В.Д.Кубенко, П.С.Ковальчук, Н.П.Подчасов

АНАЛИЗ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В ЦИЛИНДРИЧЕСКИХ ОБОЛОЧКАХ ПРИ ВЗАИМОДЕЙСТВИИ С ПРОТЕКАЮЩЕЙ ЖИДКОСТЬЮ

Институт механики им. С.П.Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: volna@inmech. кiev. ua

Abstract. A technique for analysis of non-stationary vibrations of cylindrical shells, which interact with flowing liquid, under action of external periodical pressure with slowly changing frequency is proposed. A numerical study is carried out for dynamical processes of the direct and reverse transition of the system shell-liquid through the resonance area.

Key words: cylindrical shell, ideal incompressible liquid, critical velocity, static and dynamic instability, non-stationary process, resonance.

Введение.

Решение проблемы прочности и эксплуатационной надежности разнообразных трубопроводных систем приводит к необходимости рассмотрения некоторых новых, на современном этапе, нелинейных задач, связанных с исследованием динамического взаимодействия упругих цилиндрических оболочек с протекающей внутри их жидкостью. Актуальными и мало изученными среди них являются, в частности, задачи об особенностях нестационарного деформирования таких оболочек, обусловленного действием на них внешних либо внутренних квазипериодических (характеризуемых медленно изменяющимися во времени параметрами) нагрузок. Динамические нагрузки такого рода могут быть инициированы работой различных, предназначенных для транспортировки перекачиваемого продукта, нагнетательных устройств – поршневых компрессоров, насосов и т.д. в режимах "разгона" или "торможения" [3 - 5, 11]. По отношению к несущей оболочке эти нагрузки являются в большинстве случаев поперечными (радиальными), причем они могут быть как сосредоточенными, так и неравномерно распределенными по части или по всей боковой поверхности. Второй вариант формирования указанных нагрузок может быть связан непосредственно с влиянием пульсаций давления в транспортируемой жидкости. Силовое воздействие на оболочку носит, в данном случае, "параметрический" характер, обусловливая появление в ее динамических уравнениях членов с переменными во времени коэффициентами [4, 7, 8, 12].

В настоящей работе изложена методика расчета нестационарных колебаний оболочек цилиндрической формы, взаимодействующих с протекающей жидкостью. Нестационарность процессов обусловливается действием на оболочки внешних квазипериодических сил, характеризуемых медленно изменяющимися во времени частотами. С использованием данной методики проведено численное исследование особенностей прямого и обратного перехода системы оболочка – жидкость через резонансные области при варьировании скоростей этого прохождения. Предварительно рассмотрены вспомогательные вопросы, связанные с определением критических скоростей движе-

ISSN0032–8243. Прикл. механика, 2010, **46**, №10

ния жидкости, при которых реализуется потеря устойчивости несущих оболочек, а также форм нестационарного деформирования оболочек в процессе потери устойчивости.

§ 1. Исходные динамические уравнения оболочки, несущей жидкость, выберем в смешанной форме [1 – 3]

.

$$\frac{D}{h}\nabla^{4}w = \frac{\partial^{2}w}{\partial x^{2}}\frac{\partial^{2}\Phi}{\partial y^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\frac{\partial^{2}\Phi}{\partial x^{2}} - 2\frac{\partial^{2}w}{\partial x\partial y}\frac{\partial^{2}\Phi}{\partial x\partial y} + \frac{1}{R}\frac{\partial^{2}\Phi}{\partial x^{2}} - \rho\frac{\partial^{2}w}{\partial t^{2}} - \varepsilon_{0}\rho\frac{\partial w}{\partial t} + \frac{q}{h} - \frac{P_{2}}{h};$$

$$\frac{1}{E}\nabla^{4}\Phi = \left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} - \frac{\partial^{2}w}{\partial x^{2}}\frac{\partial^{2}w}{\partial y^{2}} - \frac{1}{R}\frac{\partial^{2}w}{\partial x^{2}}.$$
(1.1)

Здесь использованы традиционные в классической теории оболочек обозначения [2]; кроме того, обозначено: *q* – поперечная, неравномерно распределенная по боковой поверхности оболочки квазипериодическая нагрузка вида

$$q = q(x, y, t) = q_0(x, y)\cos\theta_1(t)$$
, (1.2)

где $q_0(x, y)$ – некоторая функция пространственных координат *x*,*y*; ε_0 – коэффициент демпфирования; P_c – гидродинамическая нагрузка на оболочку со стороны жид-костного потока, определяемая из известного соотношения [1, 3, 10]

$$P_{z} = -\rho_{0} \left(\frac{\partial \varphi}{\partial t} + U \frac{\partial \varphi}{\partial x} \right) \Big|_{r=R}, \qquad (1.3)$$

в котором $\varphi = \varphi(x, r, \Theta, t)$ – потенциал возмущенных скоростей жидкости $(x, r, \Theta$ цилиндрические координаты); ρ_0 – плотность этой жидкости; U – скорость ее движения в оболочке. Жидкость предполагается идеальной и несжимаемой, ее движение – потенциальное. Функцию θ_1 в соотношении (1.2) предполагаем медленно изменяющейся функцией времени [9], такой, что $\frac{d\theta_1}{dt} = v_1(\tau)$, где τ – "медленное" время ($\tau = \varepsilon t$, ε – малый положительный параметр); v_1 – "мгновенная" частота внешнего радиального возбуждения.

Пусть на торцах оболочки (при x = 0, x = l; l - длина оболочки) реализуются условия "классического" свободного опирания [3] (условия Навье). Удовлетворяющий этим условиям динамический прогиб *w* представим в виде

$$w = f_1 \cos sy \sin \lambda_1 x + f_2 \cos sy \sin \lambda_2 x + f_3 \sin^4 \lambda_1 x + f_4 \sin^4 \lambda_2 x, \qquad (1.4)$$

т.е. в отличие от [10, 11, 13, 16 и др.] не будем учитывать сопряженные формы. Здесь $f_k = f_k(t)$ (k = 1,...,4) – подлежащие определению функции времени; $\lambda_1 = \pi/l; \quad \lambda_2 = 2\pi/l; \quad s = n/R$ – параметры волнообразования (n - количество полных окружных волн). Последние два члена в (1.4) являются "корректирующими" и характеризуют особенности деформирования оболочки при больших прогибах – отражают известный из экспериментов по динамике и устойчивости замкнутых оболочек эффект "преимущественного выпучивания вовнутрь" [2, 6].

Для определения гидродинамического давления на оболочку P_{e} находим предварительно с учетом (1.4) потенциал φ , решая краевую задачу [3, 10, 11]

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \Theta^2} = 0 \quad (0 \le r \le R; \quad 0 \le x \le l; \quad 0 \le \Theta \le 2\pi); \quad (1.5)$$

$$\frac{\partial \varphi}{\partial r} = -\left(\frac{\partial w}{\partial t} + U \frac{\partial w}{\partial x}\right) \operatorname{пpu} r = R ; \frac{\partial \varphi}{\partial r} \prec \infty \operatorname{пpu} r = 0.$$
(1.6)

