Макеевка-Донбасс, 2003. – 101 с.

2. Левкин Н.Б., КузьменкоН.С., Якуба Л.Н. О программе повышения безопасности труда на шахтах // Способы и средства создания безопасных и здоровых условий труда в угольных шахтах: Сб. научн. тр. / МакНИИ-Макеевка. – 2003. – С. 149-155.

3. Брюханов А.М., Кудинов Ю.В. О состоянии научных исследований по «Программе повышения безопасности труда на угольных шахтах».// Способы и средства создания безопасных и здоровых условий труда в угольных шахтах: Сб. научн. тр./МакНИИ. – Макеевка. – 2003. – С. 11-16.

УДК 534.222.2

И.П. Гаркуша, В.П. Куринной ЦИЛИНДРИЧЕСКИЕ УДАРНЫЕ ВОЛНЫ В ГРУНТЕ

Розглянуто особливості розповсюдження ударної хвилі у ґрунті.

THE CYLINDRICAL PERCUSSION WAVES IN THE SOIL

The especial of cylindrical percussion waves propagation are described

В Украине достаточно часто используют взрывы на выброс и сброс горной породы. В настоящее время теоретическое обоснование этих процессов развито недостаточно. Связано это с тем, что выражения для ударных адиабат много-компонентных сред очень громоздкие и не определены точно. Громоздкие и в основном численные расчеты затрудняют выяснение закономерностей процессов, протекающих при взрыве на выброс. В данной работе предлагается модель ударной сжимаемости грунта, которая позволяет получить в первом приближении простые формулы, определяющие параметры процессов, протекающих в грунте при взрыве.

Рассмотрим взрыв бесконечно длинного цилиндрического заряда фугасного взрывчатого вещества в грунте. Детонация мгновенная. Грунт состоит из минеральных зерен, связующего цемента, воды и воздуха. Ударную адиабату грунта можно рассматривать как сумму адиабат для каждой компоненты. Расчеты показывают, что при давлениях, развиваемых при взрыве фугасных взрывчатых веществ (ВВ) можно пренебречь сжимаемостью минеральных зерен и воды. При давлениях, больших 10 МПа, можно пренебречь объемом воздуха в грунте. Таким образом, если плотность грунта ρ_0 , а относительный объем воздуха пор α , то плотность грунта за фронтом ударной волны (УВ) $\rho = \rho_0/(1-\alpha)$.

С целью получения некоторых соотношений для цилиндрических УВ рассмотрим цилиндрическую полость с начальным радиусом r_0 , расширяющуюся с начальной скоростью u_0 (рис. 1).

В момент времени t радиус полости будет r_n . В породе распространяется цилиндрическая УВ со скоростью D. Скорость породы за фронтом УВ u. Закон сохранения массы можно записать в виде:

$$\rho_0 r d\beta dr D dt H = \rho r d\beta (D - u) dt \cdot H, \qquad (1)$$

где *d*β – угол клина; *dt* – дифференциал времени; *H* – высота части заряда;

dr – дифференциал расстояния.

Рис. 1 – Расчетная схема определения параметров ударной волны

После сокращения выражение (1) записывается следующим образом:

$$\rho_0 D = \rho (D - u) \,. \tag{2}$$

Скорость породы за фронтом УВ имеет вид

$$u = \left(1 - \frac{\rho_0}{\rho}\right) D. \tag{3}$$

Применяя закон Ньютона

$$P \cdot rd\beta H dt = \rho_0 D r d\beta H dt \cdot u , \qquad (4)$$

где *P* – давление на фронте УВ, получаем

$$P = \rho_0 u D \,. \tag{5}$$

Из (2) и (5) получим выражение для скорости породы за фронтом УВ:

$$u = \sqrt{\left(\frac{1}{\rho_0} - \frac{1}{\rho}\right)P} \,. \tag{6}$$

Выражение для скорости цилиндрической волны получим, решая совместно уравнения (2) и (6):

$$D = \frac{1}{\rho_0} \sqrt{\frac{P}{\frac{1}{\rho_0} - \frac{1}{\rho}}} = \sqrt{\frac{P}{\rho_0 \left(1 - \frac{\rho_0}{\rho}\right)}}.$$
 (7)

Закон сохранения энергии в нашем случае записывается в виде

$$\rho_0 Dr d\beta H dt \left(\varepsilon + u^2/2 \right) = P \cdot r d\beta H u dt , \qquad (8)$$

281

где є – внутренняя энергия единицы массы породы за фронтом УВ.

