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A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The
initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity
is considered. Its solution is obtained by the iteration method and is expressed by quadratures from the solution of the
homogeneous case. The stresses outside the crack and displacements on its faces are obtained. Besides, the solution for
an arbitrary value of the inhomogeneity parameter is obtained. It is shown that its first order approximation coincides
with the solution obtained by the method of small parameter.

Pemena 3a/1a4ua 0 TpenmHe, pacnpoCcTPaHsIIONIENCs ¢ TPOU3BOJIBHON CKOPOCTHIO B AHU30TPOITHON HEOSHOPOIHON 9/1aCTUIHON
cpesie. VMcxonnasi 3aja4da CBeJieHA H30TPOIHOI C MOMOIIBIO 3aMeHbl IepeMeHHON. [Ipekjie Bcero, paccMoTpeHa 3ajiada
ISt MaJio HeomHOpoaHocTH. Ee pellleHne mosiy4eHO MTEpPAIMOHHBIM METOJIOM M 3allMCaHO B KBaJpaTypaX OTHOCUTEJIbHO
pelleHns Uil OJHOPOJIHOTO ciydasi. HalifileHpl Halpsi>KeHusl BHe TPEIIMHBI U IepeMellleHusl Ha ee rpaHule. Kpome Toro,
TOJIy9€HO PelIeHne JIjisl IPOU3BOJIBHOTO 3HAYEHUs MapaMeTpa HeOJHOPOAHOCTH. [loKa3aHO, 9YTO allpOKCUMAINsS IEPBOTO
TIOpsJIKa JJIs HETO COBIIAJIAET C PelleHUueM, MOJIyYeHHBIM MEeTOJ/IOM MaJloTo mapaMeTpa.

Posp’si3aH0 331249y npo TPIlUHY, sIKA MONIMPIOETHCS 3 JOBLIBHOIO MIBUIKICTIO B aHI3OTPOITHOMY HEOJHOPITHOMY NPYKHOMY
cepesoBuili. BuxinHy 3asady 3Be€HO 70 i30TPOIHOT 3a JONIOMOTrO0 3aMinu 3minHoI. HacaMmmepe, posrisiHyTo 3aaa4dy JJist
MaJiol HeogHOpigHOCTI. [T PO3B’A30K OTpUMaHO iTepalliiHUM METOJOM i 3aIMCcaHO B KBajApaTypaxX BiIHOCHO pillleHHs AJisi

OJIHODITHOTO BUIIAJIKY. 3HAIJEHO HAIPY>KEHHsI [M03a TPINMHOIO i mepemimieHHs Ha 11 rpanuni. OKpiM TOro, oTpUMaHO
PO3B’A30K JJIs1 JIOBIIBHOrO 3HA4YeHHsI napameTpa HeojHopigHocti. [lokazaHo, 10 AnpOKCUMAIlisl MEPIIOTO MOPSAKY JJIs

HBOT'O 36iraeTbcst 3 PIllIEHHSIM, OTPUMAaHUM METOJOM MAJIOTO MapaMeTpa.

INTRODUCTION

Propagation of crack with arbitrary velocity is
very important problem for application in seismology
and the engineering use of metallic details. Because
all practical materials, as a rule are inhomogeneous, it
is interesting to study the influence of inhomogeneity
on the stress intensity coefficient near crack’s edge
and condition of opening of the crack.

A solution of the plane problem for crack, mov-
ing with arbitrary speed in isotropic homogeneous
elastic medium, is obtained in [1] by the convolution
method. Both the antiplane and plane problems for
homogeneous isotropic medium are considered in [2].
For the first time a solution of the antiplane problem
for homogeneous isotropic medium was given in [3].
Wide range of questions related with propagati-
on of cracks was considered in [4]. The solutions,
presented [2,3], are based on technique developed in
study on flow around wing in [5]. An antiplane ani-
sotropic problem on crack in homogeneous medium
is considered in [6]. In this paper a crack propagat-
ing with arbitrary speed in an inhomogeneous ani-
sotropic elastic medium for is discussed. In particular,
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an antiplane problem is considered. Solutions for dis-
placements on crack are obtained under conditions
of small and arbitrary inhomogeneities. Besides that,
a solution for stresses out of crack is obtained for
small inhomogeneity. By the convolution method the
alternative symmetric problem on crack with given
displacements on its faces is solved.