В результате получим следующее выражение для функции φ :

$$\varphi = - \left\{ \left[\frac{I_n(\lambda_1 r)}{\lambda_1 I'_n(\lambda_1 R)} \dot{f}_1 \sin \lambda_1 x + \frac{I_n(\lambda_2 r)}{\lambda_2 I'_n(\lambda_2 R)} \dot{f}_2 \sin \lambda_2 x \right] \cos sy - \frac{I_0(2\lambda_1 r)}{4\lambda_1 I'_0(2\lambda_1 R)} \dot{f}_3 \cos 2\lambda_1 x - \frac{I_0(2\lambda_2 r)}{4\lambda_2 I'_0(2\lambda_2 R)} \dot{f}_4 \cos 2\lambda_2 x + \frac{I_0(4\lambda_1 r)}{32\lambda_1 I'_0(4\lambda_1 R)} \dot{f}_3 \cos 4\lambda_1 x + \frac{I_0(4\lambda_2 r)}{32\lambda_2 I'_0(4\lambda_2 R)} \dot{f}_4 \cos 4\lambda_2 x - \frac{3}{16R} (2x^2 - r^2)(\dot{f}_3 + \dot{f}_4) + \left[\frac{I_n(\lambda_1 r)}{I'_n(\lambda_1 R)} f_1 \cos \lambda_1 x + \frac{I_n(\lambda_2 r)}{I'_n(\lambda_2 R)} f_2 \cos \lambda_2 x \right] U \cos sy + U \frac{I_0(2\lambda_1 r)}{2I'_0(2\lambda_1 R)} f_3 \sin 2\lambda_1 x + U \left[\frac{I_0(2\lambda_2 r)}{2I'_0(2\lambda_2 R)} f_4 \sin 2\lambda_2 x - \frac{I_0(4\lambda_1 r)}{8I'_0(4\lambda_1 r)} f_3 \sin 4\lambda_1 x - \frac{I_0(4\lambda_2 r)}{8I'_0(4\lambda_2 R)} f_4 \sin 4\lambda_2 x \right] \right\}.$$
 (1.7)

Здесь I_k (k = 0, n) – модифицированные функции Бесселя κ -го порядка.

Подставляя аппроксимацию (1.4) во второе уравнение (1.1), находим функцию напряжений Ф в срединной поверхности, представляя ее в виде

$$\Phi = \Phi_u + \Phi_0, \tag{1.8}$$

где Φ_{y} – частное решение рассматриваемого уравнения, причем

-

$$\Phi_{4} = \Phi_{1} \cos sy \sin \lambda_{1} x + \Phi_{2} \cos sy \sin \lambda_{2} x + \Phi_{3} \cos 2\lambda_{1} x + \Phi_{4} \cos 2\lambda_{2} x + \Phi_{5} \cos 2sy + \\ + \Phi_{6} \cos sy \sin 3\lambda_{1} x + \Phi_{7} \cos sy \sin 3\lambda_{2} x + \Phi_{8} \cos(\lambda_{1} + \lambda_{2}) x + \Phi_{9} \cos(\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{10} \cos 2sy \cos(\lambda_{1} + \lambda_{2}) x + \Phi_{11} \cos 2sy \cos(\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{13} \cos sy \sin 5\lambda_{2} x + \Phi_{14} \cos 4\lambda_{1} x + \\ + \Phi_{15} \cos 4\lambda_{2} x + \Phi_{16} \cos sy \sin(2\lambda_{2} + \lambda_{1}) x + \\ + \Phi_{17} \cos sy \sin(2\lambda_{2} - \lambda_{1}) x + \\ + \Phi_{18} \cos sy \sin(2\lambda_{1} + \lambda_{2}) x + \\ + \Phi_{20} \cos sy \sin(4\lambda_{1} + \lambda_{2}) x + \\ + \Phi_{21} \cos sy \sin(4\lambda_{1} + \lambda_{2}) x + \\ + \Phi_{21} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{21} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{22} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{23} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{24} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{25} \cos sy \sin(4\lambda_{1} - \lambda_{2}) x + \\ + \Phi_{26} \cos sy \sin($$

$$+\Phi_{23}\cos sy\sin(4\lambda_2 - \lambda_1)x; \tag{1.9}$$

функция Φ_0 представляет решение однородного уравнения, отвечающее напряжениям, соответствующим безмоментной теории [2, 3, 15]

$$\Phi_0 = -Kx^2/2. \tag{1.10}$$

Здесь К – неизвестная функция, для определения которой используем известное условие "периодичности" окружного перемещения v [2]

$$\int_{0}^{2\pi R} \frac{\partial v}{\partial y} dy = \int_{0}^{2\pi R} \left[\frac{1}{E} \left(\frac{\partial^2 \Phi}{\partial x^2} - \mu \frac{\partial^2 \Phi}{\partial y^2} \right) - \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 + \frac{w}{R} \right] dy = 0.$$
(1.11)

В результате получим такое соотношение:

$$K = -\frac{Es^2}{8} \left[(f_1^2 + f_2^2) - \frac{3(f_3 + f_4)}{Rs^2} \right].$$
 (1.12)

Функции Φ_k ($\kappa = 1,...,23$) в (1.9) выражаются определенным образом через перемещения оболочки $f_1,...,f_4$, а также параметры волнообразования, физические и геометрические параметры оболочки, например, [15]

$$\Phi_{1} = \frac{E\lambda_{1}^{2}f_{1}}{\Delta(\lambda_{1},s)} \left(\frac{1}{R} - s^{2}f_{3}\right); \quad \Phi_{2} = \frac{E\lambda_{2}^{2}f_{2}}{\Delta(\lambda_{2},s)} \left(\frac{1}{R} - s^{2}f_{4}\right) \text{ M T.g.}$$
(1.13)

Здесь и в последующем через Δ обозначен оператор вида $\Delta(A, B) = (A^2 + B^2)^2$.

Используя метод Бубнова – Галеркина в применении к первому уравнению (1.1) (с учетом (1.3), (1.4), (1.8) – (1.10)) выводим следующую систему дифференциальных уравнений для определения неизвестных функций f_k :

$$\ddot{f}_{1} + (\omega_{1}^{2} - \alpha_{1}U^{2})f_{1} + \varepsilon_{1}\dot{f}_{1} - \beta_{1}U\dot{f}_{2} = \varepsilon F_{1}(\cdots) + q_{1}(t);$$

$$f_{2} + (\omega_{2}^{2} - \alpha_{2}U^{2})f_{2} + \varepsilon_{2}\dot{f}_{2} + \beta_{2}U\dot{f}_{1} = \varepsilon F_{2}(\cdots) + q_{2}(t);$$

$$\ddot{f}_{3} + (\omega_{3}^{2} - \alpha_{3}U^{2})f_{3} + \varepsilon_{3}\dot{f}_{3} + \beta_{3}f_{4} + \beta_{5}U(\dot{f}_{3} + \dot{f}_{4}) + \beta_{6}\ddot{f}_{4} = \varepsilon F_{3}(\cdots) + q_{3}(t);$$

$$\ddot{f}_{4} + (\omega_{4}^{2} - \alpha_{4}U^{2})f_{4} + \varepsilon_{4}\dot{f}_{4} + \beta_{4}f_{3} + \beta_{7}U(\dot{f}_{3} + \dot{f}_{4}) + \beta_{8}\ddot{f}_{3} = \varepsilon F_{4}(\cdots) + q_{4}(t).$$
(1.14)

Здесь ω_1 , ω_2 – собственные частоты заполненной жидкостью оболочки, отвечающие доминантным формам cos sy sin $\lambda_1 x$ и cos sy sin $\lambda_2 x$, соответственно, при этом

$$\omega_i^2 = \frac{1}{\rho \ m_{0i}} \left[\frac{D}{h} \Delta(\lambda_i, s) + \frac{E\lambda_i^4}{R^2 \Delta(\lambda_i, s)} \right] \ (i = 1, 2), \tag{1.15}$$

где *m*_{0i} – параметры присоединенных масс жидкости

$$m_{0i} = 1 + \frac{\rho_0}{\rho} \frac{1}{\lambda_i h} \frac{I_n(\lambda_i R)}{I'_n(\lambda_i R)}; \qquad (1.16)$$

