

ТЕПЛОФІЗИКА

УДК 532.526

© 2009

Член-корреспондент НАН Украины **Б. И. Басок**, член-корреспондент НАН Украины **А. А. Авраменко**, **Б. В. Давыденко**, **И. А. Пироженко**

Центробежная неустойчивость потока в роторно-пульсационных аппаратах с учетом неизотермичности

Наводяться результати дослідження стійкості потоку рідини між коаксіальними циліндричними поверхнями роторно-пульсаційних апаратів, одержані методом лінійних збурень. Встановлено області дестабілізуючого і стабілізуючого впливу радіального градієнта температур у роторно-пульсаційних апаратах різної модифікації.

Для реализации процессов перемешивания, эмульгирования и/или гомогенизации различных гетерогенных систем широко применяются роторно-пульсационные аппараты (РПА) цилиндрического типа — $T\Phi$ -2, E-3 и E-1 [1], разработанные в Институте технической теплофизики НАН Украины. Принцип работы аппаратов основан на создании в потоке жидкости высоких градиентов скорости, ускорения и пульсаций давления, приводящих к разрушению межфазных поверхностей дисперсных включений. Указанные эффекты достигаются за счет конструктивных особенностей аппаратов роторного типа, рабочими органами которых являются коаксиальные перфорированные цилиндры с зазорами между ними. Часть цилиндров (статоры) жестко закреплена, а другая часть (роторы), расположенная между статорами, вращается с высокой угловой скоростью. Межцилиндровые зазоры являются областями наиболее эффективного гидродинамического воздействия на среду [2]. Движение жидкости в роторно-пульсационных аппаратах происходит как за счет перепада давления между входом и выходом из прорезей статоров и роторов, так и за счет центробежной силы, которая возникает в потоке при вращении роторов.

Проанализировав результаты работ [2–6], можно отметить, что области устойчивости окружного течения в РПА типа ТФ-2 определены в [2]. Изучена гидродинамическая неустойчивость потока — неустойчивость Толлмина-Шлихтинга — в прорезях роторно-пульсационного аппарата типа ТФ-2 в [3]. Установлено, что течение теряет устойчивость при числах Рейнольдса $\mathrm{Re_{kp}}=120\dots180$. Однако наибольший интерес представляет определение центробежной неустойчивости в межцилиндровом зазоре аппаратов с учетом ряда дестабилизирующих факторов, возникающих при обработке жидкостных систем различной вязкости.

Для анализа условий и определения критериев возникновения вторичных течений в потоках жидкости РПА под действием центробежных сил воспользуемся методом малых возмущений.

Уравнения движения жидкости в РПА в цилиндрических координатах (r, φ, z) , где ось z совпадает с осью цилиндров, имеют вид:

$$\frac{\partial V_r}{\partial \tau} + V_r \frac{\partial V_r}{\partial r} + \frac{V_{\varphi}}{r} \frac{\partial V_r}{\partial \varphi} + V_z \frac{\partial V_r}{\partial z} - \frac{V_{\varphi}^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\nabla^2 V_r - \frac{V_r}{r^2} - \frac{2}{r^2} \frac{\partial V_{\varphi}}{\partial \varphi} \right);$$

$$\frac{\partial V_{\varphi}}{\partial \tau} + V_r \frac{\partial V_{\varphi}}{\partial r} + \frac{V_{\varphi}}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + V_z \frac{\partial V_{\varphi}}{\partial z} + \frac{V_r V_{\varphi}}{r} = -\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \varphi} + \nu \left(\nabla^2 V_{\varphi} + \frac{2}{r^2} \frac{\partial V_r}{\partial \varphi} - \frac{V_{\varphi}}{r^2} \right);$$

$$\frac{\partial V_z}{\partial \tau} + V_r \frac{\partial V_z}{\partial r} + \frac{V_{\varphi}}{r} \frac{\partial V_z}{\partial \varphi} + V_z \frac{\partial V_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \nabla^2 V_z;$$

$$\frac{\partial (rV_r)}{\partial r} + \frac{\partial V_{\varphi}}{\partial \varphi} + r \frac{\partial V_z}{\partial z} = 0,$$
(1)

где V_{φ}, V_r, V_z — компоненты скорости по направлениям $\varphi, r, z; \varphi, r, z$ — координаты; p — давление; ρ — плотность; ν — коэффициент кинематической вязкости; τ — время; ∇^2 — оператор Лапласа в цилиндрических координатах.

