phases, where E, > 0 ,
and another part gets in accelerating phases, where
E, < 0. Electrons of the first part, being slowed
down, approach to the string as the balance of cen-
trifugal force and force of an attraction to the string
is broken. These electrons give to the wave a part of
their energy consisting from Wy, and W,

W' = Wiy + W, (35)

Electrons the second part, being accelerated, gain a
part of energy from the wave. At that the part W’
of their energy is increased and they approach to the
cathode. Thus, electrons in orbitron exchange with
the wave not only by azimuthal part Wy, of their
kinetic energy, but also by potential energy. In this
respect orbitron reminds magnetron, in which how-
ever only potential energy of electrons is transferred
to the wave[6-8]. The bunching of electrons in or-
bitron is determined by dependence of their angular
speed on time. Using the formula for wg (34) and sec-
ond equation of (22), we obtain the following relation

dwo  1,2V,V, e 2W,V,
o~ (Zte B)~ e
dt r( r + Me °) 72

In (36) it is used the fact, that in RF-devices of
small and moderate power the amplitude of an ex-
cited field E, is less than electrostatic fields. From
(36) follows, that electrons, being in decelerating
phase where E, > 0,V < 0 have positive angular
velocity. Meanwhile electrons, being in accelerating
phase where E, < 0,V, > 0 have negative angular
velocity. Therefore in an azimuthal direction elec-
trons move contrary to the force acting on them, and
being displaced on radius. Sometimes this phenom-
enon is named the effect of "negative mass” [9]. As a
result electrons are bunching on an azimuth at tran-
sition from the phase of deceleration to the phase of
acceleration. Electrons trapped by the wave move to-
gether with the wave. For them the condition of syn-
chronism (34) is satisfied. If parameters of orbitron
are those, that electrons, being in decelerating phase
more than in accelerating phase the electromagnetic
waves will be generated in orbitron. Let’s consider
an electron of the bunch, being in decelerating phase.
Having given to the wave the part of its kinetic Wy,
and potential W), energy, electron leaves synchronism
(34). At that it is decelerated in an azimuthal direc-
tion, but owing to the effect of ”negative mass” its

(36)



angular velocity increases. As a result electron again
gets in synchronism with the wave and gives to it the
next portion of the energy W’ | gradually approaches
to the string. Electron, being in accelerating phase
gains a part of its energy from the wave and also
leaves synchronism (34). At that its Wy, and W,
are increased. Acceleration in an azimuthal direction
results owing to the effect of "negative mass” to that
angular velocity of electron decreases. Again it gets
in synchronism with the wave (34) and gains from
the wave the next portion of energy, gradually ap-
proaches to the cathode. Thus, during the process
of energy exchange with the wave in orbitron elec-
tron restores the angular velocity wy and does not
leave synchronism (34). In magnetron electrons also
continuously restore a condition of synchronism (34)
during interaction with the wave [6]. A condition for
increments dV,, and dr , at which angular velocity is
restored after interaction of electron with the wave it
is possible to obtain from the formula (34) for wg . It
has the view

== (37)

If by means of (29) to pass in the ratio (37) to vari-
ables W, and Wy, , then the expression (37) takes
the following view:

aw, V3

-9 38
Wiy V2 (38)

The formula (38) gives the ratio of a part of poten-
tial energy to a part of kinetic energy of electron lost
or gained by electron during its interaction with the
wave. If there are too much electrons in the interac-
tion region, the intensive energy exchange of the wave
with electrons it can be occurred electron bunching.
At that the amount of electrons, being in deceler-
ating phase and in accelerating phase are approxi-
mately equal. The decelerated electrons quickly ex-
cite the wave of very big amplitude and at once set-
tle on the string. Accelerated electrons, being in the
field of high amplitude, gain energy from the wave
and quickly settle on the cathode. Finally energy
of the field in orbitron appears close to zero. The
similar phenomenon takes place also in magnetron
[7]. According to experimental data [1] the density
of electrons in orbitron is rather low, as their plasma
frequency approximately is much less than the fre-
quency of generated waves. In [2] it is shown, that
increments of cold waves growth in orbitron quickly
decrease with growth of azimuthal number of a har-
monic |m| . It allows to consider, that the main con-
tribution to expansion (2) will be given by harmonics
with |m| = 1 and by several first numbers n of ra-
dial harmonics. Firstly the calculations for a single
wave have been carried out with |m|=1andn=1.
Energy of a wave € everywhere is presented in terms
of erg /em. Calculations which results are presented
below, are executed at the following parameters:

b T

— =100, as11=-0.1, @s=. (39)
a 2

In Fig. 1 it is shown how energy ¢ (erg /cm) of the
excited wave in orbitron changes in time at the fol-
lowing values parameters:

