УДК 532.528

Академик НАН Украины В. Д. Кубенко

Нестационарная нагрузка на поверхности упругого полупространства

Рассматривается осесимметричная задача определения напряженно-деформированного состояния упругого полупространства, на границе которого действует нестационарное нормальное напряжение. Решение задачи строится с применением интегральных преобразований Лапласа и Бесселя. Выполнено совместное обращение интегральных преобразований. Как результат, получено точное решение задачи и определено напряжение и перемещение вдоль оси симметрии задачи. Приведен пример числовых расчетов.

Формулировка задачи. Рассматривается упругое полупространство, к поверхности которого приложена нестационарния нагрузка. Имеет место осевая симметрия задачи, поэтому полупространство отнесено к цилиндрической системе координат *Orz*, выбранной таким образом, что ось *Oz*, являющаяся осью симметрии, направлена вглубь полупространства, ось *Or* — вдоль его поверхности (рис. 1).

Нестационарная нагрузка в виде нормального напряжения возникает в некоторый начальный момент времени t = 0 и в общем случае является функцией времени и координаты r. Физические свойства материала среды описываются при помощи упругих постоянных — модуля всестороннего сжатия K, модуля сдвига μ и плотности γ . Введем в рассмотрение также некоторую "акустическую" среду с параметрами E, γ и $\mu = 0$, где E — модуль Юнга. Через c_0 обозначим скорость звука в акустической среде. Таким образом, скорости распространения волн определяются формулами $c_p = ((K + 4/3\mu)/\gamma)^{1/2}$; $c_s = (\mu/\gamma)^{1/2}$; $c_0 = (E/\gamma)^{1/2}$.

Вводятся безразмерные переменные и обозначения:

$$\overline{r} = \frac{r}{R}, \qquad \overline{z} = \frac{z}{R}, \qquad \overline{\sigma}_{ij} = \frac{\sigma_{ij}}{E} \qquad (i, j = r, z), \qquad \overline{u}_i = \frac{u_i}{R},$$

$$\overline{t} = \frac{c_0 t}{R}, \qquad \beta = \frac{c_s}{c_0}, \qquad \alpha = \frac{c_p}{c_0}.$$
(1)

Здесь R — некоторый характерный линейный размер; u_i — проекции вектора упругих перемещений; σ_{ij} — компоненты тензора напряжений. Ниже (если не будет оговорено иное) будут использоваться только безразмерные обозначения, поэтому черту над ними опускаем.

Рис. 1. Система координат

© В.Д. Кубенко, 2014

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 5

Движение упругой среды в осесимметричном случае описывается двумя скалярными волновыми потенциалами Ф и Ф, удовлетворяющими уравнениям [2]

$$\Delta \Phi = \frac{1}{\alpha^2} \frac{\partial^2 \Phi}{\partial t^2}; \qquad \Delta \Psi = \frac{1}{\beta^2} \frac{\partial^2 \Psi}{\partial t^2}; \qquad \Delta \equiv \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}. \tag{2}$$

Физические величины (перемещения, напряжения) выражаются через потенциалы Φ и Ψ следующим образом:

$$u_{r} = \frac{\partial \Phi}{\partial r} + \frac{\partial^{2} \Psi}{\partial r \partial z}; \qquad u_{z} = \frac{\partial \Phi}{\partial z} - \frac{\partial^{2} \Psi}{\partial r^{2}} - \frac{1}{r} \frac{\partial \Psi}{\partial r};$$

$$\sigma_{zz} = \left(1 - 2\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial^{2} \Phi}{\partial t^{2}} + 2\beta^{2} \left(\frac{\partial^{2} \Phi}{\partial z^{2}} - \frac{\partial^{3} \Psi}{\partial r^{2} \partial z} - \frac{1}{r} \frac{\partial^{2} \Psi}{\partial r \partial z}\right);$$

$$\sigma_{rr} = \left(1 - 2\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial^{2} \Phi}{\partial t^{2}} + 2\beta^{2} \left(\frac{\partial^{2} \Phi}{\partial r^{2}} + \frac{\partial^{3} \Psi}{\partial r^{2} \partial z}\right);$$

$$\sigma_{rz} = 2\beta^{2} \frac{\partial}{\partial r} \left(\frac{\partial \Phi}{\partial z} + \frac{\partial^{2} \Psi}{\partial z^{2}} - \frac{1}{2\beta^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}}\right).$$

