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Extra space-time dimensions are predicted by String theory. However, up to date there are not any experimental
signals in favor of their existence. It forces to search for consistent string theory formulations in four space-time
dimensions. The task can be completed with extending the standard vector-type coordinates of four-dimensional
space-time with additional tensorial-type bosonic coordinates. The reason of introducing the new set of coordi-
nates is discussed, and calculations of the critical dimension in the Neveu-Schwarz-Ramond tensorial superstring
formulation are performed. It is also discussed the role of the new coordinates in the construction of the consistent
five-dimensional superstring formulation solely in terms of the tensorial-type coordinates and their world-sheet su-
perpartners. Properties of massless modes casting an open and a closed five-dimensional superstrings spectra are
considered in brief.
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1. INTRODUCTION

One of the most fascinating predictions of String the-
ory is the existence of extra dimensions required for
quantum consistency of strings. Extra dimensions,
the presence of which was very sceptically conceived
at early days of String theory, have become the stan-
dard de facto in the construction of various Unifica-
tion models of fields and have received a lot of atten-
tion on the particle physics community side.

Searching for signals from extra dimensions on
modern experimental factories is a good way to put
String theory on the test. Unfortunately, up to date
there are not any experimental observations in favor
of extra dimensions. Therefore, a possibility of liv-
ing in the World without extra dimensions has not
a priori to be ruled out. This fact stimulates search-
ing for String based Unification models being already
consistent in the observed number of space-time di-
mensions.

In this notes I discuss models of supersymmet-
ric strings which fall into such a criterion. To make
the notes self-contained I begin with a brief discus-
sion of extra dimensions in frameworks of String the-
ory. Then, I discuss benefits and drawbacks of two
most popular scenarios of Unification models with ex-
tra dimensions, the Kaluza-Klein scenario and the
Brane World model. Next, I consider a formulation
of String theory which is consistent, i.e. anomaly
free, in D = 4, and outline some of features of the
construction. My conclusions with summary of the
results are collected in the end of the paper.

2. EXTRA DIMENSIONS FROM STRINGS

As I have noted in the above, the quantum con-
sistency of String theory implies living in extra-

dimensional world. This conclusion comes from an
infinite-dimensional algebra of quantum operators [1]

[L̂m, L̂n] = (m− n)L̂m+n + A(m)δm+n, (1)

A(m) =
1
12

D(m3 −m),

which corresponds to a classical infinite-dimensional
algebra

{Lm, Ln} = i(m− n)Lm+n, (2)

generating conformal transformations on a two-
dimensional strings’ world-sheet.

The difference between quantum and classical Vi-
rasoro algebras (1), (2) consists in the central ele-
ment of the algebra A(m). This term is absent in
(2), and appears after the normal ordering of quan-
tum oscillators entering the Virasoro generators L̂m.
The central extension of (1) encodes the conformal
anomaly in the quantized theory, and it manifestly
depends on the space-time dimension. In fact, A(m)
is only a part of the total anomaly coefficient, since
the classical Virasoro operators generate the resid-
ual world-sheet symmetry after the conformal gauge
fixing. Following the Faddeev-Popov recipe ghosts
have to be introduced, and their contribution into
the anomaly coefficient is [1]

Ab,c(m) =
1
6
(m− 13m3).

The total anomaly coefficient

Atotal(m) = A(m) + Ab,c(m) + 2aopenm. (3)

also contains the contribution from the open string
intercept aopen.
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The anomaly absence, i.e. Atotal(m) = 0, implies
the space-time dimension D=26 and the string inter-
cept aopen = 1. The same result holds for a closed
bosonic string [1].

In the case of Neveu-Schwarz-Ramond (open) su-
perstring (NSR superstring [2]) the Virasoro algebra
is modified with two additional graded commutators,
that leads to the set of two total anomaly coefficients.
Depending on boundary conditions on world-sheet
fermions two sectors of quantum oscillators appears:
the Ramond (R) sector with





Atotal(m) = D
8 m3 + 1

6 (m− 13m3)+
+ 1

12 (11m3 − 2m) + 2aR
openm,

Btotal(m) = D
2 m2 − 5m2 + 2aR

open ,

(4)

and the Neveu-Schwarz (NS) sector, where




Atotal(m) = D
8 (m3 −m) + 1

6 (m− 13m3)+
+ 1

12 (11m3 + m) + 2aNS
openm,

Btotal(m) = D
2 (m2 − 1

4 ) + ( 1
4 − 5m2)

+2aNS
open .