α₁, α₂, β₁, β₂ – постоянные коэффициенты гидродинамических сил, имеющие вид

$$\alpha_{i} = \frac{\rho_{0}\lambda_{i}}{\rho h m_{0i}} \frac{I_{n}(\lambda_{i}R)}{I_{n}'(\lambda_{i}R)}; \ \beta_{i} = \frac{16\rho_{0}}{3\rho} \frac{1}{\lambda_{j} l h m_{0i}} \frac{I_{n}(\lambda_{j}R)}{I_{n}'(\lambda_{j}R)} \ (i, j = 1, 2 \ ; \ i \neq j);$$
(1.17)

 \mathcal{E}_{k} – параметры демпфирования, $\mathcal{E}_{k} = \mathcal{E}_{0} / m_{0k}$ (k = 1,...,4); $\mathcal{E}F_{k}(...)$ – пропорциональные малому параметру \mathcal{E} нелинейные функции, характеризующие геометрическую нелинейность оболочки [11], т.е.

$$\mathcal{E}F_1 = k_1 f_1 f_3 + k_2 f_1^3 + k_3 f_1 f_2^2 + k_4 f_1 f_3^2 + k_5 f_1 f_4^2 + k_6 f_1 f_4;$$

$$\varepsilon F_{2} = c_{1}f_{2}f_{4} + c_{2}f_{2}^{3} + c_{3}f_{2}f_{1}^{2} + c_{4}f_{2}f_{4}^{2} + c_{5}f_{2}f_{3}^{2} + c_{6}f_{2}f_{3};$$

$$\varepsilon F_{3} = d_{1}f_{1}^{2} + d_{2}f_{2}^{2} + d_{3}f_{1}^{2}f_{3} + d_{4}f_{1}^{2}f_{4} + d_{5}f_{2}^{2}f_{3} + d_{6}f_{2}^{2}f_{4};$$

$$\varepsilon F_{4} = e_{1}f_{1}^{2} + e_{2}f_{2}^{2} + e_{3}f_{1}^{2}f_{3} + e_{4}f_{1}^{2}f_{4} + e_{5}f_{2}^{2}f_{3} + e_{6}f_{2}^{2}f_{4}.$$
 (1.18)

Здесь k_j, c_j, d_j, e_j – постоянные коэффициенты, выражающиеся через геометрические и физические параметры оболочки и параметры волнообразования

$$k_{1} = \frac{Es^{2}}{\rho Rm_{01}} \left[\frac{5}{8} + \frac{2\lambda_{1}^{4}}{\Delta(\lambda_{1}, s)} \right]; \quad c_{1} = \frac{Es^{2}}{\rho Rm_{02}} \left[\frac{5}{8} + \frac{2\lambda_{2}^{4}}{\Delta(\lambda_{2}, s)} \right];$$
$$d_{1} = \frac{16}{35} \frac{m_{01}}{m_{03}} k_{1}; \quad e_{1} = \frac{16}{35} \frac{m_{02}}{m_{04}} c_{1} \text{ M T.g.}$$
(1.19)

Значения других постоянных параметров в уравнениях (1.14) приведены в [11]. Функции времени $q_k(t)$ в правой части этих уравнений выражаются так:

$$q_k = \mathcal{E}Q_k \cos\theta_1(t), \qquad (1.20)$$

где обозначено

$$\mathcal{E}Q_{k} = \overline{\delta}_{k} \begin{bmatrix} \int_{0}^{2\pi R} q_{0}(x, y) X_{k}(x, y) dx dy \end{bmatrix} \cos \theta_{1}(t);$$

$$\overline{\delta}_{1} = \frac{2}{\pi R l \rho h m_{01}}; \quad \overline{\delta}_{2} = \frac{m_{01}}{m_{02}} \overline{\delta}_{1}; \qquad \overline{\delta}_{3} = \frac{64}{35\pi R l \rho h m_{03}}; \quad \overline{\delta}_{4} = \frac{m_{03}}{m_{04}} \overline{\delta}_{3};$$

$$X_{1} = \cos sy \sin \lambda_{1} x; \quad X_{2} = \cos sy \sin \lambda_{2} x; \quad X_{3} = \sin^{4} \lambda_{1} x; \quad X_{4} = \sin^{4} \lambda_{2} x. \tag{1.21}$$

Отметим, что пропорциональность малому параметру ε амплитуд внешнего воздействия на оболочку Q_k принята здесь, исходя из физических соображений – в дальнейшем предполагается исследовать особенности нестационарных колебаний системы (1.14) в резонансной области [9].

§ 2. Не ограничивая общности исследования, по аналогии с [11 – 13, 15, 16] упростим систему (1.14). Учитывая то, что "вклад" корректирующих слагаемых $f_3 \sin^4 \lambda_1 x$, $f_4 \sin^4 \lambda_2 x$ в общий прогиб w (1.4) незначителен в сравнении с "вкладом" первых двух слагаемых [2, 6], определим в дальнейшем функции f_3 и f_4 из "квазистатического" варианта задачи, полагая в двух последних уравнениях (1.14) $\ddot{f}_3 = 0$; $\ddot{f}_4 = 0$; $\dot{f}_3 = 0$; $\dot{f}_4 = 0$. С точностью до членов, пропорциональных параметру ε в первой степени, получим следующие приближенные соотношения:

$$f_3 = k_{11}f_1^2 + k_{12}f_2^2; \quad f_4 = k_{21}f_1^2 + k_{22}f_2^2,$$
 (2.1)

где постоянные коэффициенты k_{pq} имеют вид

$$k_{11} = \frac{d_1 \omega_{44} - \beta_3 e_1}{d_0}; \quad k_{12} = \frac{d_2 \omega_{44} - \beta_3 e_2}{d_0};$$

$$k_{21} = \frac{e_1 \omega_{33} - \beta_4 d_1}{d_0}; \quad k_{22} = \frac{e_2 \omega_{33} - \beta_4 d_2}{d_0}.$$
(2.2)

Здесь

$$\omega_{33} = \omega_3^2 - \alpha_3 U^2; \quad \omega_{44} = \omega_4^2 - \alpha_4 U^2; \quad d_0 = \omega_{33} \omega_{44} - \beta_3 \beta_4 U^4 \neq 0.$$

Подставляя (2.1) в первые два уравнения (1.14) и удерживая нелинейные члены до третьей степени включительно, получаем такую итоговую систему:

$$\ddot{f}_{1} + (\omega_{1}^{2} - \alpha_{1}U^{2})f_{1} + \varepsilon_{1}\dot{f}_{1} - \beta_{1}U\dot{f}_{2} = \varepsilon F_{11}(\cdots);$$

$$\ddot{f}_{2} + (\omega_{2}^{2} - \alpha_{2}U^{2})f_{2} + \varepsilon_{2}\dot{f}_{2} + \beta_{2}U\dot{f}_{1} = \varepsilon F_{22}(\cdots).$$
 (2.3)

Здесь введены обозначения

$$\varepsilon F_{11} = \gamma_1 f_1^3 + \gamma_2 f_1 f_2^2 + \varepsilon Q_1 \cos \theta_1(t);$$

$$\varepsilon F_{22} = \gamma_3 f_2^3 + \gamma_4 f_2 f_1^2 + \varepsilon Q_2 \cos \theta_1(t);$$
(2.4)

коэффициенты γ_i (*i* = 1,...,4) определяются из соотношений

$$\gamma_1 = k_2 + k_1 k_{11} + k_6 k_{21}; \quad \gamma_2 = k_3 + k_1 k_{12} + k_6 k_{22};$$

$$\gamma_3 = c_2 + c_1 k_{22} + c_6 k_{12}; \quad \gamma_4 = c_3 + c_1 k_{21} + c_6 k_{11}.$$
 (2.5)