Граничные условия на поверхности z = 0 состоят в задании нормального напряжения σ_{zz} и отсутствии касательного напряжения

$$\sigma_{zz}|_{z=0} = Q(t,r),$$

$$\sigma_{zr}|_{z=0} = 0, \quad r \ge 0.$$
(3)

Здесь Q(t,r) — заданная функция. Начальные условия для потенциалов
 Φ и Ψ являются нулевыми

$$\Phi|_{t=0} = \dot{\Phi}|_{t=0} = \Psi|_{t=0} = \dot{\Psi}|_{t=0} = 0, \tag{4}$$

на бесконечности волновые возмущения затухают.

Общее решение. Решение задачи (1)–(4) получим при помощи интегральных преобразований Лапласа по времени t с параметром s и преобразования Бесселя (Ханкеля) порядка 0 по r с параметром ξ [6]. В частности,

$$f^{L}(s) = L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt; \qquad f(t) = L^{-1}\{f^{L}(s)\} = \frac{1}{2\pi} \int_{\delta-i\infty}^{\delta+i\infty} e^{ts} f^{L}(p) dp;$$

$$f^{B}(\xi) = B\{f(r)\} = \int_{0}^{\infty} f(r)rJ_{0}(r\xi) d\xi; \qquad f(r) = B^{-1}\{f^{B}(\xi)\} = \int_{0}^{\infty} f^{B}(\xi)\xi J_{0}(r\xi) d\xi.$$
(5)

Здесь через L и B, соответственно, обозначены операторы интегральных преобразований Лапласа и Бесселя; L^{-1} , B^{-1} — операторы обращения, изображение функции обозначается соответствующим верхним индексом; J_m — цилиндрическая функция Бесселя индекса m [3].

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 5

В пространстве изображений по Лапласу и Бесселю получим следующую граничную задачу (в которой начальные условия уже реализованы):

$$\begin{aligned} \frac{\partial^2 \Phi^{LB}}{\partial z^2} &- \left(\frac{s^2}{\alpha^2} + \xi^2\right) \Phi^{LB} = 0, \\ \frac{\partial^2 \Psi^{LB}}{\partial z^2} &- \left(\frac{s^2}{\beta^2} + \xi^2\right) \Psi^{LB} = 0, \\ \left(1 - 2\frac{\beta^2}{\alpha^2}\right) s^2 \Phi^{LB} + 2\beta^2 \left[\frac{\partial^2 \Phi^{LB}}{\partial z^2} + \xi^2 \frac{\partial}{\partial z} \Psi^{LB}\right] = Q^{LB}(s,\xi), \qquad z = 0, \end{aligned}$$

$$\begin{aligned} \frac{\partial \Phi^{LB}}{\partial z} &+ \frac{\partial^2 \Psi^{LB}}{\partial z^2} - \frac{s^2}{2\beta^2} \Psi^{LB} = 0, \qquad z = 0, \\ \Phi^{LB} \to 0, \qquad \Psi^{LB} \to 0, \qquad z \to \infty. \end{aligned}$$

$$(6)$$

Общее решение волновых уравнений, затухающее при $z \to \infty$, имеет вид

$$\Phi^{LB} = A e^{-\frac{z}{\alpha}\sqrt{s^2 + \alpha^2 \xi^2}}; \qquad \Psi^{LB} = B e^{-\frac{z}{\beta}\sqrt{s^2 + \beta^2 \xi^2}}.$$
(7)

