
Формальні методи розробки програмного забезпечення

© V. Peschanenko, 2013

14 ISSN 1727-4907. Проблеми програмування. 2013. № 1

UDC 004.2,004.4

Vladimir Peschanenko

PARTIAL EVALUATION IN INSERTION MODELING SYSTEM

The paper relates to practical aspects of insertion modeling. Insertion modeling system is an environment for

development of insertion machines, used to represent insertion models of distributed systems. The notions of

insertion modeling are stated. The main features of partial evaluation are described in the paper. The concep-

tion of partial evaluation in insertion modeling is presented.

Introduction

Insertion modeling is an approach to

modeling complex distributed systems, based

on the theory of interaction of agents and en-

vironments [1–3]. Mathematical foundation

of this theory was presented in [4]. During the

last decade insertion modeling was applied

to the verification of requirements for soft-

ware systems [5–9]. First the theory of inter-

action of agents and environments was pro-

posed as an alternative to well known theories

of interaction such as Milner’s CCS [10] and

Pi-calculus [11], Hoare’s CSP [12], Cardelli’s

mobile ambients [13] and so on. The idea

of decomposition of system to composition

of environment, and agents inserted into this

environment implicitly exists in all theories

of interaction and for some special case it

appears explicitly in the model of mobile

ambients.

Another source of ideas for insertion

modeling is the search of universal program-

ming paradigms such as Gurevich’s ASM

[14], Hoare’s unified theories of program-

ming [15], rewriting logic of Meseguer [16].

These ideas were taken as a basis for the sys-

tem of insertion programming [17], developed

as the extension of algebraic programming

system APS [18]. Now this system initiated

the development of insertion modeling system

IMS which was started in Glushkov Institute

of Cybernetics. The first version of IMS and

some simple examples of its use are available

in [19]. IMS has many applications

[20-22], that is why a speed of interpretation

of the IMS is very important. One of the tech-

niques which helps to speed up interpretation

is partial evaluation.

Partial evaluation was the subject of

rapidly increasing activity over the past dec-

ade of previous century since it provides a

unifying paradigm for a broad spectrum of

work in program optimization, interpretation,

compiling, other forms of program genera-

tion, and even the generation of automatic

program generators.

Many applications today have con-

cerned compiling and compiler generation

from interpretive programming language def-

initions, but partial evaluation also has im-

portant applications in scientific computing,

logic programming, meta-programming, and

expert systems.

It is distributed a program optimiza-

tion technique, which is called program spe-

cialization. Full automation and the genera-

tion of program generators, as well as trans-

forming single programs, are central themes

and they have been achieved [23].

Presentation of partial evaluation in

IMS is the main goal of the paper. The second

section presents the insertion machines, their

properties and restrictions that can be met in

practice. The main notions about partial eval-

uations are described in the third section. Par-

tial evaluations for insertion modeling are

considered in the last section.

1. Insertion Modeling

Insertion modeling is the development

and investigation of distributed concurrent

systems by means of representing them as a

composition of interacting agents and envi-

ronments. Both agents and environments are

attributed transition systems, considered up to

dissimilarity, but environments are additional-

ly provided with insertion function used for

the composition and characterizing the behav-

ior of environment with inserted agents. At-

Формальні методи розробки програмного забезпечення

15

tributed transition systems are labeled as tran-

sition systems and the labels of transitions are

called actions, they have states labeled by

attribute labels. If s is a state of a system,

then its attributed label will be denoted as

 al s . Transition system can be also enriched

by distinguishing in its set of states S the set

of initial states SS 0 and the set of terminal

states SS  . For attributed transition sys-

tem we use the following notation:

sasa a  :: means, there is a transition

from the state s with attributed label La to

the state s labeled by attributed label La  ,

and this transition is labeled by action La .

Therefore enriched attributed system S can

be considered as a tuple

  LSalSASTSSLAS :,,,,,, 0 .

A pair  LA, of actions and

attributed labels is called a signature of sys-

tem S. We also distinguish hidden action 

and hidden attributed label 1. Unlike other

actions and attributed labels these hidden la-

bels are not observable.

