DISPERSION RELATIONS FOR FIELD-ALIGNED CYCLOTRON WAVES
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Dispersion equations are evaluated for field-aligned cyclotron waves in axisymmetric tokamak plasmas with circular
magnetic surfaces. Bi-Maxwellian distribution function is used to model the energetic particles (ions or electrons) with
anisotropic temperature. The growth/damping rate of cyclotron waves in tokamaks is defined by the contributions of the
resonant trapped and untrapped particles to the imaginary part of the transverse susceptibility elements.
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1. INTRODUCTION

As is well known, the temperature anisotropy
generated by cyclotron resonance heating of magnetized
plasmas can be a reason of cyclotron wave instabilities in
considered plasma devises. Recently [1], an anisotropic
ion temperature was measured during high power HHFW
heating in helium plasmas on the National Spherical
Torus Experiment, with the transverse ion temperature
roughly twice the parallel ion temperature. Moreover, the
measured spectral distribution suggested that two
populations of cold and hot ions are present in the plasma.
In the paper [2], it was shown that wave plasma
interactions play an important role in tokamak dynamics.
In particular, the fast ions from neutral beam injection can
excite compressional and global Alfven eigenmodes with
frequencies near the fundamental ion cyclotron frequency,
and “slow waves” appear to propagate along the
equilibrium magnetic field. However, two-dimensional
(2D) kinetic wave theory in tokamaks should be based on
the solution of Maxwell's equations using the correct
‘kinetic’ dielectric tensor. In this paper we evaluate the
dispersion equations for field-aligned cyclotron waves in
tokamaks with circular magnetic surfaces, having the
high-energy particles with anisotropic temperature. The
main contributions of the untrapped and trapped particles
to the transverse dielectric tensor elements are derived by
solving the linearized Vlasov equations for their perturbed
distribution functions.

2. REDUCED VLASOV EQUATION

To describe a 2D axisymmetric tokamak with circular
magnetic surfaces we use the quasi-toroidal coordinates
(r,0,¢) connected with cylindrical ones (p,¢,z) as

p=R,+rcosf, z=—-rsinf, ¢=¢,where R, is the large
torus radius, 7 is the small plasma radius, € is the poloidal
angle, ¢ is the toroidal angle. In this case, the stationary
magnetic field components, H, = {O, Hy,,H, ¢}, are
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To evaluate the transverse susceptibility elements we
should know the first (/ = 1) harmonics of the perturbed
distribution function,
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where the new variables (v, ¢ ) are introduced instead of
(vj,v, ) invelocity space as
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The linearized Vlasov equation for £ and f¢” in the

u=v(1+&cos@)/v*.

zero-order of magnetization parameters can be reduced to:
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Here F, is the bi-Maxwellian distribution function of
particles with density N,, mass M, charge e, parallel and
transverse temperatures 7, and 7,. By E, =FE, *iE,

we describe the transverse electric field components with
the left- and right-hand polarization, where E, and E, are
the normal and binormal perturbed E-field components
relative to Hy. By s =+1 we distinguish the particles with
positive and negative parallel velocity relatively Hy.

To simplify a problem, we solve Egs. (1) using the set
of coordinates, where the Hj-field lines are ‘straight’,
introducing the new poloidal angle as
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accounting for the approximated connection for field-

aligned waves:

c (1-£cos@)> hy +in E,

o JJl_g 86’ T ccosd
Since our plasma model is a configuration with one

minimum of H, the plasma particles should be separated

in the two populations of the trapped and untrapped

particles:

D) o<u<l-¢, -7<6

D 1-e<u<l+e, -0, <0 <6, for trapped particles,

where + 6, = 2 arcsin fw
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are the reflection points of trapped particles, by the zeros
of parallel velocity: v, =0 . As aresult,
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where the indexes u and ¢ correspond to the untrapped and
trapped particles, respectively.

To describe the bounce-periodic motion of the u- and
t-particles along the Hy-field line, it is convenient to
introduce the new time-like variables instead of 6 :
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After solving Egs. (1), the 2D transverse (relative to
H,) current density components, j,,, can be found as
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<z for untrapped particles, and
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3. DISPERSION EQUATIONS

To evaluate the dielectric tensor elements we use the
Fourier expansions of the 2D perturbed electric field and
current density components:
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Asaresult,
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Here /"

“and /" are the contribution of u- and -

particles to the transverse susceptibility elements:
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To have analogy with the linear theory of cyclotron
waves in the straight magnetic field let us assume that the

