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B pabore UCCIEIYIOTCS YCIIOBUS CXOIUMOCTH
NPUOIKEHHOTO METO/IA PEILECHHS 3a/1a4 MHOTOKPUTEPHAILHON ONTHMH3ALMH,
KOrjga ILejeBble (YHKIMH M JOIMYCTHMOE MHOXECTBO 3aMEHSIOTCA HX
npuOmKeHnsIMU.  JIoka3aHo, 4YTO JOCTATOYHBIM YCIOBHEM CXOIMMOCTH
SIBJISIFOTCS. PaBHOMEPHAsl CXOIMMOCTh NPUONIMKEHHBIX (DYHKIMH K HMCXOIHON
(GYHKIMH M CXOIMMOCThH JIOIMYCTHMOTO MHOXECTBA NpPUONIKCHHBIX 3a/1ad K
JIOIYCTUMOMY MHOKECTBY MCXO/IHOM 3a/1auy, 10 KpaiHel Mepe, B OKPECTHOCTU
peLIeHusL.

Knrouesvie cnosa: BEKTOpHAs ONTUMHU3ALMS, CTOXaCTHYECKAs
MHOTOKpHUTEpHalbHAs ONTHMH3ALUS, NApeTO-ONTUMAIBHOCTD, JUCKPETHAs
ATIPOKCUMALIUSL, SIICHUIIOH-IOMUHUPOBaHHE.

VY poboTi gocmimKeHo yMOBH 3013KHOCTI HAOIMKEHOTO METOY
PO3B's13aHHsI 33124 OaraTOKpUTEpialbHOI ONTUMI3alil Y BUMAAKY KOIH IiJIOBI
GyHKLii i JomycTiMa 001acTh 3aMiHIOIOTHCS TX HAOMmKeHHAME. J[OBEIeHO, 1110
JTOCTATHBOKO YMOBOIO 301)KHOCTI € piBHOMipHA 301XKHICTh HaOMIKEeHNX (HYHKIIII
0 MOYATKOBOI (YHKII Ta 30DXKHICTH JOMYCTMMOI MHOKHHH HAOIMKEHHX
3a/1a4 JI0 JIOMyCTUMOI MHOYKMHHM TT04aTKOBOI 3a/1a4i X04a O B OKOJIi PO3B SI3KY.

Kniouosi cnosa: BekTtopHa ONTHMI3allis, CTOXaCTHYHA
OararokpuTepiaibHa ~ ONTHMIi3allis,  [apeTOo-ONTUMAIBHICTh,  JIMCKPETHA
ANpPOKCHUMALIisl, eTICITIOH-OMiHYBaHHSI.

INTRODUCTION

This paper studies conditions of convergence of the successive approximations
method for solving deterministic and stochastic vector optimization problems.
A general form of a vector optimization problem reads as follows:

F)= AR By (O} > max o, (1)

where functions F;(x),i=1,...,m, are continuous on a compact set X c R”. The
problem is (a) to find individual elements or (b) the whole set of weakly Pareto
optimal points X " <X such that for any xe X * there is no x'eX and
F (x> F (x) (component-wise). There are numerous approaches for solving
problem (1) [1-3]. The most known of them consists in maximization of some

component function F; under constraints on other functions or in aggregation of

criteria F; by some linear or non-linear utility function and solving the resulting
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optimization problems by nonlinear programming methods [1]. However, in case
of non-convex functions F; it is not always possible to find all Pareto-optimal

solutions in such a way. So, other approaches, that are not reduced to optimization
of a scalar criterion, were developed, in particular, the parameter space
investigation method [2] and methods of evolutionary programming [3]. The latter
in effect are variants of controlled iterative random search method: at each

. . . . . * . . .
iteration an approximate discrete solution X, consisting of a finite number of

points is constructed and then, using information about the objective function

F (X;,) at points X ;, a new generation of points Y Nis generated in some way
randomly) and a new discrete approximate solution X . is selected from the set
domly) and discrete app te solution X 4

XV = (X ;,,Y N ), and so on. Finding out conditions of evolutionary programming

algorithm convergence to the set of Pareto-optimal points is a serious scientific
problem and is the subject of active research [4-6]. Even convergence of the
simplest algorithms of this type is studied only in case of discrete feasible set X

[6]. Let us, for example, sample points Y N in the described approach uniformly in
X and let a new approximation X ;, +1 be a Pareto-optimal subset of the discrete
pair XV = (X]*\,,YN).

Does the sequence {)(7\,} of approximations converge to the Pareto-optimal

set X~ of problem (1)? This article, in particular, aims at finding answers to such
type of questions.