Behaviors. Each state of transition

system is characterized up to bisimilarity

by its behavior represented as an element of

behavior algebra (special kind of process

algebra). The behavior of system in given

state for the ordinary (labeled, but not

attributed) systems is specified as an element

of complete algebra of behaviors  F A (with

prefixing a.u, non-deterministic choice u+v,

constants ,,0 , the approximation relation

 , and the lowest upper bounds of directed

sets of behaviors). In the sequel we shall

use the term process as a synonym of be-

havior.

For attributed systems attributed

behaviors should be considered as invariants

of bisimilarity. The algebra  LAU ,, of

attributed behaviors consists of three sorted

algebra. The main set is a set U of attribut-

ed behaviors, A is a set of actions, L is a set

of attribute labels. Prefixing and non-

deterministic choice are defined as usually

(nondeterministic choice is associative,

commutative and idempotent). Besides the

usual behavior constants 0 (deadlock),

 (successful termination) and  (unde-

fined behavior), the empty action τ is also

introduced with the identity

uu . .

The operation   Uu : of labeling the be-

havior Uu with an attribute label L is

added. The empty attribute label 1 is intro-

duced with the identity

uu :1 .

The approximation is extended to labeled be-

haviors, so that

vuvu):():( 

Constructing a complete algebra

 ,F A L of labeled behaviors is similar to the

constructing of the algebra  F A . Each be-

havior u in this algebra has a canonical form:

u

Jj

jj

Ii

ii uauu   


.: ,

where   ji a,1 , u is a termination con-

stant ( ,,,0), all summands are dif-

ferent and behaviors iu and ju are in the

same canonical form.

Behaviors, i.e., elements of the algebra

 ,F A L can be considered as the states of an

attributed transition system. The transition

relation of this system is defined as follows:

uvua
a
.

uvuvu :):(:1: 



uua
a
.:

uu ::: 

 .

Set E of behaviors is called transition

closed if EuuuEu
a

 , .

Ordinary labeled transition systems

are considered as special case of attributed

ones with the set of attribute labels equal to

 1 , and the algebra  F A is identified with

  , 1F A .

Insertion function. Environment

 ,,,,, MALCE is defined as a transition

Формальні методи розробки програмного забезпечення

16

closed set of behaviors  LCFE , with in-

sertion function   EMAFE  ,: . The

only requirement for insertion function is that

it must be continuous w.r.t. approximation

relations defined on E and  ,F A M . Usually

the behaviors of environment are represented

by the states of transition system considering

them up to bisimilarity. The state),(ue of

environment resulting after agent insertion

(identified with the corresponding behavior)

is denoted as][ue or][ue to mention inser-

tion function explicitly and the iteration of

insertion function as

]]...)[])[[(...(],...,,[2121 mm uuueuuue  .

Environments can be considered as agents

and therefore can be inserted into higher level

environments with other insertion functions.

So the state of multilevel environments can be

described for example by the following ex-

pression: ,...],...],[,...],,[[2
2

1
2

22
1

1
1

1 uueuuee  .

The most of insertion functions considered in

this paper are one-step or head ones. Typical

rules for definition of insertion function are

the following (one-step insertion):

][][

,

ueue

uuee
c

aa




, (1)

][][ueue

ee
c

c




. (2)

The first rule can be treated as follows.

Agent u asks for permission to perform

an action a, and if there an a-transition ex-

ists from state e, performance of a is al-

lowed and both agent and environment

come to the next state with observable ac-

tion c of environment. The second rule de-

scribes the move of environment with sus-

pended move of agent. The additivity condi-

tions usually are used:

][][][veuevue  ,

][][])[(ufueufe  .

The rules (1-2) can also be written in

the form of rewriting rules:

fuecuaea ][.].)[.(,

guecuec ][.])[.(.

Two kinds of insertion machines are

considered: real type or interactive and ana-

lytical insertion machines. The first ones exist

in real or virtual environment, interacting

with it in real or virtual time. Analytical ma-

chines intended for model analyses, investiga-

tion of its properties, solving problems etc.

The drivers for two kinds of machines corre-

spondingly are also divided into interactive

and analytical drivers.

Interactive driver after normalizing the

state of environment must select exactly one

alternative and perform the action, specified

as a prefix of this alternative.

Insertion machine with interactive

driver operates as an agent inserted into ex-

ternal environment with insertion function

defining the laws of functioning of this envi-

ronment. External environment, for example,

can change a behavior prefix of insertion ma-

chine according to their insertion function.