При вращающемся внутреннем цилиндре $(\Omega_1 > 0)$ и неподвижном наружном $(\Omega_2 = 0)$ профиль азимутальной скорости имеет вид:

$$V_{\varphi} = \frac{1}{R_2^2 - R_1^2} \left(\frac{R_1^2 R_2^2 \Omega_1}{r} - r \Omega_1 R_1^2 \right) = \frac{(R_1 R_2^2 - R_1 r^2) U_1}{(R_2^2 - R_1^2) r},\tag{2}$$

где R_1 , R_2 и Ω_1 , Ω_2 — радиусы и угловые скорости внутреннего и внешнего цилиндров соответственно; U_1 — скорость вращения внутреннего цилиндра.

Наложим на основное течение малые осесимметричные возмущения, которые в линейном приближении задаются выражениями:

$$V_{\varphi} = U(r) + u'(r)\cos(\sigma z)\exp(\beta \tau);$$

$$V_{r} = v'(r)\cos(\sigma z)\exp(\beta \tau);$$

$$V_{z} = \omega'(r)\sin(\sigma z)\exp(\beta \tau);$$

$$p = P(r,\varphi) + p'(r)\cos(\sigma z)\exp(\beta \tau).$$
(3)

Здесь U(r), $P(r,\varphi)$ — скорость и давление основного течения; β — коэффициент нарастания возмущений; σ — волновое число; p', u', v', ω' — амплитуды возмущения давления и компонент скорости по направлениям φ , r, z.

После подстановки (3) в (1) и упрощений линеаризованная система уравнений для скорости возмущения при $\beta = 0$ имеет следующий вид:

$$2\sigma^{2} \frac{Uu'}{r\nu} = (DD^{*} - \sigma^{2})^{2}v';$$

$$\frac{v'D^{*}U}{\nu} = (DD^{*} - \sigma^{2})u',$$
(4)

где $D = d/dr, \, D^* = d/dr + 1/r$ — дифференциальные операторы.

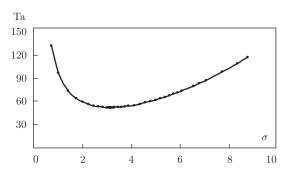


Рис. 1. Зависимость критерия Та от волнового числа при $\eta=0.7$

Введем безразмерные переменные:

$$\overline{U} = \frac{U}{U_1}, \qquad \overline{v} = \frac{v'}{U_1}, \qquad \overline{u} = \frac{u'}{U_1}, \qquad \overline{\sigma} = \sigma\delta, \qquad \overline{r} = \frac{r}{R_2},$$

$$\overline{D} = \frac{d}{d(r/\delta)} = D\delta, \qquad \overline{D}^* = \frac{d}{d(r/\delta)} + \frac{1}{(r/\delta)} = D\delta + \frac{1}{(r/\delta)}.$$

Тогда задачу Тейлора об устойчивости в безразмерной форме запишем в виде

$$2\overline{\sigma}^2 \frac{\overline{U}\overline{u'}}{\overline{r}} \operatorname{Ta}_1^2 = (\overline{D}\overline{D}^* - \overline{\sigma}^2)^2 \widetilde{v};$$

$$\widetilde{v}\overline{D}^* \overline{U} = (\overline{D}\overline{D}^* - \overline{\sigma}^2)\overline{u'},$$
(5)

где $\overline{v'}$ Re = \widetilde{v} ; Ta² = $(\overline{U}_1^2\delta^2/\nu^2)\cdot(\delta/R_2)$ — квадрат числа Тейлора; $\overline{D}=d/dx$; $\overline{D}^*=d/dx+(1-\eta)/\overline{r}$; $\overline{r}=r/R_2$; $\eta=R_1/R_2$; $\overline{r}=R_0+\delta\cdot x$; $\delta=R_2-R_1$; $R_0=(R_2+R_1)/2$.

Вводим координату x, которая связана с радиальной координатой следующим образом: $\overline{r} = \eta + (1 - \eta)(x + 1/2)$.

Система уравнений (5) с граничными условиями u'=v'=Dv'=0 при $x=\pm 1/2$ определяет задачу на собственные значения вида

$$F(\mathrm{Ta}^2, \sigma, \eta) = 0.$$

Задача решалась методом коллокаций. Функции разложения

$$\widetilde{v}(x) = \sum_{1}^{\infty} \alpha_n v_n(x), \qquad \overline{u}'(x) = \sum_{1}^{\infty} \beta_n u_n(x)$$

выбраны в виде полиномов [5]:

$$v_n(x) = \left(x^2 - \frac{1}{4}\right)^2 x^{(n-1)}, \qquad u_n(x) = \left(x^2 - \frac{1}{4}\right) x^{(n-1)}.$$

В результате решения задачи на собственные значения получены нейтральные кривые при различных значениях η . Для сопоставления расчетных данных с результатами [6] критерий Та расчитан в зависимости от волновых чисел при $\eta=0,7$. Как видно на рис. 1, критическое значение Та наблюдается при волновом числе $\sigma=3,14$, что соответствует данным [6].