1. STATEMENT OF PROBLEM

Assume that the crack occupies some region along
x-axis in plane (z,y). At that its edges z=1;(t) and
x=I5(t) move with arbitrary speeds. Under menti-
oned conditions one component of displacement of
medium (v along z-axis) and two components of
stresses (732, Ty») exist. The following relation is
valid [6] for the stresses:

Taz 5 Ou 5 Ou

e ai 5= +ai oy’ Y
Tue :a/%Qa_u—i_aga_ua (
p ox oy

where p is a density of the medium; a?, a2, a2, are
some constants.
In what follows we consider semiplane y>0 and
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Fig. 1. Characteristics pattern for propagating crack

take that p=p(y). Equation of motion is written in

the form
0Tz | OTyr 9%u

=p—". 2

or oy o )

Substituting Eq. (1) into Eq. (2) and introducing new
variables

2

=T — —1Y, =y— =1, 3
1 2V M=y zy (3)
we obtain that

Tyz du 2 2 2 4

— =a—, a” = ajas; — ays, 4
P) an 102 12 (4)
Pu  0%u 1 09p Ou B a3 0%u (5)
ox? Oy pOy Oy1 a2 ot

So, the initial problem is reduced to problem for
isotropic inhomogeneous medium. Assuming that
p(y)=poek¥* and introducing function

u = Pe(_k/z)yl

(6)

we obtain from Eqs (4), (5) the following relations:

oP k
= 2 2P )e(R/2n
a<5yl 2 >e ’

Tyz
p

(7)

?P  9*°P k?

ox? Oy} 4
To complement the statement we write the boundary
conditions in the form

2 92
a5 0°P
e O

Ty: _ ou ' (, 1)
p oy p
for y; =0, ll(t) <z < lg(t), (9)
u=0 for z>I(t), =>UhL(t).

Obtained boundary problem (8), (9) in princi-
ple can be solved by the convolution method [1].
However, complex quadratures are obtained in the
solution due to inhomogeneity. Therefore, at first
let us assume that the inhomogeneity is small and
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in only the first order terms with respect to the
inhomogeneity parameter k are retained in the soluti-
on. In so doing Eq. (8) can be written as an equation
for homogeneous isotropic elastic medium

A~}

02P 2P
Oz Oyi

1 0°P 5
2o 7

(10)

248

with the boundary conditions at y=0, derived from
Eq. (9):

OP k T/ (x,t)

——=-P= Lh(t) <z <ly(t),

o0 2 o 1(t) 2(t) )
P =0, .’L‘>l2(ﬁ), .Z‘<l1(t).

Now let us consider the solution for semiinfinite
crack, putting [;(t)=—oc0. From the physical point
of view such situation means that the edges of the
crack do not affect one another. For the finite crack
the obtained solution is valid for the right hand side
region of the characteristic curve AB (fig. 1). It is
expedient to introduce the functions v=0P/0y;. At
that we can put the following conditions for y=0:

v(x,0,t) = v(x,t),
(12)

P=P,+P_, V=vyq +v_.

Here, index “+” corresponds to the functions being
equal to zero for z <ls(t), while index “—” — to functi-
ons being equal to zero for z>I5(t).

After this substitution conditions (11) yield

T (Jc, t)
pa

k
U_—§P_:f(x,t),f(x,t): ,Py=0. (13)
The boundary conditions (11) and Eq. (8) were obtai-
ned for the case of exponential law p(y1) = poeF¥r. It
is interesting to consider more general class of functi-
ons p(y1), leading to mentioned equations. Let the

displacement take the form

u(x,y1,t) = F(y1) P(z,y1,t).

Putting it into Eq. (5) we obtain that

2FI pl pl
+ F(0) =1, 2F) =22,
F o p (©) " po

where primes denote differentiation with respect to

y1; po(0)=po; py(0)=pp.
Originating from the above assumptions one can
obtain the following relations.

A. For the law

2
P0 > Po
( 200" (14
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the equation
0’P  0?P
oz2 Oy}

1 9%2P
~ 2o (15)

is valid (which is analogous to Eq. (10)) along
with boundary conditions (11) for y; =0. For
order of k the obtained problem is reduced to
exponential problem considered above.

B. For the law

/ k 2
Po sh —yl> (16)

h K +
= C —
P = po 291 ok 2

the equation (8) for P is obtained, and boundary
condition yields

P py

dy1 2po

7' (, )

P= at 1y =0.
pa
As it is seen, this problem also is reduced to the
above exponential law problem with the coeffici-
ent pf/po replacing the coefficient % in (11). So,
in order of k both statements of the boundary
problems coincide. In particular, for pj,/(pok) =1
Eq. (16) gives p=poe¥¥, i.e. the same as in the
previous case.