(5)

From A(m) = 0, B(m) = 0 it follows the critical di-
mension D=10 and the string intercepts aR

open = 0,
aNS

open = 1/2.
Therefore, the presence of extra dimensions is

an intrinsic property of the consistently quantized
String theory. We get 22 space-like extra dimensions
in bosonic string theory and 6 extra spatial dimen-
sions for superstrings. The superstring case is more
preferable since we have not the tachyonic vacuum
state here: aNS

open = 1/2 corresponds to the tachyonic
vacuum, while aR

open = 0 leads to a well-defined zero-
energy vacuum state. Though we have aNS

open = 1/2 in
the Neveu-Schwarz sector of superstring, we get rid
off the tachyon state taking the Gliozzi-Scherk-Olive
(GSO) projection [3]. Once the GSO projection is
applied the spectrum of states in NS+R sectors pos-
sesses D=10 space-time supersymmetry. In what
follows I will mainly focus on the superstring case,
where the number of extra dimensions is 6.

3. LIVING WITH EXTRA DIMENSIONS

From the String theory point of view, our World
looks as follows (see Fig.1):
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Fig.1. The Stringy World

To make a contact of String theory living in ten-
dimensional world to observable physics in D=4 a
special procedure of compactifying the extra dimen-
sions has to be realized. There are many ways to this
end, but the right way, which would reproduce main
properties of the Standard Model (or its minimal
supersymmetric extension), is up to date missed.

Dealing with extra dimensions one may won-
der what is their size and what is the nature of
extra dimensions? In the Kaluza-Klein picture [4]
the extra dimensions have a small size that leads
to appearing very massive particles after the com-
pactification, with masses M ∼ 1/lcomp. (lcomp. is a
characteristic length of a compactified dimension).

3+1

6

3+1

6

Fig.2. The Kaluza-Klein picture

Massive modes coming from the Kaluza-Klein com-
pactification are too massive to be ever experi-
mentally observed, so the best one can do is to
consider massless modes, corresponding in part
to the gauge bosons of the SM symmetry group
SU(3) × SU(2) × U(1), or an extended symmetry
group including the SM group as a subgroup (see
Fig.2).

Common drawbacks of the Kaluza-Klein scheme
consist in:

• Unsatisfactory spectrum of particles appearing
upon the reduction which does not fit well the
spectrum of the SM fields. The desired spec-
trum of the Kaluza-Klein massless modes has
to be realistic. A part of this spectrum should
correspond to the gauge bosons of the Standard
Model that puts restrictions on the type of the
internal six-dimensional manifolds. However,
the way of getting masses for the rest of the
modes and establishing their correspondence to
other Standard Model fields is an open task [5].

• Gauge hierarchy problem still takes place. The
Kaluza-Klein scenario does not resolve the hi-
erarchy problem, the gravity scale still remains
near the Plank scale.

• Typically four rather than three generations of
quarks and leptons. The exact number of gener-
ations coming after the dimensional reduction is
strongly depended on geometrical and topolog-
ical characteristics of internal six-dimensional
manifolds. Roughly speaking, the number of
fermion generations is twice less than the main
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topological number of the internal manifold
(the Betti number). It turns out that the min-
imal Betti number for phenomenologically rel-
evant internal manifolds is equal to 8 (Calabi-
Yau manifolds), hence the number of genera-
tions is 4. A way to resolve this problem is to
consider special manifolds of a Calabi-Yau type
with the relevant Betti number [6], or to re-
duce on orbifolds [7] which are not manifolds in
a common sense. Another perspective direction
is to consider branes intersections [8] within the
Brane World scenario (see below).

• Masses and chiralities of fermions. After
the reduction fermions received masses of
the compactification scale order, i.e. huge
masses. Massless fermions comes from the
zero-eigenvalue states of the Dirac operator on
a compact internal manifold. In most phe-
nomenologically interesting cases such zero-
eigenvalue states do not exist. Another prob-
lem is to recover chiral fermions after the re-
duction. It may not be correctly resolved within
the standard Kaluza-Klein scheme (see e.g. [9]
and Refs. therein).

• Large cosmological constant. This point be-
comes important in context of String theory ap-
plication to Cosmology and astrophysics, since
we have definitely known that the right cosmo-
logical constant is small.

Problems with Kaluza-Klein motivated searching
for other scenarios. One of them became popular last
decade is the Brane World scenario [10].

Within the Brane World (BW) scenario it is
supposed that fields of the SM do confine on a 4-
dimensional brane (3-brane). A 3-brane is embedded
in a higher-dimensional World. Gravity takes a spe-
cial place in the BW picture since gravity does not
confine on a 3-brane and gets trapped in high dimen-
sions.