Interactive driver can be organized in a rather

complex way. If it has criteria of successful

functioning in external environment, intellec-

tual driver can accumulate the information

about its past, develop the models of external

environment, improve the algorithms of se-

lecting actions to increase the level of suc-

cessful functioning. In addition it can have

specialized tools to exchange the signals with

external environment (for example, percep-

tion of visual or acoustical information, space

movement, etc).

Analytical insertion machine opposed

to interactive one can consider different vari-

ants of making decision about performed ac-

tions, returning to choice points (as in logic

programming) and consider different paths

in the behavior tree of a model. The model

of system can include the model of external

environment of this system, and the driver

performance depends on the goals of insertion

machine. In general case analytical machine

solves the problems by search of states, hav-

ing the corresponding properties(goal states)

Формальні методи розробки програмного забезпечення

17

or states in which given safety properties are

violated. The external environment for inser-

tion machine can be represented by a user

who interacts with insertion machine, sets

problems, and controls the activity of inser-

tion machine.

Analytical machine enriched by log-

ic and deductive tools can be used for sym-

bolic modeling. The state of symbolic mod-

el is represented by means of properties of

the values of attributes rather then their co-

ncrete values.

The general architecture of insertion

machine is represented on the fig. 1.

The main component of insertion

machine is model driver, the component

which controls the machine movement on the

behavior tree of a model. The state of a model

is represented as a text in input language

of insertion machine and is considered as an

algebraic expression. The input language

includes recursive definitions of agent behav-

iors, notation for insertion function, and

Fig. 1. Architecture of Insertion Machine

possibly some compositions for environment

states. The state of a system must be reduced

to the form ,...],[21 uuE . This functionality

is performed by the module called agent

behavior unfolder. To make the movement,

the state of environment must be reduced to

normal form 



Ii

ii Ea  where ia are

actions, iE are environment states,  is a

termination constant. This functionality is

performed by the module environment

interactor. It computes the insertion function

calling the agent behavior unfolder, if it is

necessary. If the infinite set I of indices

is normally allowed, the weak normal form

GFa . is used, where G is arbitrary expres-

sion of input language [9].

2. Partial Evaluations

It is well known that a one-argument

function can be obtained from two-argument

function by specialization, i.e. by fixing one

input to particular value. In analysis it is

called restriction or projection, and in logic it

is called currying. Partial evaluation, howev-

er, works with program texts rather than

mathematical functions.

Partial evaluator is an algorithm which

produces a so-called residual or specialized

program, when a program and some of its in-

put data are given. Running the residual pro-

gram on remaining input data will yield the

same result as running the original program

on all of its input data.

The theoretical possibility of partial

evaluation was established many years ago in

recursive function theory as Kleene’s “s-m-n

theorem”.

Partial evaluation sheds new light on

techniques for program optimization, compi-

lation, interpretation, and generation of pro-

gram generators. Further, it gives insight into

the properties of programming languages

themselves.

Partial evaluation can be considered as

a special case of program transformation, but

emphasizes full automation and generation of

program generators as well as transformation

of single programs.

Partial evaluation gives a remarkable

approach to compilation and compiler genera-

tion. For example, partial evaluation of an

interpreter with respect to a source program

yields target program. Thus, compilation can

be achieved without a compiler, and a target

program can be considered as a specialized

interpreter.

Moreover, provided partial evaluator

is self-applicable, compiler generation is pos-

sible: specializing the partial evaluator itself

with respect to a fixed interpreter yields a

compiler. Thus a compiler can be considered

as a specialized partial evaluator, which can

specialize only an interpreter for a particular

language. Finally, specializing the partial

evaluator with respect to itself yields a com-

piler generator. Thus, compiler generator can

be thought of as a specialized partial evalua-

tor, which can specialize itself only.

Формальні методи розробки програмного забезпечення

18

The application of partial evaluation

is not restricted to compiling and compiler

generation. If a program takes more than one

input, and one of the inputs varies more slow-

ly than the others, then specialization of the

program with respect to that input gives a

faster specialized program. Moreover, a lot of

real-life programs exhibit interpretive behav-

ior. For instance, they may be parameterized

with configuration _les, etc., which seldom

vary, and therefore they may be profitably

specialized.

The range of potential applications is

extremely large, as shown by the list of ex-

amples in [23]. All examples have been im-

plemented on the computer, by researchers

from Copenhagen, MIT, Princeton, and Stan-

ford universities; and INRIA (France) and

ECRC (Germany). All have been seen to give

significant speedups.