Отсюда получаем выражение для энергии единицы массы породы за фронтом УВ

$$\varepsilon = \frac{Pu}{\rho_0 D} - \frac{u^2}{2} = \frac{P}{2} \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right).$$
(9)

Для единицы объема породы энергия w равна

$$w = \frac{Pu}{D} - \frac{\rho u^2}{2}.$$
 (10)

Подстановка значения для плотности грунта за фронтом ударной волны в (2) дает следующее значение для скорости породы за фронтом УВ:

$$u = \alpha D \,. \tag{11}$$

Тогда давление за фронтом УВ будет равно

$$P = \alpha \rho_0 u^2. \tag{12}$$

Выражение для массовой скорости породы за фронтом УВ (6) записывается в этом случае в виде:

$$u = \sqrt{\frac{\alpha P}{\rho_0}}, \qquad (13)$$

а скорость УВ будет равна

$$D = \sqrt{\frac{P}{\alpha\rho}} \,. \tag{14}$$

Энергия единицы массы породы за фронтом УВ равна

$$\varepsilon = \frac{P\alpha}{2\rho_0}.$$
 (15)

Объемная плотность энергии породы имеет вид:

$$w = \frac{P\alpha}{2}.$$
 (16)

При смещении стенок полости на dr_n перемещается масса породы dm, равная:

$$dm = r_n d\beta H dr_n \rho . \tag{17}$$

На расстоянии r от оси скважины перемещение массы dm равно

$$dm = rd\beta H dr\rho . (18)$$

Из (17) и (18) вытекает, что

$$r_n u_n = r u . (19)$$

В случае, когда радиус полости взрыва равен *r_n*, объем вытесненной породы при ее расширении равен V

$$V = \pi \left(r_n^2 - r_0^2 \right) H.$$
 (20)

Объем сомкнувшихся пор будет равен V₁

$$V_1 = \pi \left(r_y^2 - r_n^2 \right) H \cdot \alpha , \qquad (21)$$

где r_v – радиус переднего фронта УВ.

Так как $V = V_1$, то, приравняв правы части, получим

$$r_{y} = \sqrt{\left((1+\alpha)r_{n}^{2} - r_{0}^{2}\right)/\alpha} .$$
 (22)

Давление в породе на расстоянии r от оси скважины равно P(r)

$$P(r) = \rho_0 \alpha u^2 = \rho_0 \alpha \left(\frac{r_n}{r}\right)^2 u_n^2 = P_n \left(\frac{r_n}{r}\right)^2, \qquad (23)$$

где *P_n* – давление в полости взрыва

Давление в полости взрыва изменяется с радиусом самой полости по уравнению Пуассона

$$P_n = P_{\scriptscriptstyle H} \left(\frac{r_0}{r_n} \right)^k, \tag{24}$$

где k – показатель адиабаты; P_{μ} – начальное давление.

Давление в породе с расстоянием от оси заряда будет изменяться по закону

$$P(r) = P_{H} \frac{r_{0}^{2k}}{r_{n}^{2k-2}} \frac{1}{r^{2}}.$$
(25)

Определим радиус полости взрыва в момент времени *t*. Рассмотрим элемент цилиндрического слоя породы, прилегающего к стенкам полости. Объем элемента (см. рис. 1) $dV = r_n d\beta H dr_n$, масса элемента $dm = \rho r_n H d\beta \cdot dr_n$. Давление продуктов взрыва на стенки полости имеет вид: $P(r_n) = P_n (r_0 / r_n)^{2k}$. С внешней стороны элемента породы давление равно

$$P(r_n + dr_n) = P_{\mu} \frac{r_0^{2k}}{r_n^{2k-2}} \frac{1}{(r_n + dr_n)^2}.$$
(26)