Система (2.3) является исходной для расчета нелинейных нестационарных процессов в рассматриваемой оболочечно-жидкостной системе, включая процессы перехода ее через области динамической неустойчивости, резонансные области и т.п. Для исследования таких процессов необходимо предварительно располагать информацией о значениях критичеких скоростей движения жидкости, при которых может наступить неустойчивость несущей оболочки того или иного рода: квазистатическая – типа "дивергенция" или динамическая – типа "флаттер" [1, 3]. Кроме того, следует знать величину частоты изгибных колебаний оболочки, возникающих в момент динамической потери устойчивости. Перечисленные выше параметры – критические скорости и частоты самовозбуждаемых колебаний можно определить, исходя из соответствующего анализа линейных уравнений (2.3) при $Q_1 = Q_2 = 0$ [11, 13]. В частности, критические скорости дивергенции U_1 , U_2 устанавливаются из приведенных в [11] соотношений (2.6), т.е.

$$U_k = \frac{\omega_k}{\sqrt{\alpha_k}} \quad (\kappa = 1, 2). \tag{2.6}$$

При этом, критические скорости флаттера (в дальнейшем обозначим их через U_3) соответствуют при относительно малом параметре демпфирования \mathcal{E}_0 минимальным положительным корням биквадратного уравнения

$$p_1 U^4 + p_2 U^2 + p_3 = 0, (2.7)$$

где

$$p_{1} = \delta_{0}^{2} - 4\alpha_{1}\alpha_{2}; p_{2} = -2\delta_{0}^{2}\eta + 4(\omega_{1}^{2}\alpha_{2} + \omega_{2}^{2}\alpha_{1});$$

$$p_{3} = \eta^{2} - 4\omega_{1}^{2}\omega_{2}^{2}; \eta = \omega_{1}^{2} + \omega_{2}^{2} + \varepsilon_{1}\varepsilon_{2}; \quad \delta_{0} = \alpha_{1} + \alpha_{2} - \beta_{1}\beta_{2}.$$
(2.8)

В качестве варьируемого параметра при определении величин U_1 , U_2 , U_3 , соответствующих наиболее ранней потере устойчивости (обозначим их, соответственно, через U_1^* , U_2^* , U_0^*), надлежит выбрать волновой параметр n [1, 2]. Частоту самовозбуждаемых колебаний оболочки находим из характеристического уравнения [13]

$$\lambda_0^4 + \overline{c_1}\lambda_0^3 + \overline{c_2}\lambda_0^2 + \overline{c_3}\lambda_0 + \overline{c_4} = 0.$$
(2.9)

Здесь λ_0 – характеристический показатель; $\overline{c}_1,...,\overline{c}_4$ – постоянные коэффициенты, имеющие вид

$$\overline{c}_{1} = -(\varepsilon_{1} + \varepsilon_{2})i; \quad \overline{c}_{2} = -(\omega_{11} + \omega_{22} + \varepsilon_{1}\varepsilon_{2} + \beta_{1}\beta_{2}U^{2}); \quad \overline{c}_{3} = (\omega_{22}\varepsilon_{1} + \omega_{11}\varepsilon_{2})i;$$

$$\overline{c}_{4} = \omega_{11}\omega_{22}; \quad \omega_{11} = \omega_{1}^{2} - \alpha_{1}U^{2}; \quad \omega_{22} = \omega_{2}^{2} - \alpha_{2}U^{2}, \quad (2.10)$$

в которых следует принять $U = U_0^*$.

Числовой пример. Пусть несущая оболочка характеризуется параметрами:

$$E = 0,67 \cdot 10^{11} \,\Pi a; \ \rho = 2,7 \cdot 10^{3} \text{kr/m}^{3}; \ R = 0,16 \text{ m}; \ \mu = 0,32;$$
$$UR = 5; \ h = 6,4 \cdot 10^{-4} \text{m}; \ \varepsilon_{0} = 0,11/c, \qquad (2.11)$$

а движущаяся в ней жидкость имеет плотность $\rho_0 = 10^3$ кг/м³. Рис. 1, 2 иллюстрируют результаты вичислений критических скоростей движения жидкости, при которых происходит потеря устойчивости оболочки того или иного рода, а также частот изгибных колебаний, характеризующих динамическую потерю устойчивости. В частности, на рис. 1, *а* показаны графики зависимостей $\overline{\lambda}^2(\overline{u})$, построенные на основании

мерные параметры: $\overline{\lambda} = \lambda_0 l / k_0$; $\overline{u} = U / k_0$, где $k_0 = (\pi^2 / l) [D / (\rho h)]^{1/2}$.

Рис. 2, *а* иллюстрирует область дивергентной формы потери устойчивости (заштрихованная), находящуюся между кривыми *1* и 2. Кривая *1* соответствует здесь найденным из формулы (2.6) скоростям U_1 , кривая 2 – скоростям U_2 . На рис. 2, *б* приведены значения вычисленных на основании уравнения (2.7) скорости U_3 , при которых возможна флаттерная форма потери устойчивости оболочки.

Таким образом, как следует из результатов, представленных на рис. 1, б и 2, а, потеря устойчивости рассматриваемой оболочки по типу дивергенция ранее всего наступит при $\bar{u} = \bar{u}_1^*$, что соответствует скорости движения жидкости $U = U_1^* = 63,15$ м/с. В момент потери устойчивости в оболочке возбудится окружная изгибная форма с числом волн n = 4. Колебательная форма потери устойчивости ранее всего наступит при $\bar{u}_3 = \bar{u}_0^*$ (рис. 2, б). Скорость движения жидкости при этом будет равна: $U = U_0^* = 76,02$ м/с, а окружной параметр волнообразования n = 5. Отметим, что в случае n = 5 наблюдается наименьшая ширина дивергентной области, равная: $\Delta_{00} = U_2 - U_1 = 0,88$ м/с. При увеличении параметра n (начиная с n = 5) область дивергентной неустойчивости оболочки, соответственно, будет расширяться.

Рис. З иллюстрирует характер нестационарного выпучивания оболочки во времени в областях дивергертной (рис. 3, *a*) и флаттерной (рис. 3, *б*) форм потери устойчивости. Представленные здесь безразмерные прогибы оболочки $\overline{w} = w/h$ получены в результате численного интегрирования линейных уравнений (2.3) при начальных условиях w(0) = 0,34h; $\dot{w}(0) = 0$ (предполагалось x = l/4, y = 0).

Кривые 1 - 5 на рис. 3, *а* построены, соответственно, при $U = U_1^* = 63,14$; U = 63,36; U = 63,58; U = 63,80; $U = U_2^* = 64,02$ м/с, n = 4, а кривые 1 - 3 на рис. 3, δ – соответственно, при U = 75; $U = U_0^* = 76,02$; U = 76,22 м/с, n = 5.

Как видно, деформирование оболочки в каждой из перечисленных выше областей неустойчивости происходит по качественно различным сценариям. В первом случае (рис. 3, *a*) возрастание во времени прогиба *w* происходит относительно медленно и монотонно, причем его максимальный рост реализуется при скоростях движения жидкости $U \approx (U_1^* + U_2^*)/2$.

Во втором случае, при $U \ge U_0^*$ (рис. 3, δ), имеет место "колебательная" форма возрастания прогиба w. При этом, чем больше величина "расстройки" скоростей $\Delta_1 = U - U_0^*$, тем существеннее будет рост амплитуд прогрессирующих колебаний оболочки.