From the String theory point of view the BW pic-
ture looks like (see Fig.3):

10-dimensional string’s World

Our World

“Standard
Model”

3-brane

strings

6-dimensional
manifold

Fig.3. The Brane-World picture

A 3-brane is embedded into ten-dimensional
space-time, a connection between 3-brane and extra
dimensions is realized through strings. What is im-
portant in such a scheme is that extra dimensions are
large. It leads to essential decreasing of the effective

Plank scale on a Brane, that resolves the hierarchy
problem.

Substantial progress in the Stringy BW has been
achieved, nevertheless several important problems
still remain open:

• How to break Supersymmetry in a correct way?
Indeed, once we are talking about a 3-brane,
it naturally appears in type IIB supersymmet-
ric String theory. One may wonder why it is so
necessary to deal with Superstring theory? The
answer is we would like to have a joint coupling
constant in high energies that provides by su-
persymmetry, and we would like to have a uni-
fied theory of gravity and the SM fields that is
realized in String theory. However, the SM is
not a supersymmetric theory, hence the way of
supersymmetry breaking has to be found.

• How to set up the right cosmological constant
in the end? I recall that Anti-de-Sitter space
is actively exploited within the BW. Hence, all
the machinery of the AdS/CFT correspondence
is applied here. But we have to recover the
right, de-Sitter space, cosmological constant in
the end, which is the experimentally verified
cosmological constant driving the late-time ac-
celeration of Universe.

• The predicted gravity scale is over TeV, but
should we believe in that? The BW scenario is
a proposal for the resolving the hierarchy prob-
lem. However, we have not any signals on TeV
quantum gravity (as well as on extra dimen-
sions) up to date that makes the point ques-
tionable.

4. LIVING WITHOUT EXTRA
DIMENSIONS

Living in extra dimensional World makes possi-
ble to resolve some of the fundamental problems of
the Standard Model. At the same time the major
worry on extra-dimensions is the absence of any ex-
perimental signals in favor of their existence. Once
living in extra-dimensional World will be experimen-
tally verified, it will get rid of any doubts on them,
and on String theory, which predicts extra dimen-
sions, as well. Currently, all possible ways of con-
structing Unification models, with or without extra
dimensions, are needed to be taken into account on
equal footing.

4.1. SUSY algebra and supersymmetric
strings in extended superspaces

I have noted String theory is good enough to unify
gravity with other interactions. But could we find a
comprehensive String theory with realistic critical di-
mensions?

To get an answer let me begin with reviewing an
irrelevant at first sight subject. In 1988 Curtright [11]
made an analysis of the maximally extended SUSY
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algebra in D=11 (M-theory algebra [12], [13]). The
algebra in particular includes

{Q,Q} = γaPa + γabPab + γabcdePabcde. (6)

The right hand side of (6) contains different types of
”momenta”. Dynamical charge Pa corresponds to the
standard momenta, other ‘momenta’ are topological
charges corresponding to ‘electrically’ charged mem-
brane and ‘magnetically’ charged 5-brane. Clearly,

Pab = −Pba, Pabcde = P[abcde].

Membranes and five-branes appear in eleven-
dimensional M-theory, however there is not a room
for strings there.

What happens if charges on the r.h.s. of (6) will
be treated in more democratic way? They are differ-
ent, of course, the dynamical momenta have the con-
jugated coordinates, whilst topological charges have
not. To reach charges democracy Curtright proposed,
instead of the standard D=11 superspace (Xa, θα),
an ‘extended’ D=11 superspace (Xa, Zab, Zabcde, θα)
[11], where Zab, Zabcde are “coordinates” conju-
gated to topological charges Pab, Pabcde. Curiously
enough, there exists a room for superstrings in such
an extended superspace.

A general form of the Curtright’s superstring ac-
tion with unit tension looks as follows [11]

S =
∫

d2ξ
√
−det(ωa

µωνa + αωab
µ ωνab + βωabcde

µ ωνabcde)

(7)
+SWZ .

The building blocks of the action consist of the
pull-back of D=11 Volkov-Akulov superform ωa

µ =
∂µXa + iθ̄γa∂µθ, its extensions to tensorial-type co-
ordinates ωab

µ = ∂µZab + iθ̄γab∂µθ and ωabcde
µ =

∂µZabcde + iθ̄γabcde∂µθ. Two parameters α, β are
constants fixed by supersymmetry in the end, and
the last terms of the action is the Wess-Zumino term.
The term by Wess and Zumino was introduced in (7)
to reach the invariance of the action under a local
fermionic symmetry, the so-called kappa-symmetry,
taking an important place in theory of supersymmet-
ric extended objects. Nevertheless, in the original
Curtright’s paper the kappa-invariance of the action
was rather claimed than exactly proved.