=10",U = 1.5,a = 0.2, B,0 = 0.0343, py = 2.07.
(40)

N
l

14281

21421 28561 357011 42341

Fig.1. Dependence energy € from temporal step it

Along the axis of abscissa the amount of steps in
time is marked. The value of the step in time At is
equal

a
At = 0.05 o (41)
and amount of particles N = 800 . On time interval
I initial fluctuation (7,12) amplifies. On time interval
IT bunching of electrons takes place. In the beginning
of this interval there is a small splash in energy of the
wave, which is explained by that approximately the
half of non bunched electrons, being in decelerated
phase, gives energy to the wave, and other half of
electrons, which is being in accelerating phase, gains
energy from the wave. At a stage III delays electrons
bunched in decelerating phase give energy to the wave
and settle on the string. Dependence of the amount of
particles which settle on the string on time is similar
to the dependence € and for brevity is not presented.
In Fig. 2-5 it is shown how values 7 in % (continuous
lines) and ¢ in erg/cm (dashed lines) depend on pg at
various values of parameters N /I,U. First of all we
note, that the wave is effectively excited by electrons,
which initial radial coordinates pg lay in a cylindrical
layer in immediate proximity from the string (anode).

24

35
221 30

3 125

€ (erg/cm)

N/=10"", v=1.5kvV

10 , , 0
1 1.5 2 25 3 35

Py

Fig.2. Dependence €,m from pg
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Fig.3.Dependence €,m from pgy
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= §
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S 12t )
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r w
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Fig.5. Dependence €, from pg

Thickness of this layer is small in comparison with
radius b of the external cylinder of the coaxial. It
is in the consent with experimental data [1], and as-
sumptions of work [2] according to which near to the
string the field generation in orbitron takes place.
Outside of this layer the values e,n decrease. The
bottom border of the layer is determined by that elec-
trons, located near to it, have the small initial energy
W’ and cannot excite significant energy of the field.
Besides because of deviations of orbits from circular
one these electrons can quickly settle on the string,
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without exciting the wave. Electrons, located near
to the right border of the layer pgy, have greater az-
imuthal velocity. Therefore significant part of them
gets on the cathode that reduces ¢,7 . Comparing
Fig. 2, 4 on the one hand and Fig. 3, 5 on the other
hand, it can see that, having increased a voltage U
at constant electron density, it is possible to increase
considerably the energy of the excited field without
reduction of efficiency of its excitation.

It is explained by that for existence of trajectories
of electrons, close to circular ones, with U growth Vi,
should be increased that leads to increase in energy
which electron can give to the wave. From compar-
ison Fg. 2, 3 with Fig. 4, 5 it is visible that the
increase in density of electrons at a constant volt-
age leads to reduction of efficiency of the field gen-
eration in orbitron. It is connected with that the
increase of amount of electrons in the interaction re-
gion leads to increase in the wave amplitude. At that
electrons, being in accelerating phase, settle on the
cathode that leads to reduction of n value. If one
takes electron density even greater then not only wave
amplitude increases, but increment of its growth in-
creases too. At that nonbunched electrons interact
with the wave. They do not excite the field, about
what it was spoken above. This case is illustrated
by Fig.6 where calculations with a set of parame-
ters (39-41), in which the density of electrons is in-

creased up to the value N/l = 10'3 | are presented.

305

14281

1 7141 21421 28561 35701 42341

Fig.6. Dependence energy € from temporal step it

Thus, from the point of view of values 7, e, there
is some optimal value of electron density in the inter-
action region. Calculations under the formula (38)
showed, that in the initial moment of time for var-
ious parameters dW,/dWy, = V3/V3 ~ 0.5...1.0.
In process of transforming energy to the wave Vf
decreases, and it leads to increase in a share of po-
tential energy in the energy VWQ , given to the wave.
The part W, of potential energy of electrons trans-
forms to kinetic energy W;, of their radial motion
which goes on a warming up of the anode. We note
that in magnetron the magnetic field turns trajec-
tories of electrons in such a way, that their radial
motion transforms into azimuthal one. As a result
Wi, transforms into energy Wy, which is given to
the wave. Therefore in magnetron the efficiency is
higher, than in orbitron. The analysis lead above
has shown, that mechanisms of electromagnetic waves
generation in orbitron and in magnetron have much
in common.The calculations with taking into account
higher radial harmonics were also carried out. At that