На рис. 4 показаны нестационарные процессы изменения во времени безразмерного прогиба \overline{w} рассматриваемой оболочки при медленном прохождении скоростью движения жидкости U критических значений. В первом случае (рис. 4, *a*) предполагалось, что скорость движения жидкости изменялась в соответствии с законом $U = U(t) = U_{01} + \mu_1 t$, где $U_{01} = 60,64$ м/с, во втором (рис. 4, δ) – $U = U(t) = U_{03} - \mu_1 t$, где $U_{03} = 76,17$ м/с. Параметр μ_1 , определяющий "темп" прохождения оболочки через соответствующие зоны неустойчивости, был принят равным: $\mu_1 = 2,5$ м/с². Начальные условия задавались такими же, как и при построении рис. 3. Точки A_0 , A_1 , A_2 на обоих рисунках соответствуют найденным ранее критическим скоростям флаттера и дивергенции U_0^* , U_1^*, U_2^* . Из данных рис. 4, *a* видно, что с увеличением скорости U, начиная с малых значений ($U \prec U_1^*$), прохождение дивергентной зоны (область A_1A_2) при выбранном параметре ускорения μ_1 происходит без развития больших амплитуд прогиба *w*. С уменьшением μ_1 величина прогиба в этой зоне будет, соответственно,

увеличиваться, и наоборот. В области устойчивости A_2A_0 частоты колебаний также постепенно увеличиваются. При приближении к критической скорости флаттера U_0^* амплитуды колебаний оболочки резко возрастают, достигая при $U \succ U_0^*$ за короткий промежуток времени достаточно больших значений.

Рис. 4, б иллюстрирует нестационарный процесс обратного прохождения оболочки через области неустойчивости. Как видно, этот процесс качественно отличается от изображенного на рис. 4, *a*. В области, расположенной между флаттерной и дивергентной зонами ($A_0 A_2$), колебания оболочки являются нерегулярными и лишь при $U \prec U_1^*$ (скорости U_1^* отвечает точка A_1) они преобразуются в близкие к гармоническим колебаниям.

Отметим, что учет нелинейных членов в (2.3) обусловит ограничение роста во времени прогиба несущей оболочки в областях дивергентной (рис. 3, a) и флаттерной (рис. 3, δ , 4, a) форм потери устойчивости.

§3. Используя изложенные выше результаты, выполним расчет на базе общих уравнений (2.3) нелинейных динамических процессов в оболочечно-жидкостной системе, соответствующих нестационарному переходу ее через резонансные области.

Обнаруживаемые в первом приближении резонансные режимы колебаний оболочки возможны в данном случае при выполнении следующего условия:

$$\lambda_0^* \approx \nu_1(\tau) \,, \tag{3.1}$$

где λ_0^* – частота изгибных колебаний оболочки, возникающих при скорости движения жидкости $U = U_0^*$. Для построения как резонансного, так и околорезонансного решений системы (2.3) с учетом (2.4) используем одночастотный асимптотический метод [9]. Отметим, что данная система удовлетворяет всем требованиям для применения указанного метода [7, 9]. Предварительно представим эту систему в виде

$$\ddot{f}_{1} + (\omega_{1}^{2} - \alpha_{1}U_{0}^{*2})f_{1} + \varepsilon_{1}\dot{f}_{1} - \beta_{1}U_{0}^{*}\dot{f}_{2} = \varepsilon \Big[F_{11} + (2\alpha_{1}f_{1} + \beta_{1}\dot{f}_{2})\Delta_{1}U_{0}^{*}\Big];$$

$$\ddot{f}_{2} + (\omega_{2}^{2} - \alpha_{2}U_{0}^{*2})f_{2} + \varepsilon_{2}\dot{f}_{2} + \beta_{2}U_{0}^{*}\dot{f}_{1} = \varepsilon \Big[F_{22} + (2\alpha_{2}f_{2} - \beta_{2}\dot{f}_{1})\Delta_{1}U_{0}^{*}\Big], \qquad (3.2)$$

выделив в ней малые (пропорциональные параметру ε) члены (здесь $\varepsilon \Delta_1 = U - U_0^*$).

Ограничиваясь первым приближением, решение уравнений (3.2) будем искать в форме [9]

$$f_{1} = a(\varphi_{1}e^{i\phi_{1}} + \overline{\varphi}_{1}e^{-i\phi_{1}}); \quad f_{2} = a(\varphi_{2}e^{i\phi_{1}} + \overline{\varphi}_{2}e^{-i\phi_{1}}); \quad \phi_{1} = \theta_{1} + \phi,$$
(3.3)

где φ_1 , φ_2 – нетривиальные решения системы однородных алгебраических уравнений

$$\left(\omega_{1}^{2} - \lambda_{0}^{*2} - \alpha_{1} U_{0}^{*2} + \varepsilon_{1} i \lambda_{0}^{*} \right) \varphi_{1} - \beta_{1} U_{0}^{*} i \lambda_{0}^{*} \varphi_{2} = 0;$$

$$\left(\omega_{2}^{2} - \lambda_{0}^{*2} - \alpha_{2} U_{0}^{*2} + \varepsilon_{2} i \lambda_{0}^{*} \right) \varphi_{2} + \beta_{2} U_{0}^{*} i \lambda_{0}^{*} \varphi_{1} = 0;$$

$$(3.4)$$

 $\overline{\varphi}_1, \overline{\varphi}_2$ – комплексно сопряженные величины; a, ϕ – неизвестные функции времени, определяемые из уравнений

$$\frac{da}{dt} = \varepsilon A_1(\tau, a, \phi); \quad \frac{d\phi}{dt} = \lambda_0^* - \nu_1(\tau) + \varepsilon B_1(\tau, a, \phi). \tag{3.5}$$

45

Неизвестные величины A_1 и B_1 находим по изложенной в [9, 5, 7] методике. С этой целью определим производные \dot{f}_k, \ddot{f}_k :

$$\dot{f}_{k} = \varepsilon A_{1}(\varphi_{k}e^{i\phi_{1}} + \overline{\varphi}_{k}e^{-i\phi_{1}}) + ai(\lambda_{0}^{*} + \varepsilon B_{1})(\varphi_{k}e^{i\phi_{1}} - \overline{\varphi}_{k}e^{-i\phi_{1}});$$

$$\ddot{f}_{k} = \varepsilon \left[\left(\frac{\partial A_{1}}{\partial \phi} + ai \frac{\partial B_{1}}{\partial \phi} \right) (\lambda_{0}^{*} - \nu_{1})(\varphi_{k}e^{i\phi_{1}} + \overline{\varphi}_{k}e^{-i\phi_{1}}) + 2i\lambda_{0}^{*}A_{1}(\varphi_{k}e^{i\phi_{1}} - \overline{\varphi}_{k}e^{-i\phi_{1}}) - 2a\lambda_{0}^{*}B_{1}(\varphi_{k}e^{i\phi_{1}} - \overline{\varphi}_{k}e^{-i\phi_{1}}) \right] - a\lambda_{0}^{*2}(\varphi_{k}e^{i\phi_{1}} + \overline{\varphi}_{k}e^{-i\phi_{1}}) \quad (k = 1, 2).$$

$$(3.6)$$

Нелинейные функции F_{11} , F_{22} в правых частях уравнений (3.2) запишем в виде разложений по гармоникам $\pm ki\phi_1$ (k = 1,3)

$$\varepsilon F_{11} = \varepsilon (M_1 e^{i\phi_1} + \bar{M}_1 e^{-i\phi_1} + N_1 e^{3i\phi_1} + \bar{N}_1 e^{-3i\phi_1}) a^3 + \frac{\varepsilon Q_1}{2} [(\cos\phi - i\sin\phi)e^{i\phi_1} + (\cos\phi + i\sin\phi)e^{-i\phi_1}];$$

$$\varepsilon F_{--} = \varepsilon (M_1 e^{i\phi_1} + \bar{M}_1 e^{-i\phi_1} + N_1 e^{3i\phi_1} + \bar{N}_1 e^{-3i\phi_1}) a^3 + \frac{\varepsilon Q_2}{2} [(\cos\phi - i\sin\phi)e^{i\phi_1} + (\cos\phi + i\sin\phi)e^{i\phi_1} + \bar{N}_1 e^{-3i\phi_1}) a^3 + \frac{\varepsilon Q_2}{2} [(\cos\phi - i\sin\phi)e^{i\phi_1} + (\cos\phi + i\sin\phi)e^{i\phi_1} + (i\phi + i\phi)e^{i\phi_1} + (i\phi + i\phi)e^{i\phi_1$$

$$\varepsilon F_{22} = \varepsilon (M_2 e^{i\phi_1} + \bar{M}_2 e^{-i\phi_1} + N_2 e^{3i\phi_1} + \bar{N}_2 e^{-3i\phi_1}) a^3 + \frac{\varepsilon - Q_2}{2} [(\cos\phi - i\sin\phi)e^{i\phi_1} + (\cos\phi + i\sin\phi)e^{-i\phi_1}], \qquad (3.7)$$

