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1. INTRODUCTION 

The discovery[1] of the L–H transition phenomena is 
one of the greatest successes in the investigation of the 
magnetized fusion related plasmas. That transition 
characterized by a sudden suppression of edge density- 
and magnetic turbulence, which follows by rapid drop of 
turbulent transport at the plasma edge that resulted in the 
development of steep edge gradients indicating the set up 
of a transport barrier in the outermost few cm of the 
confinement region. The experiments revealed that 
suppression of the drift turbulence conditioned by shear 
flows, which developed prior to the transition in the 
boundary layers of plasma. The discovery of the 
connection of the observed turbulence suppression with 
shear flows determined the development of the turbulence 
theory of shear flows as the one of the most important 
task in the theory of the controlled fusion and of the 
plasma theory in whole. 

The contemporary theory of plasma shear flows 
turbulence meets with great obstacles in its development. 
That theory grounds on two approaches. The first is called 
as the normal mode or modal approach, in which 
perturbations of the fields and density, temperature, ets. 
are considered as spatially inhomogeneous in the 
direction of the flow shear and the application of the 
spectral transform in time is assumed. The solution 
obtained on this way in linear approximation has as a rule 
the singularities at the critical level, where phase velocity 
of the perturbations is equal to the local magnitude of the 
flow velocity. Because of that singularity plasma 
turbulence grounded on the modal approach is still absent. 
Even the simplest turbulence theory grounded on the 
weak interaction approximation is not developed yet 
because of the divergence of the power series expansions 
used in this approach. The phenomenological shear flow 
turbulence theory (in which the problem of the solutions 
secularity even not notice) was presented in Refs.[2, 3]. 
That theory bases on the suggestion, that observed 
suppression of the drift turbulence is the result of the 
enhanced decorrelation of the plasma displacements, 
which follows from the coupled action of the turbulent 
scattering and convection by shear flow. The experiments, 
however display the results, which are opposite to the 
prediction of that theory: the correlation times grow in 
plasma shear flow. In this report, we present the results of 

the development of the hydrodynamic and kinetic drift 
turbulence theory of the plasma shear flows. This theory 
is grounded on Kelvin’s method of shearing modes or a 
so-called non-modal approach. The non-modal approach 
appears very effective in the development of the linear 
and weak nonlinear theories of plasma waves and 
instabilities in shear flow. This theory gives simple, exact, 
and uniformly bounded for all times, solutions, which are 
free from the problem of the singularities, which is 
inherent to modal approach. Particularly, the solution of 
the initial value problem, obtained in this approach, 
reveals that a drift wave in the shear flow gradually 
transformed into a convective cell and normal-mode 
solution is not the steady-state limit for the initial value 
problem considered.  

 

2. RENORMALIZED HYDRODYNAMIC THEORY 
OF DRIFT TURBULENCE OF SHEAR FLOWS 

We investigate the temporal evolution of drift modes 
in time-dependent shear flow using the Hasegawa–
Wakatani equations for the dimensionless density 

 and potential = / en n n% = / ee Tφ ϕ  perturbations (  is 
the electron background density,  is the electron 
temperature), 
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where ( )0 ,V x t  is the velocity of the sheared flow. We 
transform these equations to new spatial variables ,ξ η ,  

0= , = , = ' , = .t t x y V xt z z−ξ η    (1) 
In these coordinates the linear convection terms are absent 

in above system: 
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It is interesting to note that transformation (1) 
conserves the E B×  convective nonlinear derivative in 
in the form similar to one in a plasma without any flows. 
With new variables 1ξ , 1η  determined by the nonlinear 
relations  
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the convective nonlinearity in Eqs.(2) becomes of the 
higher order with respect to the potential φ . Omitting 
such nonlinearity, as well as small nonlinearity of the 
second order in the laplacian, resulted from the 
transformation to nonlinearly determined variables 1ξ , 

1η , we come to linear equation with solution 

( ) ( ) ( ) 1 1, , = , , 0 , , ,ik ilt d k d l k l g k l t e ξ ηφ ξ η φ +⊥
⊥ ⊥ ⊥∫ ∫    (4) 

where wave numbers ,  are conjugate there to 
coordinates 

k⊥ l

1ξ , 1η  respectively. With variables ξ  and η  
this solution has a form  
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Eq.(5) is in fact a nonlinear integral equation for 
potential φ , in which the effect of the total fourier 
spectrum on any separate fourier harmonic is accounted 
for. The functions % ( )tξ  and  in the exponential of 
Eq.(5) involve through eq.(6) integrals of 