 Pattern recognition.

 Computer graphics by “ray tracing”.

 Neural network training.

 Answering database queries.

 Spreadsheet computations.

 Scientific computing.

 Discrete hardware simulation.

In computing partial evaluation is a

technique for several different types of pro-

gram optimization by specialization. The

most straightforward application is to produce

new programs which run faster than the origi-

nals while being guaranteed to behave in the

same way. More advanced usages include

compiling by partially evaluating an inter-

preter with the program to be compiled as its

input; generating compilers by partially eval-

uating a partial evaluator with the interpreter

for the source language concerned as its in-

put. And finally, generating the compiler-

generator by partially evaluating the partial

evaluator with itself as its input. It is also true

and for interpretation, because partial evalu-

ation makes optimization of the source code

of program, which should perform faster.

IMS is the interpreter, that is why we will

talk about partial evaluation of interpretation.

A computer program, prog, is seen as

a mapping of input data into output data:

OIIprog dynamicstatic : .

staticI , the static data, is the part of the

input data, known at interpretation time.

The partial evaluator transforms

staticIprog, into OIprog dynamic:* by

precomputing of all static input during inter-

pretation time. *prog is called the residual

program and should run more efficiently than

the original program. The act of partial evalu-

ation is said to residualize prog to *prog [23].

3. Mixed Computation in Insertion

Modeling

There are three known possibilities to

realize partial evaluation in insertion model-

ing:

 Partial behavior evaluation.

 Partial actions evaluation.

 Partial low level language evaluation.

Partial behavior evaluation. The be-

havior description has the following simple

syntax:

<behavior>::= Delta | bot | 0 |

< action > | <action> . <behavior> |

<behavior> + <behavior>|

<behavior>;<behavior>|

<behavior>||<behavior>|

<functional expression>|

<environment state>[<behavior>]|

<agent name>

A set of agent names is considered as

a system of equations by the following syn-

tax:

<agent equation system>::=

<list of <agent equations> separated by “,” >,

<agent equation>::=

<agent name>=< behavior>.

Therefore, the language of behavior

algebra (termination constants, prefixing

and nondeterministic choice) is extended

by functional expressions and explicit rep-

resentation of insertion function. We con-

sider extended grammar for behavior with

sequential (“;”) and parallel (“||”) composi-

tions [19].

As it was shown in grammar <agent

equation> can be recursive in general case.

It means that it is possible to substitute not

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Optimization_%28computer_science%29
http://en.wikipedia.org/wiki/Optimization_%28computer_science%29
http://en.wikipedia.org/wiki/Specialization_%28logic%29
http://en.wikipedia.org/wiki/Computer_program

Формальні методи розробки програмного забезпечення

19

recursive equations in right part of other

equations and in behavior.

Let),(Sysub  be defined behavior

and SysA is set of agent names (left part of

equations), and uA is set of agent names in

behavior u. The system of equation is static

for concrete example. It means that

staticISys . In step-by-step insertion the be-

havior u is changed. Speaking generally,

dynamicIu . So, the notion of partial evalua-

tion can be used here for optimization of in-

terpretation.

However, note that equations are used

for definition of infinite behavior. So, the

partial evaluation here is to eliminate all agent

names which define finite behavior in u and

Sys. Let fA be set of agent names (left part

of equations in Sys) which defines finite

behavior. So, the idea of partial evaluation

here is to build  fff ASysAuAb /,//  ,

where operation “a/b” defines an algorithm of

elimination in a agent names which de-

fines finite behavior fA is the set of agent

names from SysA which behavior  abeh and

   Sysabeha  :

}.))(

(|{)(

Sysabeh

aAaAaaA abehSysf





Theorem 1.

)/,/(),(ff ASysAbSysb  .

Proof.  ),(/,/ SysbASysAb ff  is

always true, because it is possible to mark

some finite behavior fb inside b and to re-

place it by a new agent name a and to add

new equation fba  to the fASys / and so

on. If fA is set of agent names which has

finite behavior in Sys then it is possible to

eliminate all of them from)(fAbeh (the right

parts of equations). It means that)(fAbeh

doesn’t depend on fA . ()(fAbehf AA).