C. For the law

2
P k po .k
o (cos i + ok sin 541

(17)

(18)

we obtain the equation

0?P n 0?P n k2
ox?  Oyi 4

1 9*°P
P=—=— 19
2 ot? (19)
and the boundary condition (17). So, in order of
k this problem coincides with the problem (10),
(11).
This is the reason for considering in further the
problem stated by equation (8) in the aggregate with
the boundary conditions (11), from which in order of
k all mentioned cases of distribution of p(y1) can be
obtained.

2. SOLUTION OF THE PROBLEM FOR
SMALL k

Solution of Eq. (10) for the boundary condition
OP/0y1 = v(z,t) at y; =0,

yields the Possio integral form [3—5]
Y ! /
Plag) =L [ [ AL
e -v) - (@ -w)
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(20)

From formula (20), using the condition P=0 for
x>15(t) and introducing the characteristic coordi-
nates [3, 5]
5/ — ot — .1‘/, 77/ =ct' + .I‘I,
(21)

& =ct —x, no = ct + x,

one can write the solution for v in the form

1 1 o
V=
T /70 — n2(%0)
) (22)
77/(50) (. 7) no(&o) —77'd ,
X _ Y 4.
v no—n g
—$o

Note, that, as in [3 5] it is accepted that lo(t) <c
(dot denotes differentiation on t), the following
equality becomes valid:

772(50) =l (t2) + cta, cto — lo (tg) =ct—ux. (23)

Here, (I2(t2),t2 is a point of intersection of the
characteristic £’ =&y = const with the curve ' =1(t'),
representing a motion law for the edge of the
crack (fig. 1).

Changing the integration variable from 7’ to 2’ and
taking into account Eqs (21) and (23) we obtain that

no—n' = 2(zo — 1),
n2() — ' =2[1(t2) — 2],
o —n2() = 2[z — I (t2)]

along &'=¢y [3]. Moreover, from Eq. (22) it follows
that

(24)

1 1 o
V4 —
& X — l2 (tg)
25
falta) 2z lo (t2) — (25)
X /U_<x't+———> dz’.
’ /
C C r— X

x—ct

The above expression coincides with the solution
from [3] in physical dimensional coordinates. In the
present case v_ is unknown. From Eq. (13) we can
write that
k
v_(z,t) = f(z,t) + B P_(z,1), (26)
where P_ is also unknown.

It should be noted that integration in Eq. (20)
is carried out over the domains (sp+s$1+52) (see
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fig. 1) [5]. At the same time, originating from the
boundary condition P=0 for z >3(t), we obtain from
Eq. (20), written with respect to the characteristic
variables [2], that

n2(€")

! / o ! /
1 (6 577)1 d?’]l + 7_1(6 ) d ;o O, (27)
|, Vo= Vo=
_ n2(
where 7 (&) =v(@,t');  na(E)=1a(th)+cth;

&' =1y(th)—cth. Therefore, it can be shown that the
integrals over s1 and s; in Eq. (20) are cancelled. So,
only the integral over s¢ remains [5] (filled domain
in the figure). Performing integration in Eq. (20), as
it was made in [2,4,5], one can obtain that

70
U1 (gla 77/) /
— dn', (28
272/\/50—5' Vo =1 ! (28)
a(10)
where
U1 (:L'I;tl) = f(xlatl) +3 —(glanl);
(29)
P_ (f', 77') =P (m', t').
Thus, for ®_(¢,n') one can obtain the integral
equation
f(En') = fFla' 1),
N € e
- (50, 770) = =
T W
/ A ) + (k/2) 2 (€. 7') i
Vi =1 ’

_gl
where
6(1(770) =ctz — Iy (tg); ctz + 1o (tg) =ct+zx (31)

along the characteristic ' =179. In homogeneous case
(k=0) the formula

27T/\/§0—§'/f1770—

€a(no)
is valid. Passing to the edge of the crack z=2l(t) and
accounting for narrowness of the domain of integrati-
on in ¢-direction and Eq. (24), one can obtain the
following expression in physical coordinate x:

3 (. m) =~

x/f , t+x' x dx’
‘T) - - - 7)

c c)xr—ux
xr—ct

3° (¢0,1m0) ' (32)