где приняты обозначения:

$$\varepsilon M_1 = 3\gamma_1 \varphi_1^2 \overline{\varphi}_1 + \gamma_2 (2\varphi_1 \overline{\varphi}_2 + \overline{\varphi}_1 \varphi_2) \varphi_2; \quad \varepsilon N_1 = \gamma_1 \varphi_1^3 + \gamma_2 \varphi_1 \varphi_2^2;$$

$$\varepsilon M_2 = 3\gamma_3 \varphi_2^2 \overline{\varphi}_2 + \gamma_4 (2\varphi_2 \overline{\varphi}_1 + \overline{\varphi}_2 \varphi_1) \varphi_2; \quad \varepsilon N_2 = \gamma_3 \varphi_2^3 + \gamma_4 \varphi_2 \varphi_1^2; \quad (3.8)$$

 \overline{M}_{i} , \overline{N}_{i} (*j* =1,2) – комплексно сопряженные величины.

Подставляя (3.3), (3.6) с учетом (3.7), (3.8) в уравнения (2.3) и группируя члены при $e^{i\phi}$, получаем систему уравнений

$$(\omega_k^2 - \lambda_0^{*2} - \alpha_k U_0^{*2} + i\lambda_0^* \varepsilon_k) a\varphi_k + aiU_0^* \lambda_0^{*2} \sum_{j=1}^2 \beta_{jk} \varphi_j = \varepsilon G_k \qquad (k = 1, 2).$$
(3.9)

Здесь введены следующие обозначения :

$$\beta_{12} = -\beta_{1}; \quad \beta_{21} = \beta_{2}; \quad \beta_{11} = \beta_{22} = 0;$$

$$G_{k} = G_{k}(\tau, a, \phi) = M_{k}a^{3} - \left(\frac{\partial A_{1}}{\partial \phi} + ia\frac{\partial B_{1}}{\partial \phi}\right)(\lambda_{0}^{*} - v_{1}(\tau))\varphi_{k} + \Delta_{1}a(2\alpha_{k}U_{0}^{*}\varphi_{k} - i\lambda_{0}^{*}\sum_{j=1}^{2}\beta_{jk}\varphi_{j}) - (\varepsilon_{k} + 2i\lambda_{0}^{*} + U_{0}^{*}\sum_{j=1}^{2}\beta_{jk}\varphi_{j})(A_{1} + iaB_{1})\varphi_{k} + \frac{Q_{k}}{2}(\cos\phi - i\sin\phi). \quad (3.10)$$

Аналогичную систему можно получить, приравнивая члены при $e^{-i\phi}$ [7].

Для существования периодических по угловой переменной ϕ_1 решений f_1 , f_2 и однозначного определения функций A_1 , B_1 необходимо и достаточно выполнения условия "ортогональности" [9, 5]

$$\sum_{k=1}^{2} G_k \chi_k = 0, \qquad (3.11)$$

где χ_k – нетривиальные, отвечающие характеристическому показателю $s_0 = +i\lambda_0^*$, решения сопряженной по отношению к (3.4) системы уравнений, т.е.

$$\left(\omega_{1}^{2} - \lambda_{0}^{*2} - \alpha_{1}U_{0}^{*2} - \varepsilon_{1}i\lambda_{0}^{*}\right)\chi_{1} - \beta_{2}U_{0}^{*}i\lambda_{0}^{*}\chi_{2} = 0;$$

$$\left(\omega_{2}^{2} - \lambda_{0}^{*2} - \alpha_{2}U_{0}^{*2} - \varepsilon_{2}i\lambda_{0}^{*}\right)\chi_{2} + \beta_{1}U_{0}^{*}i\lambda_{0}^{*}\chi_{1} = 0.$$

$$(3.12)$$

После введения обозначений

$$\sum_{k=1}^{2} M_{k} \chi_{k} = g_{1} + ig_{2};$$

$$\sum_{k=1}^{2} [(2i\lambda_{0}^{*} + \varepsilon_{k})\varphi_{k} + U_{0}^{*}\sum_{j=1}^{2} \beta_{jk}\varphi_{j}]\chi_{k} = g_{3} + ig_{4};$$

$$\sum_{k=1}^{2} (2\alpha_{k}U_{0}^{*}\varphi_{k} - i\lambda_{0}^{*}\sum_{j=1}^{2} \beta_{jk}\varphi_{j})\chi_{k} = g_{5} + ig_{6};$$

$$\sum_{k=1}^{2} \varphi_{k}\chi_{k} = g_{7} + ig_{8}; \quad \sum_{k=1}^{2} \frac{Q_{k}}{2}\chi_{k} = Q_{11} + iQ_{22},$$
(3.13)

где g_m (m = 1-8), Q_{11}, Q_{22} – действительные параметры, на основании соотношений (3.12) получим следующую систему дифференциальных уравнений для определения неизвестных функций A_1, B_1 :

$$\left(g_7 \frac{\partial A_1}{\partial \phi} - g_8 a \frac{\partial B_1}{\partial \phi}\right) \Delta_0 + g_3 A_1 - g_4 a B_1 = g_1 a^3 + \Delta_1 g_5 a + Q_{11} \cos \phi + Q_{22} \sin \phi;$$

$$\left(g_8 \frac{\partial A_1}{\partial \phi} + g_7 a \frac{\partial B_1}{\partial \phi}\right) \Delta_0 + g_4 A_1 + g_3 a B_1 = g_2 a^3 + \Delta_1 g_6 a - Q_{11} \sin \phi + Q_{22} \cos \phi. \quad (3.14)$$

После ее интегрирования будем иметь формулы

$$A_{1} = \beta_{11} \Delta_{1} a + \beta_{12} a^{3} + R_{1} \cos \phi + S_{1} \sin \phi ;$$

$$B_1 = \beta_{21}\Delta_1 + \beta_{22}a^2 + \frac{1}{a}(S_1\cos\phi - R_1\sin\phi) , \qquad (3.15)$$

в которых приняты обозначения:

$$\beta_{11} = \frac{g_3g_5 + g_4g_6}{g_0^2}; \quad \beta_{12} = \frac{g_1g_3 + g_2g_4}{g_0^2};$$
$$\beta_{21} = \frac{g_3g_6 - g_4g_5}{g_0^2}; \quad \beta_{22} = \frac{g_2g_3 - g_1g_4}{g_0^2};$$

47

$$R_{1} = \frac{Q_{11}[g_{3} + (\lambda_{0}^{*} - \nu_{1})g_{8}] + Q_{22}[g_{4} - (\lambda_{0}^{*} - \nu_{1})g_{7}]}{\Delta_{00}};$$

$$S_{1} = \frac{Q_{22}[g_{3} + (\lambda_{0}^{*} - \nu_{1})g_{8}] - Q_{11}[g_{4} - (\lambda_{0}^{*} - \nu_{1})g_{7}]}{\Delta_{00}};$$

$$g_{0}^{2} = g_{3}^{2} + g_{4}^{2}; \quad \Delta_{00} = [g_{3} + (\lambda_{0}^{*} - \nu_{1})g_{8}]^{2} + [g_{4} - (\lambda_{0}^{*} - \nu_{1})g_{7}]^{2}. \quad (3.16)$$

Таким образом, в системе (3.5) полностью определены их правые части, что позволяет найти конкретные значения амплитудного (*a*) и фазового (ϕ) параметров деформирования несущей оболочки при медленном изменении "мгновенной" частоты v_1 внешнего квазипериодического воздействия на нее в зоне рассматриваемого резонанса.