Then, it is possible to substitute equations

Sys to u (
fAu AA). So, the behavior

fAb / is obtained. Next, if )(fAbehf AA

and 
fAu AA then all such equations

can be removed from Sys . Finally, fASys /

was obtained and

),()/,/(SysbASysAb ff  . So, the theorem

was proved.

Partial actions evaluations. Let split

the set of action A on two subsets where CngA

is the set of changing actions and NCngA is

the set of non-changing actions

NChgChg AAA  . One step of insertion of

some action NChgAa is inserted in the next

way:

NChgAauEauaE ],[.].[.

Here action a doesn’t change envi-

ronment state E and doesn’t add anything to

the resulting behavior u after its insertion.

These actions NChgA are not parameterized.

The one step insertion of some action

ChgAa is inserted in the next way:

AauEafuaE ),,,(].[,

where)()(: AFEAFEAf Cng  , A is

the set of actions, E is a set of the environ-

ment states, F(A) is an expression in the alge-

bra of behavior. This function f could change

environments state E and could add the new

behavior into u. The set of actions CngA and

corresponded functions f for each of them are

static. It means that we could apply here the

notion of the partial evaluations.

So, let)/,/(/ fff ASysAuAb  and

EAFE )(: , where E is a set of envi-

ronment states,  F A is an expression in the

algebra of behavior, the function  called

insertion function. One of main properties of

such function is continuity. It means that for

each action CngAa the function),,(uEafa

is defined by insertion function  . The set of

such functions is marked by F . Usually in-

sertion function is defined as a system of re-

writing rules. For one step insertion it is nec-

essary to build behavior in the normal form:

Формальні методи розробки програмного забезпечення

20

Aaa i

Ii

ii 


,u 

which is defined by the only way. Where  is

termination constant, iu is behavior. Then, it

is made or we make non-deterministic inser-

tion:][][][yExEyxE  , where E is envi-

ronment state, x and y are behaviors.

So, the main idea of partial evaluation

here is to build   EFAFE   ,:* . Let

CngAa ,  AFu ,),(FAFu  .

 FAF , is made from  F A , by substitution

of an action CngAa in  F A to function

),,(uEafa .

Theorem 2.    uaEuaE  .,., * .

Proof. Let’s collect the set of equa-

tions Fffa aa  },{ , where CngAa , af

corresponding interpretation of action. Corre-

sponded function af will always exist be-

cause of continuity of insertion function. Af-

ter that obtained set }{ afa  is substituted

into behavior u and the result is

),(FAFu  . Finally, all Cnga AaFf  ,

are replaced in the insertion function  by

the following condition:

),,(].[uEafufE aa  .

From the other side

),,(].[uEafuaE a for CngAa and the the-

orem is proved.

From the other point of view what

happens with the program if the both algo-

rithms of partial evaluations are done?

Theorem 3.  Cngf AA .

Proof. fA is the set of agent names,

but agent names are not the actions because

they are defined by the equation in unfolding.

So, the theorem is proved.

From practical point of view this theo-

rem means that these two partial evaluations

are independent and could be realized in any

combinations.

4. Partial low level language

evaluation

The Algebraic Programming System

APS and Insertion Modeling System IMS

[24] are used for prototyping of the algo-

rithms first, then for research of the proper-

ties and behavior of such algorithms, and

finally for realization of a final version for

such algorithms. These systems have two

languages for realizations of this idea:

APLAN (Algebraic Programming LANguage)

and C++ (language of such systems realiza-

tion). The process of automatically conver-

sion of code from APLAN to C++ was de-

scribed in [25]. So, if some algorithm was

researched and realized in final version of it

then it is possible to consider it as a static

data of the programs. It means that the no-

tion of partial evaluation could be used here.

This idea can be used for realization of func-

tions af from the previous section and for

final realization of the Model Driver module

(fig. 1). However, note that the idea spreads

for all part of such algorithm. A user should

choose what parts of the algorithm are con-

sidered as static. And then, our partial evalu-

ation for that case should support that. For

realization of partial evaluation here the no-

tion of APLAN interpreter is used.