50 - ga (770)
(33)
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where due to Eq. (31)

2(I2(t) — =)
1+ 10x(t)/c

Finally, near the crack’s edge one can obtain for
k=0 (zero approximation) that

l2(t) —

L+t )/c

x/f , t+x' x dx’
', ) | —

c c)Nxr—a
r—ct

Hence, from Eq. (30) in the first order of k a closed
solution can be obtained, where ®_ (¢, ') in Eq. (30)
should be taken from Eq. (32). Also, and in determi-
nation of ®° (¢’,7’) the domain of integration should
be chosen between the characteristics n”/ =7'; £/ =¢/;
&"=¢&,(¢"). Finally, we obtain that

o — &a(mo) = (34)

PO :PO:—

(35)

5/ n/
©0 (¢! ) L " [ L&) (36)
—(5’77)__% \/§I_§H \/77/_ 7 A
&a(n') =&

where

Ea(n) = cty —12(t3),

Formula (36) is valid for the points of integrati-

n (¢,n') in Eq. (30), for which the characteri-
stic /=7’ intersects with the curve 2’ =1[s(t') (i.e.,
for ' >n.=12(0), see fig. 1). For the points (&', 7’),
in which it intersects with z’-axis within region
a2’ <l2(0) (i. e. for n’ <) one should integrate in (36)
within the limits

()<’ <€, &a()=—7.

So, formula (30) gives for arbitrary point (x,t) the
value of P_(x,t) equal to ®_(&y,no). Therefore, for
small k the value ®° (¢/,7’) should be be taken from
Eq. (36). For z~l5(t) we obtain

lr(t) —

1+EQWCX

cthy + 12 (t5) =1’

2
p=-=

< A
x/{f(x',t—i—x——E)—i- (37)
c ¢
x—ct
k dxz’
~ Y 2¢") b ——— .
t3 Y (&0,&0 + x)} —

Egs (30) and (37) give the displacement on crack
uw=P_. It is evident that the inhomogeneity essenti-
ally effects the solution.
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Simultaneously, at arbitrary (z,t) for x >1I5(t) the
value vy is given by Eqs (22), (25), where

(e 5-5)
et =) =
& &

, (38)
= f(x’,t+ % - %) +§<I>O_(£o,77’)-

Due to Eq. (36), etc. the following relations hold true:

1 o 5”
o2 (&, 1) =
(&) G-¢
. 5@(77 )
f 6// 1
></ 7(7, 77) dn’, 0 > e,
R (39)
1 de
o2 (&, 1) =
(&) | Ve=e "
f 6// 1
></ 7(7, n)dn, 7' < Ne.
_5//

It should be mentioned that for zazls(t) value
&.(n), in contrary to &,(n), is not close to & and
inhomogeneity significantly changes the stress vy
near the crack’s edge.

3. CONDITION OF CRACK’S PROPAGATI-
ON AND SOLUTION FOR A CONSTANT
TRACTION

For x~ls(t) (z>12(t)), originating from (25) we
can write the following:

Tyz —’U+——

1/1‘—l2

F

lve;H__§>+§w(m@+m)
X d'rla
(1) — o

x—ct

where ®° (&9, &o+227) is given by (39). From (37) we
obtain that

lo (t)—x

u_=P_ = _—
1—12(t)/c?

2K
" (41)

< lg(t).
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The Irvin’s condition [2] gives

___pr 24/
T 1= 02(t) /2

where +/ is the surface energy of opening of the crack.

In the problem for a constant traction on the crack
f=const the Eq. (25) leads to the following expressi-
on:

l2(t2) /
__l 1 12 (ﬁ2) —x'd ;-
Y+= T r—ax' *
.Z'—lg (t2)z—ct
bt (43)
2 t
ko1 I (t2) =2/
o~ - (I)O , / 7d I-
21\ Jx—la(ts) !t —(50 77) a1 T

Due to Eq. (39) ®° (£, 7) can be calculated in form

1
O (&, ;f{\/& Ea( )\ +Ea (1) +
, (44)
§0+77 arctg /_i_éj((:/))} for n' >n,
and
@ (&.0) =~ (6o +n) for of <m.  (45)
Here,
n=ct'+z', E=ct' —x'=ct—zx,
(46)

€a (77/) =cty—la (tg)a cthy+lo (tfo,) =ct'+z’.