Now what about D=4? A similar extension
of D=4 superspace was considered by Amorim and
Barcelos-Neto [14], and a line of they reasoning was
almost the same.

The maximally extended N=1 D=4 superalgebra
in particular contains [12]

{Q,Q} = γaPa + γabPab. (8)

Adding new tensor-type coordinates Zab = −Zba,
which are conjugated to ”momenta” Pab, we get an
extended superspace (Xa, Zab, θα). Pab is commonly
treated as a topological charge (due to a D=4 mem-
brane), but treating it dynamically it’s possible to

construct a Green-Schwarz-type superstring in the
extended superspace

S =
∫

d2ξ
√
−det(ωa

µωνa + αωab
µ ωνab) + SWZ . (9)

The notation in (9) is that of (7). I postpone the
discussion of (9) to the end of the paper, currently
focussing on the superconformal algebra in the ex-
tended superspace and on the superstring critical di-
mension.

4.2. Superconformal algebra in tensorial
superspace and superstring’s critical

dimension

To calculate the critical dimension of tensorial su-
perstring let us turn back to the bosonic string case.
As it has been noted in the above the total conformal
anomaly coefficient (eq. (3))

Atotal(m) =
1
12

D(m3−m)+
1
6
(m−13m3)+2aopenm

contains contributions from bosonic fields Xa, confor-
mal (anti)ghosts and the string intercept. One could
notice that

• The critical dimension is calculated from set-
ting the terms proportional to m3 to zero.

• D bosonic coordinates Xa contribute the rela-
tive coefficient D.

• The conformal (anti)ghosts contribute the rel-
ative coefficient ”−26” independently on the
number of space-time dimensions.

Hence, we need 26 bosonic coordinates Xa to com-
pensate the ghosts contribution, +26− 26 = 0.

In the NSR superstring case one of the total su-
perconformal anomaly coefficients has the following
form

Atotal(m) =
(

D

12
· 1 +

D

12
· 1
2

)
m3 +

1
6
(m− 13m3)+

+
1
12

(11m3 − 2m) + 2aR
openm. (10)

It’s easy to recognize the contributions of bosonic Xa,
fermionic conformal (anti)ghosts, bosonic supercon-
formal (anti)ghosts and the contribution of the string
intercept. But what about the second term of (10)?

This term contains the contribution of the world-
sheet fermionic superpartners ψa of the bosonic co-
ordinates Xa. Clearly, the fermionic superpartners
contribute only 1/2 of the corresponding bosonic co-
efficient.

Hence, to calculate the critical dimension the fol-
lowing mnemonic rule may be used [1]:

• D bosons get the coefficient D.

• The input of D fermions (boson’s superpart-
ners) is D/2.

• The (super)conformal ghosts give ‘−26’ for con-
formal (fermionic) ghosts, and superconformal
(bosonic-type) ghosts contribute ”+11”.
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The difference ‘−26 + 11 = −15’ has to be compen-
sated with contributions of additional bosonic and/or
fermionic fields, one of the realizations of which are
bosonic coordinates Xa and their world-sheet super-
partners ψa.

Let us fix the space-time dimension D = 4. Four
bosonic coordinates Xm and their four world-sheet
superpartners ψm contribute the coefficient 4+4/2 =
+6. On account of ghosts contribution it is necessary
to compensate the coefficient equal to −15+6 = −9.
There are different routes to this end. Say, if one
were to use 6 ‘internal’ coordinates yi and their su-
perpartners ψi (i = 1, . . . , 6), this choice would be
transformed into the standard 4+6 = 10 set of coor-
dinates of the NSR superstring in the end.

Another productive choice suggested by D = 4
N = 1 superalgebra structure is to consider 6 addi-
tional tensorial-type coordinates Zmn = −Znm to-
gether with their world-sheet superpartners Ψmn =
−Ψnm [15]. This set of coordinates contribute the
required coefficient +9, hence we arrive at the con-
sistent quantum formulation of superstring in the ob-
servable number of space-time dimensions.

5. NEW SET OF COORDINATES AND
NEW FIELDS

We have established the existence of a NSR-type
superstring formulation with realistic critical dimen-
sion. The price we paid to this end is the exten-
sion of the conventional space-time with additional
tensorial-type bosonic coordinates. Let me take an
extensive treatment of new coordinates in the so ex-
tended space and give more strong evidence for the
quantum consistency of the superstring.