Определяя произвольные постоянные A, B из граничных условий, будем иметь выражение для изображения нормального напряжения

$$\sigma_{zz}^{LB}(s,\xi,z) = Q^{LB}(s,\xi) \times \frac{(s^2 + 2\beta^2\xi^2)^2 e^{-\frac{z}{\alpha}\sqrt{s^2 + \alpha^2\xi^2}} - 4\frac{\beta^3}{\alpha}\xi^2\sqrt{s^2 + \alpha^2\xi^2}\sqrt{s^2 + \beta^2\xi^2} e^{-\frac{z}{\beta}\sqrt{s^2 + \beta^2\xi^2}}}{(s^2 + 2\beta^2\xi^2)^2 - 4\frac{\beta^3}{\alpha}\xi^2\sqrt{s^2 + \alpha^2\xi^2}\sqrt{s^2 + \beta^2\xi^2}}.$$
(8)

Перемещение u_z и напряжение сдвига σ_{rz} в изображениях имеют вид

$$u_{z}^{LB} = -Q^{LB}(s,\xi) \frac{\frac{1}{\alpha}\sqrt{s^{2} + \alpha^{2}\xi^{2}} \left[(s^{2} + 2\beta^{2}\xi^{2})e^{-\frac{z}{\alpha}\sqrt{s^{2} + \alpha^{2}\xi^{2}}} - 2\beta^{2}\xi^{2}e^{-\frac{z}{\beta}\sqrt{s^{2} + \beta^{2}\xi^{2}}} \right]}{(2\beta^{2}\xi^{2} + s^{2})^{2} - 4\frac{\beta^{3}}{\alpha}\xi^{2}\sqrt{s^{2} + \alpha^{2}\xi^{2}}\sqrt{s^{2} + \beta^{2}\xi^{2}}}, \qquad (9)$$

$$\sigma_{rz}^{LB} = -Q^{LB}(s,\xi) \frac{\frac{1}{\alpha} (s^2 + 2\beta^2 \xi^2) \sqrt{s^2 + \alpha^2 \xi^2} \left(e^{-\frac{z}{\alpha} \sqrt{s^2 + \alpha^2 \xi^2}} - e^{-\frac{z}{\beta} \sqrt{s^2 + \beta^2 \xi^2}} \right)}{(2\beta^2 \xi^2 + s^2)^2 - 4\frac{\beta^3}{\alpha} \xi^2 \sqrt{s^2 + \alpha^2 \xi^2} \sqrt{s^2 + \beta^2 \xi^2}}.$$
 (10)

Обращение интегральных преобразований. Обратим внимание на то обстоятельство, что дробь в выражениях (8)–(10) является однородной функцией параметров преобразований s и ξ . Это позволяет надеяться, что для некоторых внешних воздействий, которые задают функцию $Q^{LB}(s,\xi)$, можно получить аналитическое выражение для σ_{zz} , σ_{rz}^{LB} , u_z^{LB} на основе метода Каньяра [4, 5] совместного обращения интегральных преобразований.

Методика обращения зависит от свойств функции Q(r,t), поэтому ее необходимо конкретизовать. В рамках данной публикации ограничимся нагрузкой следующего вида:

$$Q(t,x) = Q_0 H(kt-r),$$
 (11)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 5

где H(t) — единичная функция Хевисайда: $H(t) = \begin{cases} 1, t > 0; \\ 0, t < 0 \end{cases}$. Функция (11) задает внезапно возникающее и распространяющееся с постоянной скоростью по поверхности полупространства напряжение.

Нетрудно определить преобразование Лапласа и Бесселя этой функции

$$Q_{zz}^{L}(r,s) = Q_0 \frac{1}{s} e^{-s\frac{r}{k}}; \qquad Q_{zz}^{LB}(s,\xi) = Q_0 \frac{k^2}{(s^2 + \xi^2 k^2)^{\frac{3}{2}}}.$$
(12)