Using Eq. (43) and passing to physical variables
we obtain for the stress distribution out from crack
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a

b

Fig. 2. Calculations after Eq. (48), giving the stresses out of the crack for constant velocity of the crack (a) i(t)=v
and constant traction f on the crack (b); zo=x/ct, M=vo/c: M <1, k=kct, ' =ct

that

U+:—z4{ lg(tg)—x—i-ct—

Q x—lg(ﬁg)

lo(te) —x +ct

x—lg(tg)arctg %}4—

l2(t2)
DA A /{ l2(t5) — ' %

Q x—lg(ﬁg) o

x\/ct—x—l—Zx’—lg(tg) +(ct—x+x') X

Io(th) — o’ } "

(47)

X arctg
\/ct —x 422 — s (tg)

lo(ty) — 2/

Vet = ok f
r—T 2 x_l2(ﬁ2)
¢ , lg(ﬁg)—l‘/

x/ (ct—x—i—x) — da’,

T—x
xr—ct

where a=(n.+x—ct)/2.

As it is seen from Eq. (47), the stress out of
crack has the same singularity near the crack’s
edge x~l3(t), as in homogeneous case, but with the
stress intensity coefficient essentially depending from
inhomogeneity.

4. CASE OF ARBITRARY VALUE OF
INHOMOGENEITY

In the case of non-small k£ Eq. (5) can be solved in
the form of the Laplace and the Fourier transformati-
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ons:

(48)

U (l’, Y1, S) = Uppe @@ t8u)gq, .

T on

Here Urp is the Fourier transform for Up(x,0, s);

(1/p)0p/ Oy =k.
Substituting Eq. (48) into Eq. (5) we obtain

2 2

k 5, S
_+a1+_

ko
B:—Z — 1 02.

2 4 (49)

Introducing the function ¥ =0u/0y; we follow to the
relation between the integral transformants of 1 and
u:

Yrr = —iBULF,
Urr = ScLrYrr,
L6
N A
SLF:_<§+ z+a1+c—2> .
The originals are written as
1 o+i00 (e’
S(x,t) = 1% /eStds/ et G nday. (51)

On the boundary y; =0 the following relation
between u(z,t) and derivative (Ou/0y1)|y=0 =¢(x, t)
is valid:

u(x,t) = //w(x',t')S(x —2't— t')dx'dt', (52)

and the integration procedure should be carried out
over the complete domain sgp+s1+ 52 (see fig. 1). Now

A. G. Bagdoev, S. G. Sahakyan
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for z <la(t) it can be written that

u(m,t) =
1£a(no) n2(€")
— 50 [ 4 [ 1€ n)si(60—¢ mamar)a'+
ge _5,

€a(n0) o
J ]
e m2(8)
o no

s [ [5(m)si (6o m—n)ar
&a(no) —¢

Nl (53)

2% wl (gla 77’)51 (fo—gla UO—UI)dUI+

where f1(¢',n')=f(2',t') is given in sy, s2 behind
the crack’s edge; ¥4 (¢, n')=v(a’,t') is a value of
(Ou/Oy1)|y=0 for x'>I3(t'), i.e., out of the crack,
which in the order of k is given by Eq. (25) and
S1(€, 1) =S(', t).

So, the solution for u in the domain x <l(t) is
reduced to determination of the function S(z,t), gi-
ven by Egs (50) and (51).

From the boundary condition ©=0 for 2 >[5(t) and
Eq. (52), as in Eq. (8), for |&y| >|&a(n0)| we have the
following:

& m2(8")
[ae [ 1€ )i (60—€om—nt)a'+

ge _5,
& Mo

+ / ae’ / O (€ 1)S1 (€0~ mo—n ) = .
Se m2(€")

(54)

However, in contrary to Eq. (27), in which
7 / c
Si(o—&mo—n')=— ,

/(6 =€) (m0 — )

as it will be shown later, for arbitrary k #0 the multi-

plies (& —5')_1/2 and (1o —77')_1/2 are not separated.
Therefore, the integral over the domain ss, which
contains complex solution 1 given by Eq. (25), can
not be excluded. This fact distinguishes the problem
with k0, from the problem for homogeneous medi-
um [2,5] (its solution is given by Eqgs (32), (35)).

It should be noted that Eq. (53) is valid behind the
crack’s edge, i.e., for [£o] <|£a(no)|, while Eq. (54) —
ahead the crack’s edge, i.e., for [£o|>|&.(n0)|- That
is why this last expression can not be used for si-
mplification of Eq. (53). However, later it will be
shown that for the points close to the edge (x ~=13(t))
Eq. (54) still can be used for simplification of Eq. (53).

