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В работе исследуются условия сходимости 
приближенного метода решения задач многокритериальной оптимизации, 
когда целевые функции и допустимое множество заменяются их 
приближениями. Доказано, что достаточным условием сходимости 
являются равномерная сходимость приближенных функций к исходной 
функции и сходимость допустимого множества приближенных задач к 
допустимому множеству исходной задачи, по крайней мере, в окрестности 
решения. 

Ключевые слова: векторная оптимизация, стохастическая 
многокритериальная оптимизация, парето-оптимальность, дискретная 
аппроксимация, эпсилон-доминирование. 

У роботі досліджено умови збіжності наближеного методу 
розв'язання задач багатокритеріальної оптимізації у випадку коли цільові 
функції і допустима область замінюються їх наближеннями. Доведено, що 
достатньою умовою збіжності є рівномірна збіжність наближених функцій 
до початкової функції та збіжність допустимої множини наближених 
задач до допустимої множини початкової задачі хоча б в околі розв´язку. 

Ключові слова: векторна оптимізація, стохастична 
багатокритеріальна оптимізація, парето-оптимальність, дискретна 
апроксимація, епсілон-домінування. 

 
INTRODUCTION 
 

This paper studies conditions of convergence of the successive approximations 
method for solving deterministic and stochastic vector optimization problems. 
A general form of a vector optimization problem reads as follows: 

,max)}(),...,({)(
R1 nXxm xFxFxF

⊂∈
→=

r
 (1) 

where functions ,,...,1),( mixFi =  are continuous on a compact set nX R⊂ . The 
problem is (a) to find individual elements or (b) the whole set of weakly Pareto 

optimal points XX ⊂*  such that for any *Xx ∈  there is no Xx ∈′  and 
)()( xFxF

rr
>′  (component-wise). There are numerous approaches for solving 

problem (1) [1–3]. The most known of them consists in maximization of some 
component function iF  under constraints on other functions or in aggregation of 

criteria iF  by some linear or non-linear utility function and solving the resulting 
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optimization problems by nonlinear programming methods [1]. However, in case 
of non-convex functions iF  it is not always possible to find all Pareto-optimal 
solutions in such a way. So, other approaches, that are not reduced to optimization 
of a scalar criterion, were developed, in particular, the parameter space 
investigation method [2] and methods of evolutionary programming [3]. The latter 
in effect are variants of controlled iterative random search method: at each 

iteration an approximate discrete solution *
NX  consisting of a finite number of 

points is constructed and then, using information about the objective function 

)( *
NXF

r
 at points *

NX  a new generation of points NY  is generated in some way 

(randomly) and a new discrete approximate solution *
1+NX  is selected from the set 

( )N
N

N YXX ,*= , and so on. Finding out conditions of evolutionary programming 
algorithm convergence to the set of Pareto-optimal points is a serious scientific 
problem and is the subject of active research [4–6]. Even convergence of the 
simplest algorithms of this type is studied only in case of discrete feasible set X  

[6]. Let us, for example, sample points NY  in the described approach uniformly in 

X  and let a new approximation *
1+NX  be a Pareto-optimal subset of the discrete 

pair ( )N
N

N YXX ,*= . 

Does the sequence { }*
NX  of approximations converge to the Pareto-optimal 

set *X  of problem (1)? This article, in particular, aims at finding answers to such 
type of questions. 
 
PROBLEM SETTING 
 

In practice, a formulation of the vector optimization problem may be more 
complex than (1). For example, in the case of the stochastic vector optimization, 
functions F

r
 are actually expectations, ),(E)( ωxfxF

rr
= , where the random 

variable ω  is defined on some probability space ( )P,,ΣΩ , symbol E  denotes 
expectation (integral) over measure P  [7, 8]. Usually, in practical problems 
expectations cannot be calculated analytically, so they are estimated numerically 
using quadratures or Monte Carlo method. In the latter case empirical 

approximations of functions F
r

 have the form ( )∑ == N
k k

NN xfNxF 1 ),(1),( ωω
rr

, 

where ),...,( 1 N
N ωωω =  is the set of independent and identically distributed 

observations kω  of the random variable ω . In [9] one can find conditions of 

uniform convergence of the empirical approximations ),( NN xF ω
r

 to the 

expectation ),(E)( ωxfxF
rr

=  on a compact set X . Then, instead of (1), one has to 
consider a sequence of approximate problems:  