parameters (39-41) were used. Calculations with tak-
ing into account two and three radial harmonics gave
the following values of field energy and efficiency: at
n = 1 it is obtained £ =20.3, n =24%; at n = 1,2
e=17.5, n =20%; at n = 1,2,3 £ =18.2,n =21%. The
results obtained with two and three harmonics, differ
by several percents, therefore there is a saturation of
results at increase of n .

4. THE CONCLUSION

The nonlinear theory of electromagnetic waves gen-
eration in orbitron is developed. The set of the equa-
tions including the equations of field excitation and
the equations of 2-dimensional motion is constructed
and numerically solved. It is shown, that mechanism
of electron bunching and energy exchange of electrons
with the wave in orbitron and in magnetron has much
in common. For the fixed parameters of orbitron from
the point of view of generated energy and electronic
efficiency there is some optimal value of electron den-
sity in the interaction region.
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HEJIMHEMHA S1 TEOPUS BO3BY2KJIEHUNS SJIEKTPOMATHUTHOTO I10JISI B
OPBUTPOHE

FO.B. Kupuwenxo, U.H. Onuwenro

B pabore passBuTa HenmHelHas TEOPHs TeHEPAIMH 3JEKTPOMArHUTHBIX BOTH B opbuTpone. ITocTpoena n
YUCJIEHHO PellleHa CUCTeMa ypPaBHEHUI BO30YKIEHWUS U ypaBHEHUN NBUKeHUs. [loka3aHO, 9YTO MeXaHU3MbI
IPYIIIUPOBKY U OOMEHa SHeprueil 3JIEKTPOHA C BOJHOW B OPOUTPOHE W MArHETPOHE MMEIOT MHOI'O ODIIEro.
Iltst (pUKCUPOBaHHBIX MAPaAMETPOB OPOMTPOHA MMEETCS HEKOTOPOe ONTHMAJIBHOE C TOYKU 3PEeHUsl T'eHepu-
pyeMoli SHEPIUU U JIEKTPOHHOTO KO3 DUIMEHTa MOJIE3HOr0 NeHCTBUS 3HAYUEHUE IIJIOTHOCTH JIEKTPOHOB B
MIPOCTPAHCTBE B3amMoeicTBus. JlocTaTrouno ToOYHOEe ommcaHue mporecca Bo30YKIEHUS BOJIH B OPOUTPOHE
MOYKHO TIOJTYIUTD, OTPAHUIUBAsICh OCHOBHOM COOCTBEHHOI TapMOHUKOIA.

HEJITHIMHA TEOPIS 3BY/I2KEHHS EJIEKTPOMATHITHOTI'O I10JISI B OPBITPOHI
IO0.B. Kupuuenxo, I.M. Oniwenxo

B poboti posBumyTO HesiHIIHY TeOpio reHeparlii eJIeKTPOMATHITHUX XBUJIb B opOiTpoHni. [TobymoBano i
9HCESIbHO PO3B’sA3aHO CUCTEMY DIiBHSHB , IO BKJIIOYAE PiBHsAHHs 30y/2KeHHsS Ta pyxy. llokazano, mo me-
XaHI3MU TPYIyBaHHS Ta OOMIHYy €HEpri€io eJeKTPOHa 3 XBUJIEIO B OPOITPOHI Ta MarHEeTpOHI MaloTh HaraTo
criibaoTOo. 15 (bikcoBaHMX mapaMeTpiB opbiTpoHa IIJIBLHICTD €IeKTPOHIB ¥ MPOCTOPI B3aEMOJIil Ma€ ONTH-
MaJibHe 3HaYeHHs 3 TOYKHU 30pY €Heprii, Mo reHepyeThcs, Ta Koedirienta kopucHol jii. loctaTHbo ToUHMIT
OIHC TPOoIieCy 30Y/I2KEHHsI XBUJIb B OPOITPOHI MOXKHA OTPUMATH 38 JOIOMOI'OK0 OCHOBHOI BJIACHOI TAPMOHIKH.
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