Тогда, например, из (8) получим

$$\begin{split} \sigma_{zz}^{LB}(s,\xi,z) &= Q_0 \frac{k^2}{(s^2 + \xi^2 k^2)^{\frac{3}{2}}} \times \\ &\times \frac{(s^2 + 2\beta^2 \xi^2)^2 e^{-\frac{z}{\alpha}\sqrt{s^2 + \alpha^2 \xi^2}} - 4\frac{\beta^3}{\alpha}\xi^2 \sqrt{s^2 + \alpha^2 \xi^2} \sqrt{s^2 + \beta^2 \xi^2} e^{-\frac{z}{\beta}\sqrt{s^2 + \beta^2 \xi^2}}}{(s^2 + 2\beta^2 \xi^2)^2 - 4\frac{\beta^3}{\alpha}\xi^2 \sqrt{s^2 + \alpha^2 \xi^2} \sqrt{s^2 + \beta^2 \xi^2}}. \end{split}$$

Запишем инверсию преобразования Бесселя на ос
иz,т.е. приr=0

$$\sigma_{zz}^{L}(s,z) = Q_{0} \int_{0}^{\infty} \frac{k^{2}}{(s^{2} + \xi^{2}k^{2})^{\frac{3}{2}}} \times \frac{\left[(s^{2} + 2\beta^{2}\xi^{2})^{2}e^{-\frac{z}{\alpha}\sqrt{s^{2} + \alpha^{2}\xi^{2}}} - 4\frac{\beta^{3}}{\alpha}\xi^{2}\sqrt{s^{2} + \alpha^{2}\xi^{2}}\sqrt{s^{2} + \beta^{2}\xi^{2}}e^{-\frac{z}{\beta}\sqrt{s^{2} + \beta^{2}\xi^{2}}}\right]}{(s^{2} + 2\beta^{2}\xi^{2})^{2} - 4\frac{\beta^{3}}{\alpha}\xi^{2}\sqrt{s^{2} + \alpha^{2}\xi^{2}}\sqrt{s^{2} + \beta^{2}\xi^{2}}}\xi d\xi$$

и сделаем замену переменного $\xi = s\eta, d\xi = sd\eta,$ предполагая s вещественным. Будем иметь

$$\sigma_{zz}^{L}(s,z) = Q_{0} \frac{1}{s} \int_{0}^{\infty} \frac{k^{2}}{(1+\eta^{2}k^{2})^{\frac{3}{2}}} \times \frac{\left[(1+2\beta^{2}\eta^{2})^{2}e^{-s\frac{z}{\alpha}\sqrt{1+\alpha^{2}\eta^{2}}} - 4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1+\alpha^{2}\eta^{2}}\sqrt{1+\beta^{2}\eta^{2}}e^{-s\frac{z}{\beta}\sqrt{1+\beta^{2}\eta^{2}}}\right]}{(1+2\beta^{2}\eta^{2})^{2} - 4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1+\alpha^{2}\eta^{2}}\sqrt{1+\beta^{2}\eta^{2}}}\eta d\eta. \quad (13)$$

Перепишем (13) в виде суммы двух интегралов

$$\sigma_{zz}^{L}(s,z) = Q_{0}\frac{1}{s}[R_{1}^{L}(z,s) + R_{2}^{L}(z,s)] = Q_{0}\frac{1}{s}\left[\int_{0}^{\infty}\overline{R}_{1}^{L}(s,z,\eta)d\eta + \int_{0}^{\infty}\overline{R}_{2}^{L}(s,z,\eta)d\eta\right],$$

$$\overline{R}_{1}^{L}(s,z,\eta) = e^{-s\frac{z}{\alpha}\sqrt{1+\alpha^{2}\eta^{2}}}\frac{k^{2}}{(1+\eta^{2}k^{2})^{\frac{3}{2}}}\frac{(1+2\beta^{2}\eta^{2})^{2}}{(1+2\beta^{2}\eta^{2})^{2}-4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1+\alpha^{2}\eta^{2}}\sqrt{1+\beta^{2}\eta^{2}}}\eta, \quad (14)$$