Note to this end the bosonic subset (Xm, Zmn)
could be embedded into the unique set of tensorial
coordinates ZMN , but in D = 5,

Zm̃5 Ã Xm, Zm̃ñ Ã Zmn, m̃ = 0, . . . , 3 .
(11)

Such a coordinates embedding of (Xm, Zmn) can be
done in any space-time dimension (D− 1) thus lead-
ing to D-dimensional space parameterized by ZMN .

After that, instead of the standard Nambu-Goto
string action functional in the conventional space-
time with coordinates Xm(ξ)

SNG =
T

2

∫
d2ξ

√
−det ∂µXm∂νXm ,

we have the action in terms of solely tensorial coor-
dinates ZMN (ξ)

S =
T

2

∫
d2ξ

√
− det ∂µZMN∂νZMN . (12)

Here, as well as in the action before, T is the string
tension.

The action (12) possesses the same world-sheet
symmetries as that of the Nambu-Goto action, hence
after the appropriate gauge fixing the equation of mo-
tion of ZMN (ξ) is reduced to

∂µ∂µZMN = 0. (13)

In what follows I will consider the closed tensorial
string, then the solution to eq. (13) satisfying the
closed string boundary conditions is

ZMN
R =

1
2
zMN +

1
2
l2pMN (τ − σ)+

+
l

2

∑

n6=0

1
n

αMN
n e−2in(τ−σ) ,

ZMN
L =

1
2
zMN +

1
2
l2pMN (τ + σ)+

+
l

2

∑

n 6=0

1
n

α̃MN
n e−2in(τ+σ) . (14)

Here, as usual, I set l =
√

2α′ = 1/
√

πT , where T is
the string tension. ZMN

R,L are supposed to be real that
leads to αMN

−n = (αMN
n )†, α̃MN

−n = (α̃MN
n )†.

Now we have to define the Poisson brackets be-
tween canonical variables. They are

{ŻMN (σ), ZPQ(σ′)}PB =
1
2
T−1×

× (
ηMP ηNQ − ηMQηNP

)
δ(σ − σ′) , (15)

and the overall factor in the r.h.s. of the Poisson
brackets has chosen to be one half to get the right
canonical Poisson brackets between D − 1 vector co-
ordinates and their momenta

{Ẋm(σ), Xn(σ′)}PB = T−1ηmnδ(σ − σ′) (16)

after identifying
√

2Zm(D) = Xm.
Substituting (14) into (15) we derive, by use of

∞∑
n=−∞

ein(σ−σ′) = 2πδ(σ − σ′) ,

the following non-trivial Poisson brackets

{αMN
n , αKL

m }PB =
i

2
nδn+m

(
ηMKηNL − ηMLηNK

)
,

(17)

{α̃MN
n , α̃KL

m }PB =
i

2
nδn+m

(
ηMKηNL − ηMLηNK

)
.

(18)
Next, we construct the Virasoro generators

Lm =
T

2

∫ π

0

e−2imσŻ2
R dσ|τ=0 =

1
2

∞∑
−∞

αMN
m−kαMN

k .

(19)
Here we have substituted

ŻMN
R = l

∞∑
−∞

αMN
m e−2im(τ−σ) ,

and have used
∫ π

0

e2imφe−2inφdφ = πδmn .

Clearly, αMN
0 = 1

2 lpMN . The left moving Virasoro
generators L̃m are identical to (19) with relpacing
αMN

m → α̃MN
m , and α0 = α̃0.
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Taking into account the Poisson brackets (17),
(18) one may calculate the Poisson brackets between
the Virasoro generators

{Lm, Ln}PB = i(m− n)Lm+n,

{L̃m, L̃n}PB = i(m− n)L̃m+n. (20)

There is no difference between the Poisson brackets in
(20) and those of the standard bosonic string theory.
The same happens for the quantum Virasoro algebra,
which is

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,

[L̃m, L̃n] = (m− n)L̃m+n + A(m)δm+n, (21)

and A(m) = c3m
3 + c1m. Two unfixed coefficients

are calculated in the standard way [1] that results in

A(m) =
1
24

D(D − 1)(m3 −m). (22)

The conformal anomaly coefficient possesses the
same dependence on m as its standard counterpart
entering eq. (1). This is not a surprise since the
result is based on properties of a two-dimensional
world-sheet of any string. The difference comes from
the contribution of the world-sheet coordinates: it is
equal to D in the conventional bosonic string the-
ory, while for the tensorial string case it becomes
D(D − 1)/2 (as it should follow from the mnemonic
rule considered in the previous section).