To calculate S(z,t) from Egs (50) and (51)
the complex s=pc\/k?/4+a; should be introduced
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instead of s. Moreover, integration with respect to
s should be replaced by the Laplace integral with

respect to p, multiplied by ¢\/k?/4+a;.
Note that the inverse Laplace transform from

k k2

1
9(p) = - (5 VT +a?p>

is

ket

e
2\/Z+a%

Additionally, in view of [8, Eq. (38) on page 123]

f(t') = —cexp

!

g (VIFHT) = 1) - /Jl(U)f<t’2 —u2>du';

0

2
t':cy/%—i—a%t

the inverse Laplace transform for Spp gives the
following:

kc
-5t

Sr = —ce +

c %-ﬁ-a? t ﬁ /tl2 _ u2 (55)
+c / Ji (u) exp —227 du.
0 Z + a%
After substitution u=wv+/k?/4+a? we have
cC k2
Sp = —ce_%t +cy/ T +a% X
o (56)

k2 k

x/J1 (’U\/Z + a1>eXp (—5\/ 2?2 — ’U2>d’U.
0

Accounting the well known property of the Bessel’s

functions Ji(xz)=—J}(x), and integrating by parts,

one can obtain

k2
Sp=—cJy | ct I—i—a% +
1 ct k2
+ ?C Jo (v T —i—a%) X (57)
0
v k 55—
X WGXP <_§ CQtQ — U2> dU.
67
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Again, replacing v c2t2—v2=u gives the following

relation:
L2
Sp=—cdo|ct T +a? | +

/’(wﬁiﬁ¢_:;> oy,

The function Sr is even on «j. This allows to
replace the exponential Fourier transform on the cosi-
ne transform. So, in view of [8, Eq. (35) on page 57|,
one can obtain the final formula for the function in
physical domain:

(58)

S(a,t) = _Mx

{cos(k:/Q\/cQﬁ2 — 22)
X J—
N
JEE T
k cos(k/2Vct2 —u?) &, }
e z%gu ;.
Moreover, the function Si(&—¢&,m0—n') in

2 212 — 22 — 42
0
Eq. (53) is given by the expression:

1
51(50 —§Ia770 —77I) = _§<—COS——

T cos (k:/Q\/ T2 — u2>
5
e_iudu>,

k
7!
7= /(6 — &) (- ).

(60)

T2 — 2

where

(61)

For small k the the first order approximation from
Egs (60) and (61) gives that

k
$1(60 — €m0 — 1) = —5(%— f)

: (62)

Let us put in relation (54) that

Y1 =0 + v},
where 19 is the solution for homogeneous medium
(k=0) given by (22), in which v_ is replaced for
f1(&,n’). For this addendum Eq. (27) is fulfilled.
Retaining in Eq. (54) terms of the k-th order we

68

obtain the following:

&o 772(5,)
ae’ / frdi

i 50 0
™
_T/dgl / Ui(ﬁ'ﬂ?') d77/+

e m2(8")

+ 7d§’ ] v (E) (gTI’ ")

e m2(8")

k:7r

(63)

'=0.

So, from Egs (53) and (62) the solution precise to the
first order of k can be written:

) €a(no) nz(&’)f (f' /)
Ui /
“ 27r/ 6/ T Tt
ge _5,
Ea(no) m2(8")

/ ae’ / f(€ )~

ge _5,
€a(n0) o

k
/ d§'/ (v +v}) (% — %)dn'-ﬁ-

&e n2(&’)
o no

1
+ — /dgl/flsldnl.
2c

&a(no) —¢'

Lk
8

21

It worth noting that the first addendum in right-hand
side of Eq. (64) and the addendum with v9, both
having the zeroth order of k, are cancelled (see (27)).
From Eq. (64), accounting for Eq. (63), we obtain for
the terms of order of k:

&a(no) m2(&") kﬁa(%) Mo

um 2 dg'/fldn'—l—g / dgl/vgdn'—
o —¢&’ 50 772(5)
Gl (65)
/d&/—*d +—/d§/flsldn
o m2(&) €a(mo) —¢

Near the crack’s edge z=la(t), {o~&a(no) only
the terms of order \/§y—&q(no) should be retained.
Therefore, the first two terms in the right-hand side
of Eq. (65) can be dropped out. This gives

o no
1 ;[ ()
N%/dg/ T dn'+

€a(no) m2(8')