$$\overline{R}_{2}^{L}(s,z,\eta) = -4\frac{\beta^{3}}{\alpha}e^{-s\frac{z}{\beta}\sqrt{1+\beta^{2}\eta^{2}}}\frac{k^{2}}{(1+\eta^{2}k^{2})^{\frac{3}{2}}}\frac{\eta^{2}\sqrt{1+\alpha^{2}\eta^{2}}\sqrt{1+\beta^{2}\eta^{2}}}{(1+2\beta^{2}\eta^{2})^{2}-4\frac{\beta^{3}}{\alpha}\eta^{2}\sqrt{1+\alpha^{2}\eta^{2}}\sqrt{1+\beta^{2}\eta^{2}}}\eta.$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 5

В выражении (14) сделаем следующие замены переменного:

для
$$\overline{R}_1^L(s, z, \eta)$$
: $\frac{z}{\alpha}\sqrt{1 + \alpha^2 \eta^2} = t$;
для $\overline{R}_2^L(s, z, \eta)$: $\frac{z}{\beta}\sqrt{1 + \beta^2 \eta^2} = t$.

Тогда получим

$$\begin{aligned} R_{1}^{L}(s,z) &= \int_{\frac{z}{\alpha}}^{\infty} e^{-st} \overline{R}_{zz}^{(1)}(t,z) \, dt; \\ R_{1}(t,z) &= \frac{\alpha^{3}k^{2} [\alpha^{2}z^{2} + 2\beta^{2}A(t,z)]^{2}tz}{[\alpha^{2}z^{2} + k^{2}A(t,z)]^{\frac{3}{2}}([\alpha^{2}z^{2} + 2\beta^{2}A(t,z)]^{2} - 4\alpha\beta^{3}tA(t,z)\sqrt{\alpha^{2}z^{2} + \beta^{2}A(t,z)})}, \\ R_{2}^{L}(s,z) &= \int_{\frac{z}{\beta}}^{\infty} e^{-st} \overline{R}_{zz}^{(2)}(t,z) \, dt; \\ R_{2}(z,t) &= 4\frac{\beta^{4}k^{2}}{\alpha} \frac{B(t,z)\sqrt{\beta^{2}z^{2} + \alpha^{2}B(t,z)}t^{2}z}{[\beta^{2}z^{2} + k^{2}B(t,z)]^{\frac{3}{2}}[(2\beta^{2}t^{2} - z^{2})^{2} - 4\frac{\beta}{\alpha}tB(t,z)\sqrt{\beta^{2}z^{2} + \alpha^{2}B(t,z)}], \end{aligned}$$
(15)
$$A(t,z) &= \alpha^{2}t^{2} - z^{2}; \qquad B(t,z) = \beta^{2}t^{2} - z^{2}. \end{aligned}$$

Интегральные операторы в (15) есть операторы преобразования Лапласа, следовательно, оригиналами $R_1^L(s,z)$ и $R_2^L(s,z)$ есть, соответственно, $H(t-z/\alpha)R_1(t,z)$ и $H(t-z/\beta) \times R_2(z,t)$.

Окончательно, учитывая множитель 1/s в выражении (14), будем иметь следующее аналитическое выражение для нормального напряжения $\sigma_{zz}(t,z)$ на оси симметрии задачи:

$$\sigma_{zz}(t,z) = Q_0 \left[H\left(t - \frac{z}{\alpha}\right) \int_{\frac{z}{\alpha}}^t R_1(\tau,z) \, d\tau - H\left(t - \frac{z}{\beta}\right) \int_{\frac{z}{\beta}}^t R_2(\tau,z) \, d\tau \right]. \tag{16}$$

Выражения для остальных напряжений и перемещений получаются аналогично.

Числовые результаты. Приведем некоторые числовые результаты, в частности, для напряжения σ_{zz} . При вычислениях были выбраны следующие значения параметров материала упругого полупространства: $\alpha = 1,28$, $\beta = 0,69$, кроме того, параметр нагрузки $Q_0 = 1$.

На рис. 2, *a*, *б* скорость расширения нагрузки такова, что $\overline{k} = k/\alpha = 1$.