,max)}(),...,({)( R1 nNXx
N

m
NN xFxFxF

⊂∈
→=

r
 ,...2,1=N  , (2) 
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where the set of feasible solutions NX , in general, can also vary from task to task, 

for example, the set NX  can be a discrete approximation of the initial feasible set 

X [2]. In the latter case, the approximating functions )(),...,(1 xFxF N
m

N  can be 

defined only on this discrete set NX . Denote *
NX  the set of Pareto-optimal 

solutions of (2). The problem is to establish conditions under which the sets *
NX  

approximate the set of solutions *X .  
In (1) iα -quantiles of random variables ),( ωxFi  can serve as components of 

the vector objective function { }),(E),...,,(E)( 1 ωω xFxFxF m=
r

. It is known [10] that 
these quantiles can be found by solving the following auxiliary optimization 
problem: 

( ) ( ){ } 1R
min),(,),()1(maxE),(

∈
→−−−=Φ

yiiiiiiii xFyyxFyx ωαωα . (3) 

An approximate solution )(xy N
i  of (3) for each fixed x  can be found, for 

example, by N  iterations of the stochastic quasi-gradient method [11], or as a 
corresponding term of the variational series of the random variable ),( ωxFi . Thus, 
one again encounters with the approximate problem (2) with functions 

)()( xyxF N
i

N
i = . Another approach to solving (3) is to use an empirical 

approximation of components ),( ii yxΦ : 

=Φ ),( i
N
i yx  

( ) ( ) ( ){ } 1R1 min),(,),()1(max1
∈= →−−−= ∑

iy
N
k kiiiikii xFyyxFN ωαωα  

(4) 

and finding its approximate solution )(xy N
i  for each x  by the linear programming 

method. 
 
MAIN RESULTS 
 

As noted in [2], the question of convergence of the discrete approximation of  
problem (1) is not easy. In our case the problem is further complicated by the fact 
that not only feasible set, but also the objective functions are approximated. To 
study convergence of approximate solutions of problems (2) to the solution of the 
original task (1), we’ll need some more definitions. 

Definition 1 (ε
r

-nondominated solutions). Point Xx∈  is called 
ε
r

-nondominated solution of (1), if there is no other point Xz ∈  such that 

ε
rrr

+> )()( xFzF , where .RmN ∈ε
r  

Definition 2 [12, Section 4A]. For a sequence of sets ,...}2,1,R{ =⊂ NZ n
N  

let us define the following cluster sets: 
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}lim,:{suplim kkk NkNNNN zzZzzZ ∞→∞→ =∈∃= ,  

}lim,:{inflim NNNNNN zzZzzZ ∞→∞→ =∈∃= ,  

NNNNiN ZZZ ∞→∞→∞→ == supliminflimlim . 

Denote )(* ε
r

X  the set of all ε
r

- nondominated solutions of (1). In the same 

manner define )(* N
NX ε

r
 Nε

r -nondominated solutions of (2). Our goal is to 

establish conditions under which sets )(* N
NX ε

r
 approximate )(* ε

r
X . 

Let us note some properties of the multivalued mapping )(* εε
rr

X→ . 

Lemma 1. The mapping )(* εε
rr

X→  is monotone, i.e. for 21 εε
rr

≤  one has 

)()( 2*1* εε
rr

XX ⊆ . 

Proof. Assume the contrary that for some )( 1* ε
r

Xx ∈′ , )( 2* ε
r

Xx ∉′  there is 

Xz ∈′  such that 12 )()()( εε
rrrrr

+′≥+′>′ xFxFzF . This inequality contradicts the 

assumption )( 1* ε
r

Xx ∈′ . 
The lemma is proved. 
Lemma 2. For upper semi-continuous (component-wise) on the closed set 

nX R⊂  vector-function )(xF
r

 the mapping )(* εε
rr

X→  is upper semicontinuous, 

i.e. )()(limsup ** εε
rr

XX N
N ⊆∞→  for any sequence εε

rr
→N . 