The b− c ghosts system contributes

Ab,c(m) =
1
3
(m− 13m3), (23)

where we have summed over the left and the right
modes contributions. Summing up, the total anom-
aly, which has to be canceled, is

Atotal(m) =
[
1
2
D(D − 1)

]
× 1

6
(m3 −m)+

+
1
3
(m− 13m3) + 2acl.m. (24)

The expression we got is very similar to that of the
total anomaly of a bosonic string with vector-type
coordinates (cf. eq. (1)). The difference is just in
replacing D in the standard bosonic string case with
1
2D(D − 1). From (24) one may notice that there is
not a (integer) critical dimension where anomaly is
canceled, and the ordering constant is the same as
for a closed bosonic string, acl. = 2.

Let me turn to the NSR-type tensorial super-
string. The world-sheet superpartners of Xm and
Zmn can also be recast into the single world-sheet
fermion ΨMN

Ψm̃5 Ã ψm, Ψm̃ñ Ã ψmn, m̃ = 0, . . . , 3 .

The gauged fixed action of the tensorial superstring
(compare to [16], [17]) is in the case

S =
T

2

∫
d2ξ

(
∂µZMN∂µZMN − iΨ̄MNρµ∂µΨMN

)
.

(25)

In the NSR-type formulation we are dealing with
tensorial-type coordinates ZMN which are scalars
w.r.t. the world-sheet diffeomorphisms, and with
their superpartners ΨMN which are world-sheet
spinors. If we calculate the Virasoro-like superalgebra
of the NSR-type string following standard methods of
[1], the difference in the total anomaly coefficients, in
compare to the standard NSR superstring case, con-
sists just in replacing D in (4), (5) with 1

2D(D − 1)
[15]. This result is very expected from the previous
calculations of the bosonic tensorial string anomaly
coefficient. We have





Atotal(m) = 1
12 (D(D−1)

2 + D(D−1)
4 )m3+

+ 1
6 (m− 13m3) + 1

12 (11m3 − 2m) + 2aRm,

Btotal(m) = D(D−1)
4 m2 − 5m2 + 2aR ,

(26)
in the Ramond sector and




Atotal(m) = 1
12 (D(D−1)

2 + D(D−1)
4 )(m3 −m)+

+ 1
6 (m− 13m3) + 1

12 (11m3 + m) + 2aNSm,

Btotal(m) = D(D−1)
4 (m2 − 1

4 ) + ( 1
4 − 5m2)+

+2aNS

(27)
in the Neveu-Schwarz sector.

The critical dimension is D = 5 in the case, and
we arrive at new formulation of superstring theory
living in five-dimensional space-time endowed with
coordinates ZMN . This parametrization includes, as
a four-dimensional part, the standard set of vector-
type coordinates Xm, hence coordinates ZMN seem
to be more fundamental than Xm, and the tensorial
string theory in D = 5 becomes more fundamental
than its four-dimensional analog. All of that reminds
of the M-theory–String theory relation, when the
more fundamental theory is formulated in a space-
time of one spatial dimension higher.

Another consequence of introducing the new
space-time parametrization may be viewed from the
following observation. Recall that calculating the
Virasoro-like superalgebra of the NSR-type D = 5
tensorial string theory we have used the canonical re-
lation between ZMN and their conjugate generalized
momenta PMN

{PMN (σ), ZKL(σ′)}PB =
1
2
T−1×

× (
ηMKηNL − ηMLηNK

)
δ(σ − σ′) .

When we pass to operators, the generalized momenta
become P̂MN = −i∂MN , ∂MNZMN = 1

2D(D − 1).
Hence, in tensorial space there is an exotic one-form
of the Yang-Mills-type A = AMNdZMN . Its strength
tensor is

FMN,KL = ∂MNAKL − ∂KLAMN + i[AMN ,AKL]
(28)
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and the action functional for such a field looks like

S =
1
4
Tr

∫
dΩD FMN,KLFMN,KL,

where dΩD is the invariant volume form in D-
dimensional tensorial space.1 The one-form field A
is an analog of a non-abelian Yang-Mills gauge field
in the conventional space-time. It corresponds to
the massless mode in the spectrum of open tensorial
string. Indeed, let me define the vacuum state |0〉 as
α̂MN

n |0〉 = 0 for n > 0, where α̂MN
n are the annihila-

tion operators. They are quantum analog of classical
oscillators αMN

n entering (14). The first exited level
in the momentum representation is described by

AMN (k)α̂MN
−1 |0〉, kMNAMN (k) = 0,

which is nothing but the above mentioned one-form
gauge field.