Если частота ν_1 является постоянной, т. е. $\nu_1 = \Omega \equiv \text{const}$, то используя уравнения (3.5) с учетом (3.15), (3.16), нетрудно построить амплитудно-частотную характеристику (АЧХ) для установившегося режима вынужденных колебаний несущей оболочки в резонансной области $\lambda_0^* \approx \Omega$. Амплитудно-частотное уравнение в данном случае имеет вид [11]

$$\Delta_0 = -\beta_{21}\Delta_1 - \beta_{22}a^2 \pm \sqrt{\frac{Q^2}{a^2} - (\beta_{11}\Delta_1 + \beta_{12}a^2)^2} , \qquad (3.17)$$

где $Q^2 = R_1^2 + S_1^2 = (Q_{11}^2 + Q_{22}^2) / \Delta_{00}$; при этом было учтено условие $\lambda_0^* - \Omega = \epsilon \Delta_0$.

Решения этого уравнения $a = a(\Delta_0)$ будут устойчивы, если удовлетворяют одновременно таким двум критериям [7]:

$$a^{2} \succ a_{0}^{2}/2$$
; $(\beta_{11}\Delta_{1} + 3\beta_{12}a^{2})(\beta_{11}\Delta_{1} + \beta_{12}a^{2}) + H^{2}(a) + 2\beta_{22}H(a)a^{2} \succ 0.$ (3.18)

В (3.18) обозначено: $H(a) = \Delta_0 + \beta_{21}\Delta_1 + \beta_{22}a^2$; $a_0^2 = -\beta_{11}\Delta_1/\beta_{12}$; a_0 – амплитуда установившихся автоколебаний несущей оболочки, возникающих в ней при скорости движения жидкости $U \ge U_0^*$.

Числовой пример. Пусть оболочка характеризуется параметрами (2.11). Примем также, что внешнее давление на оболочку *q* "распределено" лишь по одной из ее изгибных форм, например,

$$q = Q_0 \cos sy \sin \lambda_1 x; \quad Q_0 = \text{const.}$$
(3.19)

В этом случае в уравнениях (2.3) следует принять $Q_1 = Q_0 / (\rho h m_{01}); \quad Q_2 = 0.$

Параметры φ_1, φ_2 и χ_1, χ_2 в соотношениях (3.4) и (3.12) примем равными, соответственно:

$$\varphi_1 = 1/2, \quad \varphi_2 = d_{11} + id_{12}, \quad \chi_1 = 1/2, \quad \chi_2 = d_{21} + id_{22},$$
 (3.20)

где обозначено

$$d_{11} = \frac{\varepsilon_1}{2\beta_1 U_0^*}; \quad d_{12} = \frac{\lambda_0^{*2} - \omega_1^2 + \alpha_1 U_0^{*2}}{2\beta_1 U_0^* \lambda_0^*};$$

$$d_{21} = -\frac{\varepsilon_1}{2\beta_2 U_0^*}; \quad d_{22} = \frac{\lambda_0^{*2} - \omega_1^2 + \alpha_1 U_0^{*2}}{2\beta_2 U_0^* \lambda_0^*}.$$
 (3.21)

48

Рассмотрим предварительно АЧХ исследуемой оболочки (3.17), соответствующую периодическому возбуждению с постоянной частотой Ω. Результаты численного анализа показывают, что при выбранных параметрах оболочки на границе динамической неустойчивости и вблизи ее (при $U \approx U_0^*$) всегда выполняется условие $\beta_{22} \prec 0$, т.е. геометрическая нелинейность в данном случае принадлежит к "мягкому" типу [6, 9] - с увеличением амплитуд колебаний а частоты этих колебаний, соответственно, уменьшаются. Одновременно выполняются условия $\beta_{11} > 0$, $\beta_{12} < 0$. Общий вид АЧХ существенно зависит от значения "расстройки" $\epsilon \Delta_1 = U - U_0^*$, а также амплитудного параметра Q внешнего давления. В частности, если $U \succ U_0^*$, то при относительно малых величинах Q уравнению (3.17) отвечают две "изолированные" одна от другой частотные характеристики $a = a(\Delta_0)$ (кривые 1 на рис. 5). Это обусловливается тем, что уравнение $T(a, \Delta_1) = \frac{Q^2}{a^2} - (\beta_{11}\Delta_1 + \beta_{12}a^2)^2 = 0$ при малых Q и $\Delta_1 \succ 0$ имеет три различных действительных корня а, расположенных на скелетной кривой OO_1 (точка O отвечает частотной "расстройке" $\Delta_{01} = -\beta_{21}\Delta_1$). Такая ситуация будет наблюдаться, пока $Q \prec Q_{np}$, где $Q_{np} = 2,60486 \cdot 10^{-9} \sqrt{\Delta_1^3}$. При $Q = Q_{np}$ уравнение $T(a, \Delta_1) = 0$ также будет иметь три корня, два из которых совпадают. АЧХ в этом случае геометрически соответствуют кривым 2 на рис. 5. При дальнейшем увеличении параметра Q уравнение (3.17) представляет традиционную для нелинейных систем с одной степенью свободы АЧХ (кривая 3 на рис. 5). Однако установившиеся одночастотные колебания оболочки, амплитуды которых $a \prec a_0 / \sqrt{2}$, будут здесь неустойчивы во всей резонансной зоне. Это следует непосредственно из первого критерия (3.18). В свою очередь, нарушение второго критерия (3.18) произойдет в тех точках АЧХ $a = a(\Delta_0)$, в которых касательные к ним становятся вертикальными. Действительно, используя уравнение (3.17), можно показать, что на границах потери устойчивости выполняется условие $\frac{d\Delta_0}{da^2} = 0$. Отметим, что все устойчивые участки АЧХ на рис. 5 обозначены сплошными линиями, неустойчивые – штриховыми.

Если $U \prec U_0^*$, т.е. оболочка находится в зоне динамической устойчивости, то с учетом (2.11) АЧХ будут иметь вид, показанный на рис. 6. Частотные кривые *1* построены при $Q_0 = 63,5$ Па, кривые 2 – при $Q_0 = 190,5$ Па. При построении исполь-

зованы безразмерные переменные $\overline{a} = a/h$; $\overline{\Delta}_0 = \frac{\lambda_0^* - \Omega}{\lambda_0^*}$; $\overline{\Delta}_{01} = -\frac{\beta_{21}\Delta_1}{\lambda_0^*}$. Устойчи-

вость стационарных решений $a = a(\Delta_0)$ регламентируется в этом случае вторым критерием (3.18) (первый критерий здесь теряет смысл из-за $\beta_{11}\Delta_1/\beta_{12} \succ 0$).

На рис. 7 приведены результаты исследования нестационарных процессов прохождения рассматриваемой оболочки через резонанс при различных режимах изменения скорости. Эти результаты получены путем численного интегрирования представленных выше уравнений (3.5) с учетом (3.15) – (3.16) при $Q_0 = 63,5$ Па. Предполагалось, что частота внешнего квазипериодического возбуждения v_1 является линейной функцией времени, т.е.

$$v_1 = \Omega_0 + \mu_0 t$$
 ($\Omega_0, \mu_0 = \text{const}$). (3.22)

Графики зависимостей $\bar{a} = \bar{a}(\bar{\Delta}_0)$ на рис. 7, *а* построены при U = 72 м/с; на рис. 7, δ – при U = 80 м/с. Кривые *1*, *2* на обоих рисунках соответствуют прямому прохождению резонансной зоны (параметр μ_0 здесь был принят равным, соответственно, $\mu_0 = 4,5$ и $\mu_0 = 6 \ 1/c^2$); кривые 1', 2' – обратному прохождению этой зоны ($\mu_0 = -4,5$ и $\mu_0 = -6 \ 1/c^2$). Начальные условия *a*(0) соответствовали стационарным значениям амплитуд, вычисленным на основании формулы (3.17), которая справедлива в случае $\mu_0 = 0$. Соответствующие этому случаю частотные кривые обозначены на рисунке жирными линиями (кривые *3*).