Разность давлений *dP* определяется следующим образом:

$$dP = P(r_n + dr_n) - P(r_n) = P_{_{H}} \frac{r_0^{2k}}{r_n^{2k}} \frac{2dr_n}{r_n}.$$
(27)

Продукты взрыва действуют на элемент (с учетом противодавления породы) с силой *dF*

$$dF = dP \cdot dS = P_{\mu} \frac{r_0^{2k}}{r_n^{2k}} \cdot \frac{2dr_n}{r_n} \cdot r_n d\beta H dr_n.$$
⁽²⁸⁾

По второму закону Ньютона $dF = dm \cdot du_n / dt$,

$$dF = P_{\mu} \left(\frac{r_0}{r_n}\right)^{2k} \cdot \frac{2dr_n}{r_n} \cdot r_n d\beta H dr_n = \rho r_n d\beta H dr_n du_n / dt.$$
(29)

Ускорение породы du_n/dt запишем в виде: $(du_n/dr_n)(dr_n/dt) = u_n du_n/dr_n$ и проинтегрируем уравнение (29)

$$u_n^2 = C - \frac{2P_n}{k\rho} \left(\frac{r_0}{r_n}\right)^{2k}.$$
(30)

Постоянную С определяем из начальных условий и приходим к следующему интегралу

$$\int dt = \int \frac{dr_n}{\sqrt{\frac{P_n}{\rho_0} \left(\alpha + \frac{2(1-\alpha)}{k} - \frac{2}{k} \left(1 - \left(\frac{r_0}{r_n}\right)^{2k}\right)\right)}}.$$
(31)

Этот интеграл довольно просто можно решить численными методами.

Таким образом, полученные соотношения позволяют в первом приближении оценить практически все величины, характеризующие процесс распространения цилиндрической ударной волны в грунте.

УДК 550.3:622.831:622.3.016

А.А. Яланский, Алекс.А. Яланский, В.В. Арестов ОСОБЕННОСТИ МЕТОДИКИ АКУСТИЧЕСКИХ ЗОНДИРОВАНИЙ ГЛУБИННОГО СТРОЕНИЯ МАССИВА ГОРНЫХ ПОРОД

Розглянуто особливості методики віброакустичного зондування глибинної побудови масиву гірських порід, зокрема контролю заколів, відшарувань, тріщинуватості, плоскопаралельних структур, а також кріплення гірничих виробок, тунельного оздоблення та ін.

FEATURES OF A TECHNIQUE OF SOUNDING (VIBROACOUSTIC CONTROL) OF A PLUTONIC CONSTITUTION OF A ROCK MASS

The features of a technique of sounding (vibroacoustic control) of a plutonic constitution of a rock mass are reviewed. The attention is given to the control of block and flat-parallel structures of rock mass, mine working support, tunnels lining, etc.

Горная порода – неоднородная по структуре, текстуре и свойствам среда. Неоднородности изменяются в широких пределах, например, раскрытия трещин – от 10⁻⁹ до 10⁻¹ м при длине от 10⁻³м до сотен метров, размеры включений и природных пустот в массиве – от 10⁻⁴м до нескольких метров в сечении, зоны концентрации напряжений – от 10⁻³ м (вокруг скважин) до многих сотен метров (тектонические напряжения). Часто геологические процессы приводят к возникновению упорядоченной неоднородности массива: слоистости, блочности и периодичности элементов неоднородности, что обусловливает анизотропию среды. Для измерений неоднородность является относительным понятием. Когда область контроля значительно превышает размеры элементов неоднородности, то среду можно считать квазиоднородной, а неоднородности проявляют свои свойства только интегрально. Наоборот, если естественная неоднородность не укладывается в изучаемую область пространства, то она возможно и не будет обнаружена. Следовательно, неоднородности в массиве обладают масштабным эффектом. Степень неоднородности при измерениях условно разделяют на четыре группы: 1) неоднородности крупного масштаба, включающие фациальную изменчивость, тектонические разрывы, зоны выветривания и разгрузки, горно-технологические объекты; 2) неоднородности структуры и соста-