E{™ -harmonics of E-field gives the main contribution to

7™ In this case, for the field-aligned cyclotron waves

with given mode number m, we get the following
dispersion equation from the Maxwell’s equations:
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where o denotes the particle species (electron, proton,
heavy ions), k,, =(m+ngq,)h,[r. Further, Eq. (4)

should be resolved numerically for the real and imaginary
parts of the wave frequency, w=Rew+i Imw, to define
the conditions of the wave instabilities in the tokamak
plasmas with anisotropic temperature. As usual, the
growth (damping) rate of the cyclotron waves, Imw, is
defined by the contribution of the resonant particles to the
imaginary part of the transverse susceptibility elements:

o0
mm __ m,m m,m
Im y'2) = Z (Im Hipa TIMYT ) >

p=l

where Imy"" . and Imy""  are the scparate

contributions of the bounce resonance terms to Im z;')

for untrapped and trapped particles.
CONCLUSIONS

In conclusion, let us summarized the main results of
the paper. The dispersion equations are derived for waves
in the frequency range of the fundamental ion-cyclotron
(/=1) and electron-cyclotron (/=-1) resonances and
suitable to analyze the excitation/dissipation of both the
left-hand (ion-cyclotron) and right-hand (electron-
cyclotron) polarized waves. Contribution of u- and #-
particles to the transverse susceptibility elements in 2D
toroidal plasmas with anisotropic temperature  are
expressed by summation of the bounce-resonant terms
including the double integration in velocity space,
resonant denominators, and corresponding phase
coefficients. Due to 2D Hy-field nonuniformity, the
bounce resonance conditions for trapped and untrapped
particles in tokamaks are different from ones in the
straight magnetic field; the whole spectrum of electric
field is present in the given current density harmonic; the
left-hand and right-hand polarized waves are coupled in
the general case. As in the uniform magnetic field case,
the growth/damping rate of the cyclotron waves in the 2D
tokamaks is defined by the contribution of the energetic
trapped and untrapped particles to the imaginary part of
the transverse susceptibility elements.
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JUCIIEPCUOHHBIE YPABHEHUS HUKJIOTPOHHBIX BOJIH BAOJIb MAI'HUTHOI'O ITOJISI
B IUTIABME AKCUAJIbHO-CUMMETPUYHBIX TOKAMAKOB C AHU30TPOITHOM TEMITEPATYPOM
H.U. I'puwanos, H.A. A3apenxoe
[Momy4eHs! qucHepCHOHHBIC ypaBHEHMS Ul LUPKYJISPHO-TIOJISIPU30BAHHBIX BOJIH, PAcIpPOCTPAHSIONIMXCS BIOIb
MarHUTHOTO MOJS B IUIa3ME aKCHAJbHO-CUMMETPHYHOTO TOKaMaka KpYTJIOTO cedeHHs. B KadecTBe MOAEIBHOTO
pacripesiesieHusi SHEPTUYHBIX YacTHI[ 10 CKOPOCTSM HCIOJIb30BaHa OWMAaKCBEIJIOBCKas (YHKIMS C aHW30TPOITHOW
TemriepaTypoi. Iloka3zaHo, YTO HHKPEMEHT/IEKPEMEHT IIMKIOTPOHHBIX BOJIH B AKCHATBHO-CHMMETPHIHBIX TOKaMaKax
OIIpEIETIeTCST BKJIQJIOM PE30HAHCHBIX IPOJICTHBIX M 3allepTHIX YacTHIl B MHUMYIO YacTh ITONEPEYHBIX KOMIIOHEHT
TEH30pa AUIEKTPUUECKOH BOCIPUMMIHBOCTH.
JIACTIEPCIVHI PIBHSIHHS IUKJIOTPOHHUX XBIJIb B3/I0B)K MATHITHOI'O ITOJIS B ILJTA3MI
AKCIAJIBHO-CUMETPUYHHUX TOKAMAKIB 3 AHI3OTPOITHOIO TEMIIEPATYPOIO
ML I'puwanos, M.O. Azapenkos
OTpyMaHO IUCIIEPCiiHI CIIBBIAHOLICHHS VIS LUPKYJISIPHO-TIOJISIPU30BAHUX XBWIIb, IO IOUIMPIOIOTHCS B3JIOBXK
MarHiTHOTO NOJIS B IJIa3Mi aKCiaJbHO-CUMETPUYHHUX TOKaMakiB 3 KOJOBHM I€pepi3oM MarHiTHUX ITOBEPXOHb. Y SKOCTI
MOJIETIBHOTO PO3IOJIUTy €HEPrifHMX YacTMHOK y MpOCTOpi IIBHUAKOCTEH BUKOpPHCTaHa OiMaKCBeNiBChbKa (YHKIIS 3
aHI30TPOITHOIO TeMIlepaTyporo. JloBeneHo, 0 iHKpeMEHT/IEKPEMEHT IUKIIOTPOHHNX XBHJIb B aKCIaIbHO-CUMETPUYHUX
TOKaMakaxX BU3HAYA€THCS BHECKOM PE30HAHCHUX MPOJITHUX Ta 3aXOIUICHUX YACTHHOK B YSIBHY YAaCTHHY ITOTIEPEYHUX
KOMIIOHEHT TeH30pa JieNEKTPUIHOT CIIPUAHSATIINBOCTI.
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