APLAN Interpreters are programs

designed for the interpretation of the pro-

grams written in APLAN language. They are

developing in C++ language on the base of

libraries of functions and data structures to

work with internal representation of system

data structures. Each interpreter is connect-

ed with the distinct algebra  AXT , , where

 is signature (the set of marks with arity),

X is set of names in APLAN, and A is set of

atoms. Names and atoms are APLAN no-

tions. The easer way to make partial evalua-

tion is to use here the translator of source

code which was developed early [25]. The

Translator transfers realization of such

codes from the set X to the A. The function

names are considered as atoms. If such

codes depend on other APLAN code then

such conversion obtains the internal

call of sub-programs only. It means that

if some APLAN sub-program is left

Формальні методи розробки програмного забезпечення

21

on APLAN language then the resulting co-

des are called C++ realization. So, the

problem of using C++ procedures in

APLAN language is solved. If the system

has both realizations APLAN and C++ with

the same name then after removing

of APLAN definition the system uses

C++. However, the problem of replacing

of some C++ procedure to APLAN proce-

dure is still actual.

The solution of this problem is to add

the set H of pairs  nn fx , , where nx is

APLAN name of such procedure or Nil if cor-

responded name was not found, nf is pointer

to C++ realization of such procedure or Nil if

corresponded procedure was not realized yet.

This set H can be obtained after loading of

initial model, because that process builds the

algebra  AXT , according to the current

APLAN Interpreter. The function

   AXTAXTHpc ,,:   is defined in

Interpreter. This function is used in C++ in-

stead of direct call of function nf . It finds

pointer for the current realization of the

APLAN procedure. This function works by

the following way:

 If Nilxn  then it calls corresponded

APLAN procedure.

 If    NilfNilx nn  then it calls

corresponded C++ procedure.

 If    NilfNilx nn  then it prints er-

ror message and returns Nil.

The most important feature of real-

ization of such function pc is strategies

calling [25]. For this case the function

   AXTAXTHHpc ,,:2
  is de-

fined. The case, when system of rewriting

rules (s.r.r.) can be considered as internal

function on C++, is added to all internal

strategies. Let pairs     Hfxfx nnnn 2211 ,,, be

the first and the second arguments of 2pc

function respectively. Then this function

works in the following way:

 If    NilxNilx nn
 21 then it calls

corresponded APLAN strategy with APLAN

s.r.r.

 If      NilxNilfNilx nnn
 211

then it calls corresponded C++ strategy with

APLAN s.r.r.

 If      NilfNilxNilx
nnn  221

then it calls corresponded APLAN strategy

with C++ s.r.r.

 If       NilxNilxNilx
nnn
211

 Nilf
n
 2 then it calls corresponded C++

strategy with C++ s.r.r.

 If       NilxNilxNilx
nnn
211

 Nilf
n
 2 then it prints error message and

returns Nil.

This partial evaluation for low level

realization gives possibilities to research sub-

programs of final C++ program on APLAN

language. For example, if it is required to re-

search one procedure in large system then we

could realize it on APLAN only and run it

without appreciable loss of performance. It

gives us possibilities to research any sub-

program of large system that was realized in

APS and IMS systems.

Conclusion

So, the notion of the partial evalua-

tions is applicable to the insertion modeling

and could be used in practice. These ap-

proaches were realized in APS and IMS, that

makes them more applicable for industrial

projects.

1. Letichevsky A.A., Gilbert D.R. A universal

interpreter for nondeterministic concurrent

programming languages // Fifth Compulog

network area meeting on language design and

semantic analysis methods, 1996.

2. Letichevsky A., Gilbert D. A general theory of

action languages // Cybernetics and System

Analyses. – 1998. – Vol. 1. – P. 16–36.

3. Letichevsky A., Gilbert D. A Model for Inter-

action of Agents and Environments // [In

D. Bert, C. Choppy, P. Moses, (eds.)] Recent

Trends in Algebraic Development Tech-

niques. – Springer 1999 (LNCS). – Vol. 1827.

– P. 311–328.

4. Letichevsky A. Algebra of behavior transfor-

mations and its applications // [In

Формальні методи розробки програмного забезпечення

22

V.B. Kudryavtsev and I.G. Rosenberg (eds)]

Structural theory of Automata, Semigroups,

and Universal Algebra, NATO Science Series

II. Mathematics, Physics and Chemistry. –

Springer 2005. – Vol 207. – P. 241–272.

5. Baranov S., Jervis C., Kotlyarov V., Letichev-

sky A., and Weigert T. Leveraging UML to

Deliver Correct Telecom Applications // [In

L. Lavagno, G. Martin, and B.Selic, (eds.)]

UML for Real: Design of Embedded Real-

Time Systems. Kluwer, Amsterdam: Academ-

ic Publishers, 2003.