% ( )tη
φ , which in 

turn, involve in their exponentials the integrals (5) and so 
on. This form of solution, however, appears very useful 
for the analysis of the correlation properties of the 
nonlinear solutions to Hasegawa-Wakatani system and for 
the development of the approximate renormalized 
solutions to Hasegawa-Wakatani system, which 
accounted for the effect of the turbulent motions of 
plasma on the saturation of the drift-resistive instability. 
We have obtained[4] the renormalized form of the 
potential (5), in which the average effect of the random 
convection is accounted for,  
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The saturation of the instability occurs when 
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From the double Eq.(8) we obtain the equation, which 
determines the level of the instability saturation  
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The sought-for value is a time satt  at which the 
balance of the linear growth and nonlinear damping 
occurs for given initial disturbance  and 
dispersion. With obtained 

( 1 1, ,0k l⊥φ )
satt  the saturation level will be 

equal to 

( ) ( )2 2
1 1 1 1, ,0satt dk dl k lφ φ⊥ ⊥∫ ∫; ( )( )1 1exp 2 , satk l tγ ⊥× . 

Also, the well known order of value estimate for the 
po-tential φ  , in the saturation state is obtained easily 

from Eq.(9),  Obtained results show 
that the nonlinearity of the Hasegawa-Wakatani system of 
equations in variables 

( ) 1/ e ne T k L −
⊥φ : .

ξ  and η , with which frequency 
and growth rate are determined without spatially 
inhomogeneous Doppler shift and wave number is time 
independent, does not display any effects of the enhanced 
decorrelations provided by flow shear.  

 

3. RENORMALIZED KINETIC THEORY 
OF DRIFT TURBULENCE OF SHEAR FLOWS 

It was obtained in Ref.[5], that application the 
transformation (1) to Vlasov equation jointly with trans-
formation of the velocity to convective set of reference 
resulted in Vlasov equation, in which inhomogeneities 
conditioned by shear flow are absent. With leading center 
coordinates, determined by relations 
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Vlasov equation has a form 
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where perturbed electrostatic potential is determined as 
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determines the nonlinear phase shift of the potential (11) 
due to turbulent scattering of ions in electrostatic 
turbulence. We find, that for the times ( ) 1

0<t V −′  the main 
effect, which determines the nonlinear scattering of ions 
by long wavelength drift turbulence with < 1ik ρ⊥  is the 
scattering of the leading center coordinates, Xδ  and Yδ . 
The non-modal effects are negligible at this time. At times 

( ) 1
0>t V −′  right the non-modal effects determine the 

nonlinear evolution of drift turbulence with dominant 
nonlinear phase shift due to scattering of the angle δφ  in 



4. CONCLUSIONS velocity space. For times ( ) 1
0 < < sV t−′ t  and for times 

> st t  we have, respectively  
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We obtain for ( ) 1
0 < < sV t−′ t  the renormalized 

solution in the form  
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The results presented in this report prove that any 
"universal rules" or "paradigms", that thoroughly 
determines the turbulence suppression by shear flow, are 
absent. The suppression of turbulence by shear flows is a 
mode dependent process, which includes the sequence of 
different non-modal linear and non-linear processes with 
different time scales for different parts of the spectrum of 
the unstable waves. Presented nonlinear non-modal 
analysis of the resistive drift and kinetic (universal) drift 
instabilities reveals that non-modal effects lead to the 
decreasing the frequency and growth rate at time 

( ) 1

2 0= y st t V k
−

′≤ ρ  and lead to rapid non-modal 

suppression of turbulence at time ( ) 1

2 0> = y st t V k
−

′ ρ . 

The time dependence of the wavenumber ( )k t⊥  
becomes the key element in the proper kinetic treatment 
of the long-time evolution of the perturbations in shear 
flow. In such kinetic analysis the nonlinear non-modal 
turbulent scattering of the phase angle of ion Larmor orbit 
is the dominant effect, which determines rapid 
suppression of the drift turbulence by shear flow. 

t

    (14) 

where ( ),C k t  is determined by the equation  
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If we omit linear non-modal terms in Eq.(14), the 
condition of the balance of the linear modal growth of the 
kinetic drift instability and non-linear non-modal dumping 
is determined by the equation . By using 
this equation in Eq.(15), we obtain the equation, which 
determines the time, at which that balance occurs,  
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Представлены результаты нелинейных исследований временной эволюции и насыщения дрейфовой 
турбулентности в сдвиговых течениях, основанных на немодальном подходе. 
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Подано результати нелінійних досліджень часової еволюції та насичення дрейфової турбулентності у 
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