PROBLEM SETTING

In practice, a formulation of the vector optimization problem may be more
complex than (1). For example, in the case of the stochastic vector optimization,

functions F are actually expectations, F (X)=EJ7(X,(D), where the random

variable @ is defined on some probability space (Q,Z,P), symbol E denotes

expectation (integral) over measure P [7, 8]. Usually, in practical problems
expectations cannot be calculated analytically, so they are estimated numerically
using quadratures or Monte Carlo method. In the latter case empirical

approximations of functions F have the form F N(x,wN) = (1/ N )Z/]{V:lf(x,wk) ,
where wN=(w1,...,wN) is the set of independent and identically distributed
observations @; of the random variable @. In [9] one can find conditions of
uniform convergence of the empirical approximations F N(x, wN) to the
expectation F (x)= Ef(x,w) on a compact set X . Then, instead of (1), one has to

consider a sequence of approximate problems:

FNx) =Y (0),.... EY (x)} - max N=12,.., 2)

xexN R
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where the set of feasible solutions X* , in general, can also vary from task to task,
for example, the set X N can be a discrete approximation of the initial feasible set

X [2]. In the latter case, the approximating functions FIN (x),...,F,,jlv (x) can be
defined only on this discrete set X N Denote X;V the set of Pareto-optimal
solutions of (2). The problem is to establish conditions under which the sets X ;,

approximate the set of solutions X "
In (1) «;-quantiles of random variables F;(x,®) can serve as components of
the vector objective function F(x)= {EFI (x,0),....,EF,, (x,w)}. It is known [10] that

these quantiles can be found by solving the following auxiliary optimization
problem:

D;(x,y;)=E max{(l - al-)(Fl- (x,0)—y; ),al-(yl- - Fl-(x,a)))} - minyeRl . (3)

An approximate solution yiN (x) of (3) for each fixed x can be found, for
example, by N iterations of the stochastic quasi-gradient method [11], or as a
corresponding term of the variational series of the random variable F;(x,®). Thus,
one again encounters with the approximate problem (2) with functions
FY(x)=y"(x). Another approach to solving (3) is to use an empirical

approximation of components ®;(x,y;):

N
(I)i (xayi) =

(4)
= (V)X max{(1 - o)y (x.0) =y oy (v = F (o))} > min oy

1
and finding its approximate solution le (x) for each x by the linear programming
method.

MAIN RESULTS

As noted in [2], the question of convergence of the discrete approximation of
problem (1) is not easy. In our case the problem is further complicated by the fact
that not only feasible set, but also the objective functions are approximated. To
study convergence of approximate solutions of problems (2) to the solution of the
original task (1), we’ll need some more definitions.

Definition 1 (& -nondominated solutions). Point xeX is called
& -nondominated solution of (1), if there is no other point ze X such that

F(z)> F(x)+&, where £V eR™.

Definition 2 [12, Section 4A]. For a sequence of sets {Zy cR", N=12,...}

let us define the following cluster sets:
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limsupy_,,Zy ={z:3zy, €Zy,,z=limy_,, zy, },
1imian_>ooZN:{Z:E|ZN EZN’Z:th—M)OZN}’
limy_,,Z; =liminfy_, Zy =limsupy_,. Zy -

Denote X~ (&) the set of all £ - nondominated solutions of (1). In the same
manner define X ;,(5 N) £V -nondominated solutions of (2). Our goal is to
establish conditions under which sets X ;, (e N) approximate X ’ (&).

Let us note some properties of the multivalued mapping € — X : ).

1 2 one has

Lemma 1. The mapping € - X *(5) is monotone, i.e. for £ <¢&
X' EHcx @Y.

Proof. Assume the contrary that for some x'e X *(E 1) , XegX *(E 2) there is
Z'e X such that F(z')> F(x')+& 2>F (x")+e ! This inequality contradicts the
assumption x' € X~ (€ 1) .

The lemma is proved.

Lemma 2. For upper semi-continuous (component-wise) on the closed set

X cR" vector-function F (x) the mapping &€ - X : (€) is upper semicontinuous,
i.e. limsup y_ye X*(EN) c X*(E) for any sequence £V — & .

Proof Let £V &, No>ow and X (V%)>xVF > x', k—>o0. We must
show that x' e X (€) . Assume the contrary, that x' e X i (€). Then there is z' € X
such that F(z')>F(x')+&. From upper semicontinuity of F it follows
F(z')> F(x')+& > limsup,_,, (F (™) + g ) and thus for sufficiently large &
relation F(z") > F(x")+&" is fulfilled. This contradicts the initial assumption
Ve xT(ENkY .

The lemma is proved.

Let us make the following assumptions on relations between problems (1)
and (2)

Al. For any sequence {XN >xV > x} it holds true FN(xN) —)F(x) ,
N —> 0.

A2. The sequence of feasible sets {XN , N = 1,2,...} of (2) satisfies conditions:
XY <X and for some £eR™ it holds X*(E)g liminf o xN , 1.e. for each

point x e X *(E ) there is a sequence of feasible points N exV convergent to this

point xeX*(é).
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Condition Al is satisfied in particular if functions F N are defined on the set

Xo>XV and uniformly converge to F on X . Other possibilities are considered
in [13]. Assumption A2 is automatically satisfied if limpy_,., xN=x , for

example, if X N discretely approximates, with increasing accuracy, the feasible set
X.
Theorem 1 (on convergence of solutions of approximate tasks (2) to the

solutions of the original problem (1)). Suppose that the vector function F (x) is

continuous on a compact set X, conditions Al-A2 are fulfilled and

limy_yoo &Y =& >0. Then
1) limsupy_,,, Xy (EV) € X7 (&),

2) X (&) climinfy_,,, Xy(EY) forall &<&.