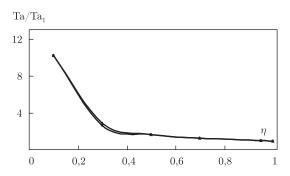


Рис. 2. Зависимость Та/Та₁ от $\eta = R_1/R_2$, Та₁ — критическое значение Тейлора при $\eta = 1$ (• — расчетные данные, • — данные [6])

Зависимость критических чисел Та в диапазоне η от 0 до 1 представлена на рис. 2. Можно отметить, что для роторно-пульсационных аппаратов критическим числам Тейлора соответствует диапазон от 42,4 до 41,23 при η , изменяющемся от 0,95 до 0,99. Как видно, зависимость — убывающая и хорошо согласуется с данными [6]. Погрешность расчетных результатов не превышает 2%, что позволяет использовать данную модель при исследовании неустойчивости в межцилиндровых зазорах РПА с внутренним вращающимся цилиндром с учетом влияния различных возмущающих факторов, таких, как вдув и отсос, инициируемые наличием прорезей в цилиндрах, а также неизотермичность потока жидкости.

При получении в РПА эмульсий, суспензий и паст, в случае отсутствия специально предусмотренных мер по поддержанию изотермических условий, имеет место существенный нагрев обрабатываемых сред. Поэтому далее в работе проведены исследования устойчивости потока жидкости с учетом радиального градиента температур.

Система уравнений Навье-Стокса во вращающейся системе координат

$$(\vec{v}\nabla)\vec{v} = -\frac{1}{\rho_0}\nabla p + \nu\Delta\vec{v} - 2(\vec{\Omega}\times\vec{v}) + \beta'T\vec{\Omega}\times(\vec{\Omega}\times\vec{r})$$
(6)

дополняется уравнением энергии

$$V_{\varphi} \frac{\partial T}{\partial r} + \frac{V_r}{r} \frac{\partial T}{\partial \varphi} + V_z \frac{\partial T}{\partial z} = a \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2} \right)$$
(7)

и уравнением состояния

$$\rho = \rho_0 [1 - \beta'(T - T_2)],\tag{8}$$

где T — текущая температура; T_2 — температура наружного цилиндра; β' — коэффициент объемного расширения; ρ_0 — начальное значение плотности; a — коэффициент температуропроводности.

При решении задачи были введены следующие допущения: предполагается, что обрабатываемая жидкость имеет постоянные коэффициенты теплопроводности, удельной теплоемкости и вязкости. В уравнении энергии не учитывается вязкая диссипация. Кроме того, в задаче не учитываются слабые конвективные течения, обусловленные силой тяжести.

Профиль невозмущенной скорости в зазоре рассчитывается по формуле (2), а профиль температуры имеет вид

$$T = T_1 - (T_2 - T_1) \frac{\ln r / R_1}{\ln \eta},\tag{9}$$

где T_1 и T_2 — температуры внутреннего и наружного цилиндров соответственно.

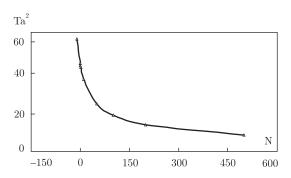


Рис. 3. Зависимость критерия Та от параметра, учитывающего радиальный градиент температур, при $\eta=0.7$

К системе малых осесимметричных возмущений (3) добавится уравнение при $\beta=0$

$$T = T(r,\varphi) + t'(r)\cos(\sigma z),\tag{10}$$

где $T(r,\varphi)$ — температура основного течения; t'(r) — амплитуда возмущения температуры. После подстановки (3) и (10) в (6)–(8) и упрощения линеаризованная система уравнений имеет следующий вид:

$$2U\frac{u'\sigma^{2}}{r} - \frac{a}{r}U^{2}t'\sigma^{2} = \nu(DD^{*} - \sigma^{2})^{2}v';$$

$$v'D^{*}U = \nu(DD^{*} - \sigma^{2})u';$$

$$v'D^{*}T = a(DD^{*} - \sigma^{2})t'.$$
(11)

При обезразмеривании получим:

$$\overline{\sigma}^{2} \frac{\overline{U}}{\overline{r}} T a^{2} [2\overline{u'} - N\overline{U}\widetilde{t}] = (\overline{D}\overline{D}^{*} - \overline{\sigma}^{2})^{2} \widetilde{v'};$$

$$\widetilde{v'}\overline{D}^{*} \overline{U} = (\overline{D}\overline{D}^{*} - \overline{\sigma}^{2})\overline{u'};$$

$$\widetilde{v'}\overline{D}^{*} \overline{T} = (\overline{D}\overline{D}^{*} - \overline{\sigma}^{2})\widetilde{t},$$
(12)

где N — параметр, учитывающий радиальный градиент температур; $N=a\Delta T$ Pr; $\widetilde{v}'=\widetilde{v}$ Re; $\widetilde{v}=\overline{v'}$ Re; $\widetilde{t}=\overline{t'}/$ Pr; $\overline{t'}=t'/T_2$; $\overline{T}=T(r,\varphi)/T_2$.