6. Letichevsky A., Kapitonova J., Letichevsky A.

jr., Volkov V., Baranov S., Kotlyarov V., Wei-

gert T. Basic Protocols, Message Sequence

Charts, and the Verification of Requirements

Specifications // Computer Networks. – 2005.

– Vol. 47. – P. 662–675.

7. Kapitonova J., Letichevsky A., Volkov V., and

Weigert T. Validation of Embedded Systems

// [In R. Zurawski, (eds.)] The Embedded Sys-

tems Handbook. Miami: CRC Press, 2005.

8. Letichevsky A., Kapitonova J., Volkov V., Let-

ichevsky A. jr., Baranov S., Kotlyarov V., and

Weigert T. System Specification with Basic

Protocols // Cybernetics and System Anal-

yses. – 2005. – Vol. 4. – P. 479–493.

9. Letichevsky A., Kapitonova J., Kotlyarov V.,

Letichevsky A. jr., Nikitchenko N., Volkov V.,

and Weigert T. Insertion modeling in distrib-

uted system design // Problems of Program-

ming. – 2008. – Vol. 4. – P. 13–39.

10. Milner R. Communication and Concurrency //

Prentice Hall, 1989.

11. Milner R. Communicating and Mobile Sys-

tems: the Pi Calculus / R. Milner Cambridge

University Press 1999.

12. Hoare C.A.R. Communicating Sequential

Processes // Prentice Hall, 1985.

13. Cardelli L. Mobile Ambients. In Foundations

of Software Science and Computational

Structures // [Gordon Maurice Nivat (eds.)]. –

Springer 1998 (LNCS). – Vol. 1378. –

P. 140–155.

14. Gurevich Y. Evolving Algebras 1993: Lipari

Guide // [In E. Borger (eds.)] Specificationand

Validation Methods. – Oxford University

Press. – 1995. – P. 9–36.

15. Hoare C.A.R. Unifying Theories of Program-

ming // He Jifeng Prentice Hall International

Series in Computer Science, 1998.

16. Meseguer J. Conditional rewriting logic as a

unified model of concurrency // Theoretical

Computer Science. – 1992. – P. 73–155.

17. Letichevsky A., Kapitonova J., Volkov V.,

Vyshemirsky V., Letichevsky A. jr. Insertion

programming // Cybernetics and System

Analyses. – 2003. – Vol. 1. – P. 19–32.

18. Kapitonova J.V., Letichevsky A.A., and

Konozenko S.V. Computations in APS //

Theoretical Computer Science. – 1993. –

P. 145–171.

19. Letichevsky A.A., Letychevskyi O.A.,

Peschanenko V.S. Insertion Modeling System

// PSI 2011, Lecture Notes in Computer Sci-

ence, Vol. 7162, Springer, 2011. –

P. 262–274.

20. VRS Tool [http://www.issukraine.com/

ISS_VRS_tool.htm].

21. Methodical Program Complex TerM 7-9

[http://riit.ksu.ks.ua/index.php?q=en/node/

228].

22. Kobets V.M. Introduction of information

technologies knowledge control from eco-

nomical disciplines // Informatin Technolo-

gies in Education. – 2019. – Vol. 3, –

P. 123–127.

23. Neil D. Jones, Carsten K. Gomard, and Peter

Sestoft: Partial Evaluation and Automatic

Program Generation, Prentice Hall Interna-

tional, 1993.

24. APS&IMS system [http://apsystem.org.ua].

25. Letichevsky A., Letichevsky A. Jr, V. Pes-

chanenko. Translation Algorithm of APLAN

code // Control's Machines and Systems. –

2010. – Vol. 6. – P. 40–46.

Data received 09.04.2012

About author:

Vladimir Peschanenko,

Associate Professor of Informatics Department

of Kherson State University. Candidate of

Physics and Mathematics, Associate Professor.

http://apsystem.org.ua/uploads/doc/ims/SSHBP.rus.pdf
http://apsystem.org.ua/uploads/doc/ims/SSHBP.rus.pdf
http://www.itu.dk/people/sestoft/pebook/
http://www.itu.dk/people/sestoft/pebook/
http://www.itu.dk/people/sestoft/pebook/
http://www.itu.dk/people/sestoft/pebook/