1 o 1o
+ — / dgl /flSldn'.
2c

€a(no) 3

A. G. Bagdoev, S. G. Sahakyan



ISSN 1028-7507 Akycruaumnii Bicauk. 2002. Tom 5, N 4. C. 61—-71

Due to Egs (22) and (26) we find, keeping the terms
of order of k, that

k

v} (€,7) = ———F— x
21y /1 —nm2(&')
n2(&")
02 (5/) _ 77//
x/ @O_(ﬁl,n")W "
_5’

Substituting this relation into Eq. (66), interchangi-
ng the integration order on 7’ and n” and, finally,
accounting that &' ~¢&y, n2(£’)~=np, we obtain that
near the crack’s edge

o 70
k d¢’ 0 n_dn’
= —— (b - '
u An 60_61 —(60)77)

7

No—"n
€a (o) —$o (67)
o
_ L / fl 60) /
27 Vino—1
5@(770)

In the last term of Eq. (67) it is used that
&' ~&. Moreover, in accordance with Eq. (61) the
second addendum in Eq. (66) is the same that for
homogeneous medium.

The same expression is obtained from the solution
of the first order of k given by Eq. (30). So values
of u=®_(&,no) obtained by two methods coincide
near the crack’s edge.

For arbitrary k the relations (53) and (54) are
valid. They keep true for different &y, but for (£, 70),
taken near the crack’s edge, one can believe that

both (53) and (54) relations hold. This gives the
following:
1 o n2(&")
= ! Sydn'—
u(x,t) o /dg/fl 1dn
€a(no) —¢

) o 10 ) o no
_ 2_ / dgl/ ’lﬂlsldnl + — / dgl /flSldn'.
c 2m

&a(no) m2(&") &a(no) —¢'

Let us denote the value of vy for k=0 as v9.
Then, accounting for equalities 1 =v4, vy :Ug —i—v_lIr
and using the approximation Si(§o—¢',no—n') at
Eo~&.(no) (see Eq. (62) under T'~0), we can drop
the small quantities of order of (§y—&.(np)). This
procedure leads to Eq. (66). Therefore, the soluti-
on for u(z,t) near the crack’s edge formally coincide
with the solution for the first order of k. Although,
it should be mentioned that vl (¢,n’) may differ
from the similar value for the case of the small
inhomogeneity.

A. G. Bagdoev, S. G. Sahakyan

Besides calculation of the displacement on the
crack, the function 9 (z,t)=(0u/0y1)|y,=0 =1+ out
of the crack should be found. Following the Eq. [1,4]
and using the expressions using denotions (12) one
can write the solution for u, ¥ in the form

u_(z,t) = S_ s x[(Sy#xp_ — PLwkuy) x
(68)
XH(lQ —.1‘)];
Ui (@,t) = =Py s+ [(S4 # %0 — PLxxug) X
(69)

xH (x—12)],

where lo=I5(t); H(x) is a step function; asterisks
denote a convolution on z and ¢ Si(z,t) and
P (z,t) are respectively the originals of the functi-
ons Sppy and P ., which represent factorization
of the functions Spr and P} .=1/SLF.

Finally, according to [7,9] we obtain the following
expressions:

Str = SLr+SLr—;

SLr+ = 1

o)+ ﬁ
X exp /
7T’L

24/ v+o! 1—|—k: da'y
Nal

2 y—i—a g @1

where y=Fk? /4452 /c?.

The next step is to find the originals Sy (z,t)
according to Eq. (51). By the same way the originals
P’y (x,t) can be determined.

The obtained solution for 9, (z,t) see Eqs (51),
(69), (70)) is very complex. Therefore, it is more sui-
table to use the small parameter solution (25) for the
first approximation.

As it is seen from the solutions (25), (30) and (30),
influence of the inhomogeneity on the solution as near
the crack’s edge, as along the whole x-axis is essential.