Proof. Let εε
rr

→N , ∞→N  and xxX kk NN ′→∋)(* ε
r , ∞→k . We must 

show that )(* ε
r

Xx ∈′ . Assume the contrary, that )(* ε
r

Xx ∈′ . Then there is Xz ∈′  

such that ε
rrr

+′>′ )()( xFzF . From upper semicontinuity of F
r

 it follows 

( )kk NN
k xFxFzF εε

rrrrr
+≥+′>′ →∞ )(limsup)()(  and thus for sufficiently large k  

relation kk NNxFzF ε
rrr

+>′ )()(  is fulfilled. This contradicts the initial assumption 

)(* kk NN Xx ε
r

∈ . 
The lemma is proved. 
Let us make the following assumptions on relations between problems (1) 

and (2) 

A1. For any sequence { }xxX NN →∋  it holds true )()( xFxF NN rr
→ , 

∞→N . 

A2. The sequence of feasible sets { },...2,1, =NX N  of (2) satisfies conditions: 

XX N ⊆  and for some mR∈ε
r  it holds N

N XX ∞→⊆ inflim)(* ε
r

, i.e. for each 

point )(* ε
r

Xx ∈  there is a sequence of feasible points NN Xx ∈  convergent to this 

point )(* ε
r

Xx ∈ . 
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Condition A1 is satisfied in particular if functions NF
r

 are defined on the set 
NXX ⊇  and uniformly converge to F

r
 on X . Other possibilities are considered 

in [13]. Assumption A2 is automatically satisfied if XX N
N =∞→lim , for 

example, if NX  discretely approximates, with increasing accuracy, the feasible set 
X . 

Theorem 1 (on convergence of solutions of approximate tasks (2) to the 
solutions of the original problem (1)). Suppose that the vector function )(xF

r
 is 

continuous on a compact set X , conditions A1–A2 are fulfilled and 

0lim >=∞→ εε
rrN

N . Then 

1) )()(suplim ** εε
rr

XX N
NN ⊆∞→ ,  

2) )(inflim)( ** N
NN XX εε

rr
∞→⊆′  for all εε

rr
<′ . 

Proof. Let us prove the first assertion of the theorem. Assume the contrary, 

that there are )()( ** εε
rr

XxxX kk
k

NN
N ∉′→∋ . Since the vector function )(xF

r
 is 

bounded from above on a compact set X , then every point x′  outside of )(* ε
r

X  

is ε
r

-dominated by points from )(* ε
r

X . Indeed, if it is not true, then there is an 

infinite sequence of points Xz s ∈  such that )()( 1zFxF
rrr

<+′ ε , 

)()( 21 zFzF
rrr

<+ ε , …, i.e. )()( szFsxF
rrr

<+′←∞ ε , that contradicts boundedness 

of the vector function F
r

 on X . So, there is a point )(* ε
r

Xz ∈′  such that 

ε
rrr

+′>′ )()( xFzF . By virtue of the condition A2 there is a sequence NN Xz ∈  

such that zzN ′→ , ∞→N .  
Thus, it holds true 

( )kkkkk NNN
k

NN
k xFxFzFzF εε

rrrrrr
+=+′>=′ ∞→∞→ )(lim)()(lim)( . 

Then kkkkk NNNNN xFzF ε
rrr

+> )()(  for all sufficiently large k , that 

contradicts the assumption )(* k
k

k N
N

N Xx ε
r

∈ . The first assertion is proved. 