In the spectrum of the closed tensorial string
there are other exotic massless modes GMN |PQ and
BMN |PQ corresponding to graviton and the Kalb-
Ramond antisymmetric tensor fields of the standard
superstring spectrum:

GMN |PQ
ˆ̃α{MN
−1 α̂

PQ}
−1 |0〉, BMN |PQ

ˆ̃α[MN
−1 α̂

PQ]
−1 |0〉.

The ‘graviton’ mode GMN |PQ possesses the following
properties

GMN |PQ = −GNM |PQ = −GMN |QP = GPQ|MN

which are formally the same as that of the curva-
ture tensor in the conventional space. For a ”Kalb-
Ramond” field we have

BMN |PQ = −BNM |PQ = −BMN |QP = −BPQ|MN .

The remaining massless mode in the spectrum is a
‘dilaton’ Φ

Φ ˆ̃αMN
−1 α̂MN −1|0〉.

Having such exotic modes it is important, from
the point of view of various applications, to under-
stand the dynamics of these fields. The action func-
tional for the ‘dilaton’ and the ‘Kalb-Ramond’ fields
is more or less predictable. It is likely

S =
∫

dΩ5 (
1
2

∂MNΦ∂MNΦ+

+
1
12

HMN, KL|PQHMN, KL|PQ),

where the ”Kalb-Ramond” field strength is defined
by

HMN, KL|PQ = ∂MNBKL|PQ+

+∂PQBMN |KL + ∂KLBPQ|MN .

As for the effective action of ‘graviton’ GMN |PQ, its
structure is unclear. It could be recovered from cal-
culations of the 3-point tree amplitude of interacting
strings in the low-energy approximation (as, for in-
stance, in [19]) and I postpone this task for further
studies.

6. SUMMARY AND CONCLUSIONS

We have discussed a reformulation of superstring
theory, the critical dimension of which coincides with
the observable space-time dimension.

To recover the critical dimension D = 4 an ex-
tension of the standard space-time is required. New
elements which have to be taken into account are
tensorial-type bosonic coordinates. From the point
of view of the string world-sheet theory, it does not
matter what kind of bosonic coordinates need to be
added to compensate the superconformal anomaly.
They could be scalars, vectors or tensors under the
space-time Poincare. The main point is that they
are scalars with respect to the world-sheet diffeomor-
phisms.

One may wonder, that is a rule for selecting new
coordinates then? What kind of the coordinates have
to be selected to parameterize the target space? It
turns out that the choice of the string’s coordinates
describing an immersion of the string world-sheet into
a target superspace is governed by the structure of a
target space superalgebra.

Let me discuss the target-space – world-sheet cor-
respondence in more detail. There are two indepen-
dent formulations of superstrings:

1. Neveu-Schwarz-Ramond with the world-sheet
supersymmetry;

2. Green-Schwarz with the manifest target-space
supersymmetry.

As I have noted these formulations are equiv-
alent in D = 10, since their quantum spec-
tra coincide (after truncation of the NSR spec-
trum with the GSO projection (see Fig.4))
and their critical dimensions are the same.

w.-s. SUSY

NSR SS GS SS

target-sp. SUSY

GSO projection

Fig.4. NSR-GS connection

The world-sheet SUSY in the NSR formulation
just says that there are world-sheet scalars and their
superpartners under the world-sheet supersymmetry.
However, it doesn’t say anything on properties of
these variables under the target-space Poincare trans-
formations.

In its turn, properties of the string coordinates in
the Green-Schwarz formulation are fixed. Indeed, a
part of the space-time SUSY algebra is

{Q,Q} = γaPa + . . .

1I should recall that the number of coordinates of D-dimensional tensorial space does not coincide with D.
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and string coordinates are defined as ones conjugated
to Pa. They are vector-type coordinates Xa with
respect to the target-space Poincare. Precisely this
type of the coordinates enter the standard NSR string
action. Extending the space-time to superspace re-
covers the rest of the coordinates entering the Green-
Schwarz superstring action, the space-time fermions
θα. They are the target-space superpartners of Xa.

Hence, the relation between NSR and GS su-
perstrings observes an independent interpretation, in
which properties of the space-time SUSY, manifest in
the GS formulation, govern the choice of the space-
time coordinates to describe the NSR string.

Let me now turn to the Green-Schwarz-type ac-
tion (9). This action is based on the target space
supersymmetry algebra involving the supercharges
anticommutator (8). If we give a credit to hav-
ing a correspondence between NSR and GS formu-
lations in the extended superspace (Xm, Zmn, θα),
the NSR-type tensorial superstring variables are
(Xm, Zmn) together with their world-sheet super-
partners (ψm,Ψmn). Indeed, these variables casting
ZMN and ΨMN enter the gauge fixed action (25).