Proof. Let us prove the first assertion of the theorem. Assume the contrary,
that there are X;,k ENMk) 5 xVk 5 x'¢ X7 (€) . Since the vector function F(x) is
bounded from above on a compact set X , then every point x’ outside of X *(5 )
is & -dominated by points from X *(5). Indeed, if it is not true, then there is an
infinite  sequence of points z*eX such that F(x)+&<F (zl) ,
I:“(zl) +e< 13(22) ..., 6. 0 F(x')+sE < F(z°), that contradicts boundedness
of the vector function F on X . So, there is a point z'€ X *(5 ) such that
F(z')> F(x")+& . By virtue of the condition A2 there is a sequence NexV

such that 2% -z, N>w.
Thus, it holds true

F(2)=lim;_,, FNk(zVk)> F(x')+& = limk_,oo(I;Nk (xNky 4+ &Nk )

Then FNk (sz )>F Ni (xNk )+é& Nk for all sufficiently large k&, that
contradicts the assumption Meex ;,k (e Ni ). The first assertion is proved.

Now let us prove the second statement of the theorem. Assume the contrary,
that there exists x'eX *(5 NcX *(5 ) (see Lemma 1) such that
X gliminfy_,, X ;V(é' N) . By condition A2 there exists a sequence

XV 5xY 5 x'. Then there exist its subsequence {xN" L k= 1,2,...} such that

Neg x ;,k (e Ni ) for all sufficiently large &, so there are points Neex Ny such
that F (sz )>F Ni (xNk )+¢& Nie, By compactness of X o Xy > Nk | without

loss of generality, we can consider that M52 and XMk >y, thus, by
assumption Al,
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F(2')=lim;_,,, FNk(2Vk) > limk_,oo(I;Nk (xNky + &Nk )= F(X)+&>F(X)+& .
Thus, the point x' is &' -dominated, that contradicts the assumption
XeX &".
The second statement is proved.
Remark 1. In [13], an analog of Theorem 1 was proved under a stronger

assumption than A2: limpy_,,, X N Z x . Ifthe set X7 is a discrete approximation
of the feasible set X , than condition A2 shows that for the validity of the theorem

on convergence of solutions X;‘V(EN) 0 X *(5) it is enough to improve

approximations of the feasible set only in the vicinity of approximate Pareto-
optimal points X &).

Remark 2. Theorem 1, in particular, means that
X" =X"(0) < liminfy_,., Xy (&™) limsup y_0, Xy (EN) X' (E), (5)

where X =X *(()) is the set of weakly Pareto-optimal solutions of problem (1).

And since the mapping ¢ > X ’ (£) is upper semicontinuous, also at € =0, then

relation (5) means that & -approximate solutions of problem (2) for sufficiently
small € approximate the set of weakly Pareto optimal solutions of problem (1).

CONCLUSIONS

The paper studies a general approximation scheme for solving vector
optimization problems. The objective vector function and the feasible set of the
problem are substituted by their approximations. Accurate calculating of the
objective functions or constraints of the problem is often impossible for finite (or
reasonable) time and, therefore, the problem needs to be approximated. This
situation is typical for stochastic multiobjective optimization. Approximate
problems themselves are solved approximately with some accuracy, i.e. their
approximately nondominated solutions are found. It is shown that under natural
conditions, uniform convergence of approximation functions and set convergence
of feasible domains, the found solutions approximate from above and from below
approximately nondominated solutions of the original problem.
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ON THE APPROXIMATION OF VECTOR
OPTIMIZATION PROBLEMS

B.V. Norkin
Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine

Vector optimization has a great variety of applications. Such problems
naturally appear in stochastic optimization, where the optimization problem
contains random parameters. In the latter case the vector objective function may
include mean value, median, variance, quantiles and other characteristics of the
random objective function. The difficulty is that these quantities usually cannot be
calculated exactly and are non-convex as functions of variable parameters. These
circumstances set additional difficulties for solving corresponding vector
optimization problems.

We consider an approximation approach to solving vector optimization
problems. The standard approach to such problems is to optimize one criterion
under constraints on the others or to scalarize the problem, i.e. to combine all
criteria into one scalar criterion. This paper describes a completely different
approach, where the feasible set is approximated by a discrete grid (deterministic
or random) and the vector function is approximately calculated on this grid. The
obtained discrete problem is exactly solved by Pareto type optimization.

The paper studies conditions for convergence of the approximation method
when the objective functions and the feasible set are replaced by their more and
more fine approximations.

Sufficient conditions are established for Pareto-optimal solutions of the
approximate problems to converge in set convergence sense to the Pareto optimal
solution of the original problem (with some accuracy). Namely, it is required for
the approximate functions to converge uniformly to the original function and for
the feasible set approximations (possibly discrete) to converge to elements of the
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original feasible set, at least, in the vicinity of the solution. The result confirms a
natural hypothesis that the approximation accuracy should increase when
approaching to the solution.

Keywords: vector optimization, stochastic multicriteria optimization, Pareto

optimality, discrete approximation, epsilon-dominance.
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