На рис. 2, *а* представлено распределение напряжения вдоль оси *z* в фиксированные моменты времени:

1 - t = 1,0; 2 - t = 5,0; 3 - t = 10,0; 4 - t = 15,0.

Можно видеть, что напряжение, оставаясь равным единице на поверхности полупространства, с течением времени и с ростом расстояния от граничной поверхности изменяет

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 5

Рис. 3. Напряжение σ_{zz} при различных k

профиль таким образом, что его крутизна уменьшается. При этом увеличивается зона, в которой значение напряжения близко к значению на границе. Рис. 2, *б* иллюстрирует развитие напряжения во времени в нескольких точках оси *z*:

$$1-z=1,0;$$
 $2-z=2,0;$ $3-z=5,0;$ $4-z=10,0.$

С ростом *z* нарастание напряжения в рассматриваемой точке становится все менее резким, а время достижения значения, близкого к значению на границе, увеличивается.

Рис. 3, *a*, *б* построены для нескольких значений безразмерного параметра k: 1 - k = 0,1; 2 - k = 1,0; 3 - k = 5,0; 4 - k = 10,0. При этом рис. 3, *a* показывает напряжение σ_{zz} как функцию *z* в момент времени t = 1,5, рис. 3, *б* — как функцию *t* в точке z = 0,5).

Как следует из графиков, характер изменения напряжения существенно зависит от скорости распространения нагрузки. С уменьшением параметра k градиент роста напряжения уменьшается. Наблюдаемый на рис. 3, a, δ (кривые 3, 4) излом отвечает фронту порожденной сдвиговой волны и имеет место только при движении нагрузки по поверхности полупространства с опережением фронта волны расширения.

Укажем, что решение аналогичной плоской задачи изложено в работе [7].

1. Снеддон И. Н., Берри Д. С. Классическая теория упругости. – Москва: ГИФМЛ, 1961. – 220 с.

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 5

- 2. Гузь А. Н., Кубенко В. Д., Черевко М. А. Дифракция упругих волн. Киев: Наук. думка, 1978. 308 с.
- 3. Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований в 2-х т. Т. 1. Преобразования Фурье, Лапласа, Меллина. Москва: Наука, ГИФМЛ, 1969. 344 с.
- 4. Cagniard L. Reflexion et Refraction des Ondes Seismiques Progressives. Paris: Gauthier-Villars, 1939. 255 p.
- 5. Слепян Л. И. Нестационарные упругие волны. Ленинград: Судостроение, 1972. 374 с.
- 6. *Диткин В. А., Прудников А. П.* Интегральные преобразования и операционное исчисление. Москва: ГИФМЛ, 1961. 524 с.
- 7. *Кубенко В. Д.* Нестационарная нагрузка на поверхности упругой полуплоскости // Доп. НАН України. 2011. № 10. С. 67–71.

Институт механики им. С. П. Тимошенко НАН Украины, Киев Поступило в редакцию 25.11.2013

Академік НАН України В. Д. Кубенко

Нестаціонарне навантаження на поверхні пружного півпростору

Розглядаеться вісесиметрична задача визначення напруженого стану пружного півпростору, на границі якого діє нестаціонарне нормальне напруження. Розв'язок задачі будується із застосуванням інтегральних перетвореь Лапласа і Бесселя. Виконано спільне обернення інтегральних перетворень. Як результат, одержано точний розв'язок задачі і визначено напруження і переміщення вздовж осі симетрії задачі. Наведено приклад числового розрахунку.

Academician of the NAS of Ukraine V.D. Kubenko

Nonstationary loading at the elastic half-space surface

A nonstationary stress is applied to the surface of an elastic half-space. It is necessary to built a solution of the transient boundary problem and to determine the stress-strain state of the halfspace. The solution is realized with help of the Laplace and Fourier integral transformations. The coupled inversion of the integral transforms is realized. As a result, the exact solution for a stress and a displacement along the axis of symmetry of the problem is determined. Numerical examples are given.