As for the NSR-type tensorial superstring the
bosonic subset (Xm, Zmn) of the Green-Schwarz-type
tensorial superstring coordinates could be embedded
into the unique set of tensorial coordinates ZMN , but
in D = 5.

Zm̃5 Ã Xm, Zm̃ñ Ã Zmn, m̃ = 0, . . . , 3 . (29)

The # of fermionic target-space superpartners θα is
the same in D = 5 and D = 4. Therefore, it is pos-
sible to reformulate the superstring model solely in
terms of (ZMN , θα) coordinates that essentially sim-
plifies the Green-Schwarz-like tensorial superstring
action [18] and proving its kappa-invariance. More-
over, the consistency of the Green-Schwarz-type su-
perstring model in D = 5 tensorial superspace
(ZMN , θα) (kappa-invariance of the action) also re-
quires [18]

GM [N |PQ] = 0 .

This condition just says that the field GMN |PQ is in
the [2,2] irreducible rep. over the Lorentz in D = 5
tangent space.

At the same time I should note that the Green-
Schwarz-type formulation of tensorial superstring in
D = 4 (or equivalently in D = 5) extended super-
space faces with several questionable points. First
of all one may encounter an apparent mismatch be-
tween bosonic and fermionic degrees of freedom in
the case. Hence, it is necessary to understand the
root of the problem. A helpful way to this end is to
recover the spectrum of open/closed tensorial strings
in different formulations and to figure out an analog
of the GSO projection to relate spectra of tensorial
superstrings. Perhaps, applying the machinery of the
twistor-like superembedding approach [20], [21] (and
Refs. therein), which ‘closes’ the diagram on Fig.4,
may be useful to this end. Another intriguing prob-
lem is to construct the effective action of massless

modes to check a correspondence of the approach to
that of [22] where a new concept of the area metric
was introduced.
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О КВАНТОВО-СОГЛАСОВАННЫХ МОДЕЛЯХ СУПЕРСТРУН В
ЧЕТЫРЕХМЕРНОМ ПРОСТРАНСТВЕ-ВРЕМЕНИ

А.Ю. Нурмагамбетов

Наличие дополнительных измерений пространства-времени предсказывается теорией струн. Однако,
на сегодняшний день не существует каких-либо экспериментальных подтверждений в пользу их суще-
ствования. Данное обстоятельство дает толчок к поиску последовательных формулировок теории су-
перструн в четырехмерном пространстве-времени. Одним из решений проблемы является расширение
стандартного набора четырехмерных пространственно-временных координат векторного типа дополни-
тельными бозонными координатами тензорного типа. В работе обсуждается причина введения именно
такого набора дополнительных координат, а также приводятся вычисления критической размерности
для формулировки тензорной суперструны типа Невье-Рамона-Шварца. Также обсуждается роль но-
вых координат в построении последовательной формулировки суперструны в пространстве-времени
размерности пять исключительно в терминах координат тензорного типа и их суперпартнеров отно-
сительно преобразований ‘суперсимметрии’ на мировом листе струны. Кратко рассмотрены свойства
безмассовых мод в спектрах открытой и замкнутой пятимерных суперструн.

ПРО КВАНТОВО-УЗГОДЖЕНI МОДЕЛI СУПЕРСТРУН У
ЧОТИРИВИМIРНОМУ ПРОСТОРI-ЧАСI

О.Ю. Нурмагамбетов

Наявнiсть додаткових просторо-часових вимiрiв передбачено теорiєю струн. Проте, на сьогоднiшнiй
день не iснує яких-небудь експериментальних пiдтверджень на користь їх iснування. Ця обставина дає
поштовх до пошуку послiдовних формулювань теорiї суперструн у чотиривимiрному просторi-часi.
Одним з вирiшень проблеми є розширення стандартного набору чотиривимiрних просторово-часових
координат векторного типу додатковими бозонними координатами тензорного типу. У роботi обгово-
рюється причина введення саме такого набору додаткових координат, а також приводяться обчислення
критичної вимiрностi для формулювання тензорної суперструни типу Невье-Рамона-Шварца. Також
обговорюється роль нових координат в побудовi послiдовного формулювання суперструни у просторi-
часi вимiрностi п’ять виключно в термiнах координат тензорного типу i їх суперпартнерiв щодо пе-
ретворень ‘суперсиметрiї’ на свiтовому листi струни. Стисло розглянутi властивостi безмасових мод в
спектрах вiдкритої i замкнутої п’ятивимiрних суперструн.
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