Как следует из результатов рис. 7, $a, b, кривые прохождения через резонанс в докритической (<math>U \prec U_0^*$) и закритической ($U \succ U_0^*$) зонах различаются между собой. Это естественно, поскольку в первом случае система (2.3) (на ее основании получены уравнения (3.5)) не является при $Q_1 = 0$, $Q_2 = 0$ самовозбуждающейся, во втором – в ней на границе потери устойчивости возникнут автоколебания. При увеличении скорости изменения частоты внешней силы максимумы амплитуд нестационарных процессов, соответственно, уменьшаются. Отметим также, что эти максимумы при $\Delta_1 \prec 0$ и $\Delta_1 \succ 0$ реализуются при различных значениях расстройки Δ_0 . В частности, при $\Delta_1 \prec 0$ максимальные амплитуды колебаний оболочки при переходе через резонанс достигаются в более поздние моменты времени по сравнению со случаем $\Delta_1 \succ 0$.Это обусловлено тем, что при переходе от отрицательных значений величины Δ_1 к положительным происходит некоторое смещение стационарной АЧХ $a = a(\Delta_0)$ в сторону больших значений частоты внешнего возбуждения Ω и наоборот. Еще одна характерная особенность исследуемых нестационарных процессов состоит в том, что

максимальные амплитуды колебаний оболочки при $\Delta_1 \prec 0$ всегда превышают амплитуды, вычисленные при $\Delta_1 \succ 0$. По-видимому, здесь проявляется известный из теории нелинейных систем с самовозбуждением эффект "захватывания" колебаний, обусловленный специфическим взаимодействием чисто вынужденных колебаний и автоколебаний.

Другие, описываемые системой (3.5) особенности прохождения несущей оболочки через резонанс, в качественном отношении такие же, как и обнаруженные ранее при анализе нелинейных систем с одной степенью свободы [9]. В частности, после достижения первого максимума наблюдаются биения амплитуд колебаний оболочки как в до, так и в закритической зонах, причем, со временем размахи этих биений и их периоды постепенно уменьшаются. Амплитудные кривые при прямом прохождении резонанса существенно отличаются от кривых, полученных при обратном прохождении этого резонанса. Различие кривых в большей степени проявляется в случае медленного прохождения резонансной области. Отметим также, что резкие изменения во времени амплитуд колебаний оболочки реализуются в той частотной области, в которой наблюдаются срывы стационарных амплитуд на АЧХ (3.17).

Аналогичным образом можно исследовать нестационарные процессы прохождения рассматриваемой оболочки через резонанс при использовании волновых аппроксимаций динамического прогиба *w* [2, 6, 10, 14 и др.]. В этом случае в разложении (1.4) необходимо дополнительно учесть соответствующие сопряженные формы [6, 11].

Заключение.

Таким образом, в данной статье изложена основанная на идеях одночастотного асимптотического метода Крылова – Боголюбова методика расчета нестационарных колебаний упругих цилиндрических оболочек при взаимодействии их с внутренним потоком жидкости. Нестационарные процессы изучаются при действии на оболочку поперечных квазипериодических (с медленно изменяющимися во времени частотами) сил, неравномерно распределенных по боковой поверхности. На конкретном примере исследованы характерные особенности динамического деформирования оболочки при прямом и обратном прохождении резонансной зоны. Скорость движения жидкости при этом предполагается близкой к критической скорости флаттера. Проведено сравнение полученных результатов со случаем, когда частота внешнего воздействия на оболочку является постоянной.

Работа выполнена при частичной финансовой поддержке Гранта совместных исследований НАН Украины и Российского фонда фундаментальных исследований 2010 г. (рег. № 08 – 01 – 10).

Р Е З Ю М Е. Запропоновано методику розрахунку нестаціонарних коливань циліндричних оболонок, що взаємодіють з протікаючою рідиною, при дії зовнішнього періодичного тиску з повільно змінною частотою. З використанням методики проведено числове дослідження динамічних процесів прямого та зворотного проходження системи оболонка – рідина через резонансну область.

^{1.} Болотин В.В. Неконсервативные задачи теории упругой устойчивости. – М.: Физматгиз, 1961. – 340 с.

^{2.} Вольмир А.С. Нелинейная динамика пластинок и оболочек. – М.: Наука, 1972. – 432 с.

Вольмир А.С. Оболочки в потоке жидкости и газа. Задачи гидроупругости. – М.: Наука, 1979. – 416 с.

^{4.} Гладких П.А., Хачатурян С.А. Вибрации трубопроводов и методы их устранения. – М.: Машгиз, 1964. – 216 с.

Ковальчук П.С. О расчете одночастотных нелинейных колебаний цилиндрических оболочек при взаимодействии с протекающей жидкостью // Прикл. механика. – 2005. – 41, № 4. – С. 75 – 84.

- Кубенко В.Д., Ковальчук П.С., Краснопольская Т.С. Нелинейное взаимодействие форм изгибных колебаний цилиндрических оболочек. – К.: Наук. думка, 1984. – 220 с.
- Кубенко В.Д., Ковальчук П.С., Крук Л.А. Применение асимптотических методов для исследования одночастотных нелинейных колебаний цилиндрических оболочек при взаимодействии их с протекающей жидкостью // Укр. мат. журнал. – 2007. – № 3. – С. 75 – 80.
- 8. *Механика* систем оболочка жидкость нагретый газ / Под ред. Н.А.Кильчевского. К.: Наук. думка, 1970. 328 с.
- Митропольский Ю.А. Проблемы асимптотической теории нестационарных колебаний. М.: Наука, 1964. – 431с.
- Amabili M., Pellicano F., Païdoussis M.P. Nonlinear dynamics and stability of circular cylindrical shell containing flowing fluid. Part 1: Stability // J. Sound and Vibr. – 1999. – 225, N 4. – P. 655 – 699.
- Kovalchuk P.S., Kruk L.A. Forced Nonlinear Oscillations of Cylindrical Shells Interacting with Fluid Flow // Int. Appl. Mech.– 2006. – 42, N 4. – P. 447–454.
- 12. Kovalchuk P.S., Kruk L.A. Nonlinear Parametrical Oscillations of Orthotropic Cylindrical Shells Interacting with the Pulsating Fluid Flow // Int. Appl. Mech. – 2009. – **45**, N 9. – P.1007 – 1015.
- Kovalchuk P.S., Podchasov N.P. On Stability of the Elastic Cylindrical Shells Interacting Flowing Fluid // Int. Appl. Mech. – 2010. – 46, N 1. – P. 58 – 66.
- 14. *Komissarova G.L.* Features of Love Surface Waves Form in a Cylinder Made of a Hard Material and Filled with a Fluid // Int. Appl. Mech. 2007. **43**, N 9. P. 988 999.
- Kubenko V.D., Kovalchuk P.S., Kruk L.A. Non-linear Interaction of Bending Deformation of Free Oscillating Cylindrical Shells // J. Sound and Vibr. – 2003. – N 265. – P. 245 – 268.
- Kubenko V.D., Kovalchuk P.S., Kruk L.A. Nonlinear Vibrations of Fluid Filled Cylindrical Shells under Combined Longitudinal-Transverse Periodic Excitation // Int. Appl. Mech. – 2010. – 46, N 2. – P. 173 – 181.

Поступила 10.03. 2009

Утверждена в печать 15.06.2010