Now let us prove the second statement of the theorem. Assume the contrary, 

that there exists )()( ** εε
rr

XXx ⊆′∈′  (see Lemma 1) such that 

)(inflim * N
NN Xx ε

r
∞→∉′ . By condition A2 there exists a sequence 

xxX NN ′→∋ . Then there exist its subsequence { },...2,1, =kx kN  such that 

)(* k
k

k N
N

N Xx ε
r

∉  for all sufficiently large k , so there are points k
k N

N Xz ∈  such 

that kkkkk NNNNN xFzF ε
rrr

+> )()( . By compactness of k
k

N
N zXX ∋⊇ , without 

loss of generality, we can consider that zz kN ′→  and xx kN ′→ , thus, by 
assumption A1, 
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( ) εεε
rrrrrrrr
′+′>+′=+≥=′ ∞→∞→ )()()(lim)(lim)( xFxFxFzFzF kkkkk NNN

k
NN

k . 

Thus, the point x′  is ε
r′ -dominated, that contradicts the assumption 

)(* ε
r
′∈′ Xx . 

The second statement is proved. 
Remark 1. In [13], an analog of Theorem 1 was proved under a stronger 

assumption than A2: XX N
N =∞→lim . If the set NX  is a discrete approximation 

of the feasible set X , than condition A2 shows that for the validity of the theorem 

on convergence of solutions )(* N
NX ε

r  то )(* ε
r

X  it is enough to improve 
approximations of the feasible set only in the vicinity of approximate Pareto-

optimal points )(* ε
r

X . 
Remark 2. Theorem 1, in particular, means that 

)()(limsup)(liminf)0( ***** εεε
rrrr

XXXXX N
NN

N
NN ⊆⊆⊆= ∞→∞→ , (5) 

where )0(** r
XX =  is the set of weakly Pareto-optimal solutions of problem (1). 

And since the mapping )(* εε
rr

X→  is upper semicontinuous, also at 0=ε
r

, then 
relation (5) means that ε

r
-approximate solutions of problem (2) for sufficiently 

small ε
r

 approximate the set of weakly Pareto optimal solutions of problem (1). 
 
CONCLUSIONS 
 

The paper studies a general approximation scheme for solving vector 
optimization problems. The objective vector function and the feasible set of the 
problem are substituted by their approximations. Accurate calculating of the 
objective functions or constraints of the problem is often impossible for finite (or 
reasonable) time and, therefore, the problem needs to be approximated. This 
situation is typical for stochastic multiobjective optimization. Approximate 
problems themselves are solved approximately with some accuracy, i.e. their 
approximately nondominated solutions are found. It is shown that under natural 
conditions, uniform convergence of approximation functions and set convergence 
of feasible domains, the found solutions approximate from above and from below 
approximately nondominated solutions of the original problem. 
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UDC 519.6 

ON THE APPROXIMATION OF VECTOR 
OPTIMIZATION PROBLEMS  

B.V. Norkin 
Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine  

Vector optimization has a great variety of applications. Such problems 
naturally appear in stochastic optimization, where the optimization problem 
contains random parameters. In the latter case the vector objective function may 
include mean value, median, variance, quantiles and other characteristics of the 
random objective function. The difficulty is that these quantities usually cannot be 
calculated exactly and are non-convex as functions of variable parameters. These 
circumstances set additional difficulties for solving corresponding vector 
optimization problems. 

We consider an approximation approach to solving vector optimization 
problems. The standard approach to such problems is to optimize one criterion 
under constraints on the others or to scalarize the problem, i.e. to combine all 
criteria into one scalar criterion. This paper describes a completely different 
approach, where the feasible set is approximated by a discrete grid (deterministic 
or random) and the vector function is approximately calculated on this grid. The 
obtained discrete problem is exactly solved by Pareto type optimization. 

The paper studies conditions for convergence of the approximation method 
when the objective functions and the feasible set are replaced by their more and 
more fine approximations.  

Sufficient conditions are established for Pareto-optimal solutions of the 
approximate problems to converge in set convergence sense to the Pareto optimal 
solution of the original problem (with some accuracy). Namely, it is required for 
the approximate functions to converge uniformly to the original function and for 
the feasible set approximations (possibly discrete) to converge to elements of the 
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original feasible set, at least, in the vicinity of the solution. The result confirms a 
natural hypothesis that the approximation accuracy should increase when 
approaching to the solution. 

Keywords: vector optimization, stochastic multicriteria optimization, Pareto 
optimality, discrete approximation, epsilon-dominance. 
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