Система уравнений (12) с граничными условиями u'=v'=Dv'=t'=0 при $x=\pm 1/2$ определяет задачу на собственные значения вида $F(\mathrm{Ta}^2,a,N,\eta)=0$.

В результате решения задачи Тейлора с учетом радиального градиента температур методом коллокаций, где функции для t' выбирались такими же, как и для u', в случае течения Куэтта, получены нейтральные кривые и зависимости критерия Тейлора от критерия радиального градиента температур N (рис. 3). Данные рис. 3 и табл. 1 свидетельствуют о том, что положительный и отрицательный градиенты температур инициируют дестабилизирующее и стабилизирующее действие соответственно.

Проведенные исследования позволили выявить особенности структуры потока, а именно: вихреобразования в межцилиндровом зазоре с неподвижным наружным и вращающимся внутренним цилиндрами РПА. Это свидетельствует о том, что при обработке маловязких

 $\it Tаблица~1.$ Критические значения числа Тейлора при различных величинах параметра N, характеризующего влияние радиального градиента температур

Параметр	Критическое значение числа Та							
зазора	N = -100	N = -10	N = -1	N = 0	N = 1	N = 10	N = 100	N = 500
$\eta = 0.99$	41,263	41,209	41,203	41,199	41,173	_	41,146	40,915
σ	$3,\!135$	3,127	3,130	3,131	3,130	_	3,127	3,127
$\eta = 0.95$	43,009	41,520	$41,\!378$	41,360	41,325	41,210	39,893	35,262
σ	3,126	3,130	3,129	3,128	3,130	3,130	3,130	3,130
$\eta = 0.7$	_	56,732	$44,\!468$	43,539	42,662	36,602	19,148	9,309
σ	_	3,122	3,138	3,146	3,142	3,162	3,162	3,210
$\eta = 0.5$	_	_	$53,\!273$	48,215	44,350	28,647	10,944	4,997
σ	_	_	3,162	3,162	3,162	3,194	3,225	3,225
$\eta = 0.1$	_	_	$72,\!351$	_	58,197	20,102	6,418	2,873
σ	_	_	3,606	_	3,464	6,464	3,464	3,490

сред в РПА обрабатываемая среда подвергается усиленному динамическому воздействию при прохождении через вихри: кинематические — в прорезях, возникающие за счет прерывания потока ротором, и гидродинамические — в зазоре с вращающимся внутренним ротором. Разработанная модель позволила установить, что положительный радиальный градиент температур вносит дестабилизирующее воздействие, повышая эффективность работы аппаратов роторного типа.

- 1. Долинский А.А., Басок Б.И., Гулый С.И. и др. Дискретно-импульсный ввод энергии в теплотехнологиях. – Киев: Изд. Ин-та техн. теплофиз. НАН Украины, 1996. – 208 с.
- 2. *Накорчевский А. И.*, *Басок Б. И.* Гидродинамика и тепломассоперенос в гетерогенных системах и пульсирующих потоках. Киев: Наук. думка, 2001. 346 с.
- 3. Сорожина Т.В. Гидродинамическая неустойчивость в роторно-пульсационных аппаратах // Промышл. теплотехника. 2004. 26, № 6. С. 80–82.
- 4. *Халатов А. А.*, *Авраменко А. А.*, *Шевчук И. В.* Теплообмен и гидродинамика в полях центробежных сил. Киев: Изд. Ин-та техн. теплофиз. НАН Украины, 1996. Т. 2. 289 с.
- 5. Сушнии X., Голлаба Джс. Гидродинамические неустойчивости и переход к турбулентности / Пер. с англ. Москва: Мир, 1984. 344 с.
- 6. Walowit J., Tsao S., DiPrima R. C. Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient // J. Appl. Mech. 1964. 31. P. 585–594.

Институт технической теплофизики НАН Украины, Киев Поступило в редакцию 11.09.2008

Corresponding Member of the NAS of Ukraine B. I. Basok, Corresponding Member of the NAS of Ukraine A. A. Avramenko, B. V. Davydenko, I. A. Pirozhenko

Centrifugal instability of flow in rotary-pulse devices including the non-isothermality

The results of studies of the stability of a flow between coaxial cylinders of rotary-pulse devices obtained by the linear perturbation method are presented. The regions of stabilizing and destabilizing effects of the radial temperature gradient in rotary-pulse devices of various modifications are determined.