5. SOLUTION OF THE PROBLEM FOR DI-
SPLACEMENTS GIVEN ON THE CRACK’S
FACES

It should be noted that the problem considered
in §1 is the antisymmetric one, for which same
tractions 7, are given on the crack’s faces and
the displacements have opposite signs. Correspond-
ing symmetric problem implies the stresses having
opposite signs and the same displacements imposed
on the crack’s faces. General case of different stresses
and displacements on the crack’s faces can be
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represented as a sum of these two solutions. So,
instead of Eq. (9) we can put the following:

y1=0; u_ = <I>1(t,x), T < lg(t),
(71)
’lp+:O, .’17>l2(t)
Because of
ou k
=—| =vy—zu
Yy i
one can rewrite Eq. (71) in the form
k
y1 =0; u=P_=d(a,t), Ut = 3 U (72)
In contrast to Egs (68), (69), the convolution

method [1] can be applied to the functions P, v. This
gives

Py :S’+**[(S’_**v+—P+**P_>x
(73)
XH(.T_ZQ):|,

_=-P_ **[(S’_ xxvy — Py **P_>><

(74)

xH (ly — x)] :

Taking that v=0P/Jy; one can obtain from
Eq. (10) that

-1
N N 2
Prr = Srrvrr; Sir=— ( a? + c_2> , (75)

instead of Eq. (50).
_Besides, Eq. (75) there is another condition:
Prp=1/Srp.

Note that for homogeneous medium the original
functions S(z,t) and P(z,t), corresponding to Spp
and Ppp, are found from Eq. (4), and their factori-
zation yields

8y (o) = _W;
O(t —w/c) H(z)
Qﬁ 73/2

Since S’LF+S’LF_ :S’LF corresponds to the origi-
nal, given by Eq. (59) for k=0, the first addendum
n (73) is as follows:

A A
S+**(S_**U+ :——//U+dxdt—
//u Ldx'dt’

(76)

P+ (m,t) =

70

Substituting Eq. (76) into Eq. (73) and carry-
ing out lengthy calculations one can obtain the dis-

placements out of the crack, corresponding to the first
order of k:

Pl tl /
P, // da'dt’ + Pl (t, z), (78)

where

x_l2 tO <I)1Tx
PL(tx)= / —

tot _ :)] dr (79)

and Iy (tg) —x+ct=cty.

Formula (79) gives known behavior of the dis-
placement near the crack’s edge ~ \/x—I2(t) for
hte boundary function ®;(¢,z), being equal to zero
for z=I5(t). Moreover, the integral in Eq. (79) is
convergent for x=I5(t), to~t. The stresses on the
crack can be found from Eq. (74). However, more
simple way is to obtain V_(t,2)=0P/dy1—(k/2)P
accounting that V satisfies Eq. (10) and the boundary
conditions, due to Eq. (72), are of the order of k:

51% k
V =0, x>l (t),
where | 92 928
it B )
I(tx) = 2 0t2 0x?

Then from Eq. (20), written for V(¢,2), one can
obtain that

- 12

Putting k=0 in Eq. (81) leads to homogeneous
solution VO(¢, z), which can be substituted in Eq. (81)
instead of V (¢, 2’). Because of V=0 for x >1[(t2) the
integrand in Eq. (81) is the same as that in Eq. (30).
Hence, after introducing of characteristic variables we
find that

kr/2) It

) dr'dt’. (81)

&o
1 e
Vi (€o,m0) =
( ) Ve -¢ 5'
5@(770) (82)
Jren e,
Vio =1/
_5/
where f1(¢',n")=f(t',2’). Following Eq. (39) for
1 >n. we obtain
// f 6// //
VO ') / 77”. 83
Ve — 5” Vi =" (83)

5@(77 )
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As Eq. (39) shows, for n’ <7, the integration with
respect to &” should be performed within the limits
(=1, &’). Using the formula

19> 9\ 1 _ 32
2ot 0x2) JT
one can obtain
V- (50,770) =
&o , 1o ;L
_ 1 d Q) o
") (o)) )
€a (o) =&

13 7
+E / aw Ve
4m Vé =& Vio =1

£a(n0) —¢

where only finite part of the integral with respect to
&’ is retained.

For the function ®,(¢,2’), which behaves at the
edge of the crack as

(', 2) = B(t', ') [lo(t') — o).

the integral with respect to 7’ is finite for ' =1(t'),
so, usual singularity for stresses is observed:

V_ (t', x') ~ m

CONCLUSION
The problem on the antiplane crack propagating
with arbitrary velocity in anisotropic inhomogeneous

elastic media is considered. The solution is obtai-
ned by method of integral equations developed in the

A. G. Bagdoev, S. G. Sahakyan

theory of wing. For wide class of inhomogeneities the
solution is obtained in closed analytical form. The
displacements on the crack’s faces and the stresses
out of the crack are obtained. It is shown that the
inhomogeneity essentially effects the solution.
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